2
0
mirror of https://github.com/xcat2/xNBA.git synced 2024-12-16 08:11:31 +00:00
xNBA/src/drivers/net/etherfabric.c
Michael Brown 15ee09ed10 Restructured PCI subsystem to fit the new device model.
Generic PCI code now handles 64-bit BARs correctly when setting
"membase"; drivers should need to call pci_bar_start() only if they want
to use BARs other than the first memory or I/O BAR.

Split rarely-used PCI functions out into pciextra.c.

Core PCI code is now 662 bytes (down from 1308 bytes in Etherboot 5.4).
284 bytes of this saving comes from the pci/pciextra split.

Cosmetic changes to lots of drivers (e.g. vendor_id->vendor in order to
match the names used in Linux).
2006-05-16 15:12:06 +00:00

3041 lines
81 KiB
C

/**************************************************************************
*
* Etherboot driver for Level 5 Etherfabric network cards
*
* Written by Michael Brown <mbrown@fensystems.co.uk>
*
* Copyright Fen Systems Ltd. 2005
* Copyright Level 5 Networks Inc. 2005
*
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by
* reference. Drivers based on or derived from this code fall under
* the GPL and must retain the authorship, copyright and license
* notice.
*
**************************************************************************
*/
#include "etherboot.h"
#include "nic.h"
#include <gpxe/pci.h>
#include "timer.h"
#define dma_addr_t unsigned long
#include "etherfabric.h"
/**************************************************************************
*
* Constants and macros
*
**************************************************************************
*/
#define EFAB_ASSERT(x) \
do { \
if ( ! (x) ) { \
DBG ( "ASSERT(%s) failed at %s line %d [%s]\n", #x, \
__FILE__, __LINE__, __FUNCTION__ ); \
} \
} while (0)
#define EFAB_TRACE(...)
#define EFAB_REGDUMP(...)
#define FALCON_USE_IO_BAR 1
/*
* EtherFabric constants
*
*/
/* PCI Definitions */
#define EFAB_VENDID_LEVEL5 0x1924
#define FALCON_P_DEVID 0x0703 /* Temporary PCI ID */
#define EF1002_DEVID 0xC101
/**************************************************************************
*
* Data structures
*
**************************************************************************
*/
/*
* Buffers used for TX, RX and event queue
*
*/
#define EFAB_BUF_ALIGN 4096
#define EFAB_DATA_BUF_SIZE 2048
#define EFAB_RX_BUFS 16
#define EFAB_RXD_SIZE 512
#define EFAB_TXD_SIZE 512
#define EFAB_EVQ_SIZE 512
struct efab_buffers {
uint8_t eventq[4096];
uint8_t rxd[4096];
uint8_t txd[4096];
uint8_t tx_buf[EFAB_DATA_BUF_SIZE];
uint8_t rx_buf[EFAB_RX_BUFS][EFAB_DATA_BUF_SIZE];
uint8_t padding[EFAB_BUF_ALIGN-1];
};
static struct efab_buffers efab_buffers;
/** An RX buffer */
struct efab_rx_buf {
uint8_t *addr;
unsigned int len;
int id;
};
/** A TX buffer */
struct efab_tx_buf {
uint8_t *addr;
unsigned int len;
int id;
};
/** Etherfabric event type */
enum efab_event_type {
EFAB_EV_NONE = 0,
EFAB_EV_TX,
EFAB_EV_RX,
};
/** Etherfabric event */
struct efab_event {
/** Event type */
enum efab_event_type type;
/** RX buffer ID */
int rx_id;
/** RX length */
unsigned int rx_len;
};
/*
* Etherfabric abstraction layer
*
*/
struct efab_nic;
struct efab_operations {
void ( * get_membase ) ( struct efab_nic *efab );
int ( * reset ) ( struct efab_nic *efab );
int ( * init_nic ) ( struct efab_nic *efab );
int ( * read_eeprom ) ( struct efab_nic *efab );
void ( * build_rx_desc ) ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf );
void ( * notify_rx_desc ) ( struct efab_nic *efab );
void ( * build_tx_desc ) ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf );
void ( * notify_tx_desc ) ( struct efab_nic *efab );
int ( * fetch_event ) ( struct efab_nic *efab,
struct efab_event *event );
void ( * mask_irq ) ( struct efab_nic *efab, int enabled );
void ( * generate_irq ) ( struct efab_nic *efab );
void ( * mac_writel ) ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg );
void ( * mac_readl ) ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg );
int ( * init_mac ) ( struct efab_nic *efab );
void ( * mdio_write ) ( struct efab_nic *efab, int location,
int value );
int ( * mdio_read ) ( struct efab_nic *efab, int location );
};
/*
* Driver private data structure
*
*/
struct efab_nic {
/** PCI device */
struct pci_device *pci;
/** Operations table */
struct efab_operations *op;
/** Memory base */
void *membase;
/** I/O base */
unsigned int iobase;
/** Buffers */
uint8_t *eventq; /* Falcon only */
uint8_t *txd; /* Falcon only */
uint8_t *rxd; /* Falcon only */
struct efab_tx_buf tx_buf;
struct efab_rx_buf rx_bufs[EFAB_RX_BUFS];
/** Buffer pointers */
unsigned int eventq_read_ptr; /* Falcon only */
unsigned int tx_write_ptr;
unsigned int rx_write_ptr;
int tx_in_progress;
/** Port 0/1 on the NIC */
int port;
/** MAC address */
uint8_t mac_addr[ETH_ALEN];
/** GMII link options */
unsigned int link_options;
/** Link status */
int link_up;
/** INT_REG_KER for Falcon */
efab_oword_t int_ker __attribute__ (( aligned ( 16 ) ));
};
/**************************************************************************
*
* EEPROM access
*
**************************************************************************
*/
#define EFAB_EEPROM_SDA 0x80000000u
#define EFAB_EEPROM_SCL 0x40000000u
#define ARIZONA_24xx00_SLAVE 0xa0
#define EFAB_EEPROM_READ_SELECT ( ARIZONA_24xx00_SLAVE | 1 )
#define EFAB_EEPROM_WRITE_SELECT ( ARIZONA_24xx00_SLAVE | 0 )
static void eeprom_release ( uint32_t *eeprom_reg ) {
unsigned int dev;
udelay ( 10 );
dev = readl ( eeprom_reg );
writel ( dev | ( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL ),
eeprom_reg );
udelay ( 10 );
}
static void eeprom_start ( uint32_t *eeprom_reg ) {
unsigned int dev;
udelay ( 10 );
dev = readl ( eeprom_reg );
if ( ( dev & ( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL ) ) !=
( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL ) ) {
udelay ( 10 );
writel ( dev | ( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL ),
eeprom_reg );
udelay ( 1 );
}
dev &=~ ( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL );
udelay ( 10 );
writel ( dev | EFAB_EEPROM_SCL, eeprom_reg) ;
udelay ( 1) ;
udelay ( 10 );
writel ( dev, eeprom_reg );
udelay ( 10 );
}
static void eeprom_stop ( uint32_t *eeprom_reg ) {
unsigned int dev;
udelay ( 10 );
dev = readl ( eeprom_reg );
EFAB_ASSERT ( ! ( dev & EFAB_EEPROM_SCL ) );
if ( dev & ( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL ) ) {
dev &=~ ( EFAB_EEPROM_SDA | EFAB_EEPROM_SCL );
udelay ( 10 );
writel ( dev, eeprom_reg );
udelay ( 10 );
}
udelay ( 10 );
dev |= EFAB_EEPROM_SCL;
writel ( dev, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
dev |= EFAB_EEPROM_SDA;
writel ( dev, eeprom_reg );
udelay ( 10 );
}
static void eeprom_write ( uint32_t *eeprom_reg, unsigned char data ) {
int i;
unsigned int dev;
udelay ( 10 );
dev = readl ( eeprom_reg );
udelay ( 10 );
EFAB_ASSERT ( ! ( dev & EFAB_EEPROM_SCL ) );
for ( i = 0 ; i < 8 ; i++, data <<= 1 ) {
if ( data & 0x80 ) {
dev |= EFAB_EEPROM_SDA;
} else {
dev &=~ EFAB_EEPROM_SDA;
}
udelay ( 10 );
writel ( dev, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
writel ( dev | EFAB_EEPROM_SCL, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
writel ( dev, eeprom_reg );
udelay ( 10 );
}
if( ! ( dev & EFAB_EEPROM_SDA ) ) {
udelay ( 10 );
writel ( dev | EFAB_EEPROM_SDA, eeprom_reg );
udelay ( 10 );
}
}
static unsigned char eeprom_read ( uint32_t *eeprom_reg ) {
unsigned int i, dev, rd;
unsigned char val = 0;
udelay ( 10 );
dev = readl ( eeprom_reg );
udelay ( 10 );
EFAB_ASSERT ( ! ( dev & EFAB_EEPROM_SCL ) );
if( ! ( dev & EFAB_EEPROM_SDA ) ) {
dev |= EFAB_EEPROM_SDA;
udelay ( 10 );
writel ( dev, eeprom_reg );
udelay ( 10 );
}
for( i = 0 ; i < 8 ; i++ ) {
udelay ( 10 );
writel ( dev | EFAB_EEPROM_SCL, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
rd = readl ( eeprom_reg );
udelay ( 10 );
val = ( val << 1 ) | ( ( rd & EFAB_EEPROM_SDA ) != 0 );
udelay ( 10 );
writel ( dev, eeprom_reg );
udelay ( 10 );
}
return val;
}
static int eeprom_check_ack ( uint32_t *eeprom_reg ) {
int ack;
unsigned int dev;
udelay ( 10 );
dev = readl ( eeprom_reg );
EFAB_ASSERT ( ! ( dev & EFAB_EEPROM_SCL ) );
writel ( dev | EFAB_EEPROM_SCL, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
ack = readl ( eeprom_reg ) & EFAB_EEPROM_SDA;
udelay ( 10 );
writel ( ack & ~EFAB_EEPROM_SCL, eeprom_reg );
udelay ( 10 );
return ( ack == 0 );
}
static void eeprom_send_ack ( uint32_t *eeprom_reg ) {
unsigned int dev;
udelay ( 10 );
dev = readl ( eeprom_reg );
EFAB_ASSERT ( ! ( dev & EFAB_EEPROM_SCL ) );
udelay ( 10 );
dev &= ~EFAB_EEPROM_SDA;
writel ( dev, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
dev |= EFAB_EEPROM_SCL;
writel ( dev, eeprom_reg );
udelay ( 10 );
udelay ( 10 );
dev |= EFAB_EEPROM_SDA;
writel ( dev & ~EFAB_EEPROM_SCL, eeprom_reg );
udelay ( 10 );
}
static int efab_eeprom_read_mac ( uint32_t *eeprom_reg, uint8_t *mac_addr ) {
int i;
eeprom_start ( eeprom_reg );
eeprom_write ( eeprom_reg, EFAB_EEPROM_WRITE_SELECT );
if ( ! eeprom_check_ack ( eeprom_reg ) )
return 0;
eeprom_write ( eeprom_reg, 0 );
if ( ! eeprom_check_ack ( eeprom_reg ) )
return 0;
eeprom_stop ( eeprom_reg );
eeprom_start ( eeprom_reg );
eeprom_write ( eeprom_reg, EFAB_EEPROM_READ_SELECT );
if ( ! eeprom_check_ack ( eeprom_reg ) )
return 0;
for ( i = 0 ; i < ETH_ALEN ; i++ ) {
mac_addr[i] = eeprom_read ( eeprom_reg );
eeprom_send_ack ( eeprom_reg );
}
eeprom_stop ( eeprom_reg );
eeprom_release ( eeprom_reg );
return 1;
}
/**************************************************************************
*
* GMII routines
*
**************************************************************************
*/
/* GMII registers */
#define MII_BMSR 0x01 /* Basic mode status register */
#define MII_ADVERTISE 0x04 /* Advertisement control register */
#define MII_LPA 0x05 /* Link partner ability register*/
#define GMII_GTCR 0x09 /* 1000BASE-T control register */
#define GMII_GTSR 0x0a /* 1000BASE-T status register */
#define GMII_PSSR 0x11 /* PHY-specific status register */
/* Basic mode status register. */
#define BMSR_LSTATUS 0x0004 /* Link status */
/* Link partner ability register. */
#define LPA_10HALF 0x0020 /* Can do 10mbps half-duplex */
#define LPA_10FULL 0x0040 /* Can do 10mbps full-duplex */
#define LPA_100HALF 0x0080 /* Can do 100mbps half-duplex */
#define LPA_100FULL 0x0100 /* Can do 100mbps full-duplex */
#define LPA_100BASE4 0x0200 /* Can do 100mbps 4k packets */
#define LPA_PAUSE 0x0400 /* Bit 10 - MAC pause */
/* Pseudo extensions to the link partner ability register */
#define LPA_1000FULL 0x00020000
#define LPA_1000HALF 0x00010000
#define LPA_100 (LPA_100FULL | LPA_100HALF | LPA_100BASE4)
#define LPA_1000 ( LPA_1000FULL | LPA_1000HALF )
#define LPA_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_1000FULL )
/* Mask of bits not associated with speed or duplexity. */
#define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \
LPA_100HALF | LPA_1000FULL | LPA_1000HALF )
/* PHY-specific status register */
#define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */
/**
* Retrieve GMII autonegotiation advertised abilities
*
*/
static unsigned int gmii_autoneg_advertised ( struct efab_nic *efab ) {
unsigned int mii_advertise;
unsigned int gmii_advertise;
/* Extended bits are in bits 8 and 9 of GMII_GTCR */
mii_advertise = efab->op->mdio_read ( efab, MII_ADVERTISE );
gmii_advertise = ( ( efab->op->mdio_read ( efab, GMII_GTCR ) >> 8 )
& 0x03 );
return ( ( gmii_advertise << 16 ) | mii_advertise );
}
/**
* Retrieve GMII autonegotiation link partner abilities
*
*/
static unsigned int gmii_autoneg_lpa ( struct efab_nic *efab ) {
unsigned int mii_lpa;
unsigned int gmii_lpa;
/* Extended bits are in bits 10 and 11 of GMII_GTSR */
mii_lpa = efab->op->mdio_read ( efab, MII_LPA );
gmii_lpa = ( efab->op->mdio_read ( efab, GMII_GTSR ) >> 10 ) & 0x03;
return ( ( gmii_lpa << 16 ) | mii_lpa );
}
/**
* Calculate GMII autonegotiated link technology
*
*/
static unsigned int gmii_nway_result ( unsigned int negotiated ) {
unsigned int other_bits;
/* Mask out the speed and duplexity bits */
other_bits = negotiated & LPA_OTHER;
if ( negotiated & LPA_1000FULL )
return ( other_bits | LPA_1000FULL );
else if ( negotiated & LPA_1000HALF )
return ( other_bits | LPA_1000HALF );
else if ( negotiated & LPA_100FULL )
return ( other_bits | LPA_100FULL );
else if ( negotiated & LPA_100BASE4 )
return ( other_bits | LPA_100BASE4 );
else if ( negotiated & LPA_100HALF )
return ( other_bits | LPA_100HALF );
else if ( negotiated & LPA_10FULL )
return ( other_bits | LPA_10FULL );
else return ( other_bits | LPA_10HALF );
}
/**
* Check GMII PHY link status
*
*/
static int gmii_link_ok ( struct efab_nic *efab ) {
int status;
int phy_status;
/* BMSR is latching - it returns "link down" if the link has
* been down at any point since the last read. To get a
* real-time status, we therefore read the register twice and
* use the result of the second read.
*/
efab->op->mdio_read ( efab, MII_BMSR );
status = efab->op->mdio_read ( efab, MII_BMSR );
/* Read the PHY-specific Status Register. This is
* non-latching, so we need do only a single read.
*/
phy_status = efab->op->mdio_read ( efab, GMII_PSSR );
return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) );
}
/**************************************************************************
*
* Alaska PHY
*
**************************************************************************
*/
/**
* Initialise Alaska PHY
*
*/
static void alaska_init ( struct efab_nic *efab ) {
unsigned int advertised, lpa;
/* Read link up status */
efab->link_up = gmii_link_ok ( efab );
if ( ! efab->link_up )
return;
/* Determine link options from PHY. */
advertised = gmii_autoneg_advertised ( efab );
lpa = gmii_autoneg_lpa ( efab );
efab->link_options = gmii_nway_result ( advertised & lpa );
printf ( "%dMbps %s-duplex (%04x,%04x)\n",
( efab->link_options & LPA_1000 ? 1000 :
( efab->link_options & LPA_100 ? 100 : 10 ) ),
( efab->link_options & LPA_DUPLEX ? "full" : "half" ),
advertised, lpa );
}
/**************************************************************************
*
* Mentor MAC
*
**************************************************************************
*/
/* GMAC configuration register 1 */
#define GM_CFG1_REG_MAC 0x00
#define GM_SW_RST_LBN 31
#define GM_SW_RST_WIDTH 1
#define GM_RX_FC_EN_LBN 5
#define GM_RX_FC_EN_WIDTH 1
#define GM_TX_FC_EN_LBN 4
#define GM_TX_FC_EN_WIDTH 1
#define GM_RX_EN_LBN 2
#define GM_RX_EN_WIDTH 1
#define GM_TX_EN_LBN 0
#define GM_TX_EN_WIDTH 1
/* GMAC configuration register 2 */
#define GM_CFG2_REG_MAC 0x01
#define GM_PAMBL_LEN_LBN 12
#define GM_PAMBL_LEN_WIDTH 4
#define GM_IF_MODE_LBN 8
#define GM_IF_MODE_WIDTH 2
#define GM_PAD_CRC_EN_LBN 2
#define GM_PAD_CRC_EN_WIDTH 1
#define GM_FD_LBN 0
#define GM_FD_WIDTH 1
/* GMAC maximum frame length register */
#define GM_MAX_FLEN_REG_MAC 0x04
#define GM_MAX_FLEN_LBN 0
#define GM_MAX_FLEN_WIDTH 16
/* GMAC MII management configuration register */
#define GM_MII_MGMT_CFG_REG_MAC 0x08
#define GM_MGMT_CLK_SEL_LBN 0
#define GM_MGMT_CLK_SEL_WIDTH 3
/* GMAC MII management command register */
#define GM_MII_MGMT_CMD_REG_MAC 0x09
#define GM_MGMT_SCAN_CYC_LBN 1
#define GM_MGMT_SCAN_CYC_WIDTH 1
#define GM_MGMT_RD_CYC_LBN 0
#define GM_MGMT_RD_CYC_WIDTH 1
/* GMAC MII management address register */
#define GM_MII_MGMT_ADR_REG_MAC 0x0a
#define GM_MGMT_PHY_ADDR_LBN 8
#define GM_MGMT_PHY_ADDR_WIDTH 5
#define GM_MGMT_REG_ADDR_LBN 0
#define GM_MGMT_REG_ADDR_WIDTH 5
/* GMAC MII management control register */
#define GM_MII_MGMT_CTL_REG_MAC 0x0b
#define GM_MGMT_CTL_LBN 0
#define GM_MGMT_CTL_WIDTH 16
/* GMAC MII management status register */
#define GM_MII_MGMT_STAT_REG_MAC 0x0c
#define GM_MGMT_STAT_LBN 0
#define GM_MGMT_STAT_WIDTH 16
/* GMAC MII management indicators register */
#define GM_MII_MGMT_IND_REG_MAC 0x0d
#define GM_MGMT_BUSY_LBN 0
#define GM_MGMT_BUSY_WIDTH 1
/* GMAC station address register 1 */
#define GM_ADR1_REG_MAC 0x10
#define GM_HWADDR_5_LBN 24
#define GM_HWADDR_5_WIDTH 8
#define GM_HWADDR_4_LBN 16
#define GM_HWADDR_4_WIDTH 8
#define GM_HWADDR_3_LBN 8
#define GM_HWADDR_3_WIDTH 8
#define GM_HWADDR_2_LBN 0
#define GM_HWADDR_2_WIDTH 8
/* GMAC station address register 2 */
#define GM_ADR2_REG_MAC 0x11
#define GM_HWADDR_1_LBN 24
#define GM_HWADDR_1_WIDTH 8
#define GM_HWADDR_0_LBN 16
#define GM_HWADDR_0_WIDTH 8
/* GMAC FIFO configuration register 0 */
#define GMF_CFG0_REG_MAC 0x12
#define GMF_FTFENREQ_LBN 12
#define GMF_FTFENREQ_WIDTH 1
#define GMF_STFENREQ_LBN 11
#define GMF_STFENREQ_WIDTH 1
#define GMF_FRFENREQ_LBN 10
#define GMF_FRFENREQ_WIDTH 1
#define GMF_SRFENREQ_LBN 9
#define GMF_SRFENREQ_WIDTH 1
#define GMF_WTMENREQ_LBN 8
#define GMF_WTMENREQ_WIDTH 1
/* GMAC FIFO configuration register 1 */
#define GMF_CFG1_REG_MAC 0x13
#define GMF_CFGFRTH_LBN 16
#define GMF_CFGFRTH_WIDTH 5
#define GMF_CFGXOFFRTX_LBN 0
#define GMF_CFGXOFFRTX_WIDTH 16
/* GMAC FIFO configuration register 2 */
#define GMF_CFG2_REG_MAC 0x14
#define GMF_CFGHWM_LBN 16
#define GMF_CFGHWM_WIDTH 6
#define GMF_CFGLWM_LBN 0
#define GMF_CFGLWM_WIDTH 6
/* GMAC FIFO configuration register 3 */
#define GMF_CFG3_REG_MAC 0x15
#define GMF_CFGHWMFT_LBN 16
#define GMF_CFGHWMFT_WIDTH 6
#define GMF_CFGFTTH_LBN 0
#define GMF_CFGFTTH_WIDTH 6
/* GMAC FIFO configuration register 4 */
#define GMF_CFG4_REG_MAC 0x16
#define GMF_HSTFLTRFRM_PAUSE_LBN 12
#define GMF_HSTFLTRFRM_PAUSE_WIDTH 12
/* GMAC FIFO configuration register 5 */
#define GMF_CFG5_REG_MAC 0x17
#define GMF_CFGHDPLX_LBN 22
#define GMF_CFGHDPLX_WIDTH 1
#define GMF_CFGBYTMODE_LBN 19
#define GMF_CFGBYTMODE_WIDTH 1
#define GMF_HSTDRPLT64_LBN 18
#define GMF_HSTDRPLT64_WIDTH 1
#define GMF_HSTFLTRFRMDC_PAUSE_LBN 12
#define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1
struct efab_mentormac_parameters {
int gmf_cfgfrth;
int gmf_cfgftth;
int gmf_cfghwmft;
int gmf_cfghwm;
int gmf_cfglwm;
};
/**
* Reset Mentor MAC
*
*/
static void mentormac_reset ( struct efab_nic *efab, int reset ) {
efab_dword_t reg;
EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, reset );
efab->op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 1000 );
if ( ( ! reset ) && ( efab->port == 0 ) ) {
/* Configure GMII interface so PHY is accessible.
* Note that GMII interface is connected only to port
* 0
*/
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 );
efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CFG_REG_MAC );
udelay ( 10 );
}
}
/**
* Initialise Mentor MAC
*
*/
static void mentormac_init ( struct efab_nic *efab,
struct efab_mentormac_parameters *params ) {
int pause, if_mode, full_duplex, bytemode, half_duplex;
efab_dword_t reg;
/* Configuration register 1 */
pause = ( efab->link_options & LPA_PAUSE ) ? 1 : 0;
if ( ! ( efab->link_options & LPA_DUPLEX ) ) {
/* Half-duplex operation requires TX flow control */
pause = 1;
}
EFAB_POPULATE_DWORD_4 ( reg,
GM_TX_EN, 1,
GM_TX_FC_EN, pause,
GM_RX_EN, 1,
GM_RX_FC_EN, 1 );
efab->op->mac_writel ( efab, &reg, GM_CFG1_REG_MAC );
udelay ( 10 );
/* Configuration register 2 */
if_mode = ( efab->link_options & LPA_1000 ) ? 2 : 1;
full_duplex = ( efab->link_options & LPA_DUPLEX ) ? 1 : 0;
EFAB_POPULATE_DWORD_4 ( reg,
GM_IF_MODE, if_mode,
GM_PAD_CRC_EN, 1,
GM_FD, full_duplex,
GM_PAMBL_LEN, 0x7 /* ? */ );
efab->op->mac_writel ( efab, &reg, GM_CFG2_REG_MAC );
udelay ( 10 );
/* Max frame len register */
EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN, ETH_FRAME_LEN );
efab->op->mac_writel ( efab, &reg, GM_MAX_FLEN_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 0 */
EFAB_POPULATE_DWORD_5 ( reg,
GMF_FTFENREQ, 1,
GMF_STFENREQ, 1,
GMF_FRFENREQ, 1,
GMF_SRFENREQ, 1,
GMF_WTMENREQ, 1 );
efab->op->mac_writel ( efab, &reg, GMF_CFG0_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 1 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGFRTH, params->gmf_cfgfrth,
GMF_CFGXOFFRTX, 0xffff );
efab->op->mac_writel ( efab, &reg, GMF_CFG1_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 2 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGHWM, params->gmf_cfghwm,
GMF_CFGLWM, params->gmf_cfglwm );
efab->op->mac_writel ( efab, &reg, GMF_CFG2_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 3 */
EFAB_POPULATE_DWORD_2 ( reg,
GMF_CFGHWMFT, params->gmf_cfghwmft,
GMF_CFGFTTH, params->gmf_cfgftth );
efab->op->mac_writel ( efab, &reg, GMF_CFG3_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 4 */
EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 );
efab->op->mac_writel ( efab, &reg, GMF_CFG4_REG_MAC );
udelay ( 10 );
/* FIFO configuration register 5 */
bytemode = ( efab->link_options & LPA_1000 ) ? 1 : 0;
half_duplex = ( efab->link_options & LPA_DUPLEX ) ? 0 : 1;
efab->op->mac_readl ( efab, &reg, GMF_CFG5_REG_MAC );
EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode );
EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex );
EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex );
EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 );
efab->op->mac_writel ( efab, &reg, GMF_CFG5_REG_MAC );
udelay ( 10 );
/* MAC address */
EFAB_POPULATE_DWORD_4 ( reg,
GM_HWADDR_5, efab->mac_addr[5],
GM_HWADDR_4, efab->mac_addr[4],
GM_HWADDR_3, efab->mac_addr[3],
GM_HWADDR_2, efab->mac_addr[2] );
efab->op->mac_writel ( efab, &reg, GM_ADR1_REG_MAC );
udelay ( 10 );
EFAB_POPULATE_DWORD_2 ( reg,
GM_HWADDR_1, efab->mac_addr[1],
GM_HWADDR_0, efab->mac_addr[0] );
efab->op->mac_writel ( efab, &reg, GM_ADR2_REG_MAC );
udelay ( 10 );
}
/**
* Wait for GMII access to complete
*
*/
static int mentormac_gmii_wait ( struct efab_nic *efab ) {
int count;
efab_dword_t indicator;
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
efab->op->mac_readl ( efab, &indicator,
GM_MII_MGMT_IND_REG_MAC );
if ( EFAB_DWORD_FIELD ( indicator, GM_MGMT_BUSY ) == 0 )
return 1;
}
printf ( "Timed out waiting for GMII\n" );
return 0;
}
/**
* Write a GMII register
*
*/
static void mentormac_mdio_write ( struct efab_nic *efab, int phy_id,
int location, int value ) {
efab_dword_t reg;
int save_port;
EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", phy_id,
location, value );
/* Mentor MAC connects both PHYs to MAC 0 */
save_port = efab->port;
efab->port = 0;
/* Check MII not currently being accessed */
if ( ! mentormac_gmii_wait ( efab ) )
goto out;
/* Write the address register */
EFAB_POPULATE_DWORD_2 ( reg,
GM_MGMT_PHY_ADDR, phy_id,
GM_MGMT_REG_ADDR, location );
efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_ADR_REG_MAC );
udelay ( 10 );
/* Write data */
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CTL, value );
efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CTL_REG_MAC );
/* Wait for data to be written */
mentormac_gmii_wait ( efab );
out:
/* Restore efab->port */
efab->port = save_port;
}
/**
* Read a GMII register
*
*/
static int mentormac_mdio_read ( struct efab_nic *efab, int phy_id,
int location ) {
efab_dword_t reg;
int value = 0xffff;
int save_port;
/* Mentor MAC connects both PHYs to MAC 0 */
save_port = efab->port;
efab->port = 0;
/* Check MII not currently being accessed */
if ( ! mentormac_gmii_wait ( efab ) )
goto out;
/* Write the address register */
EFAB_POPULATE_DWORD_2 ( reg,
GM_MGMT_PHY_ADDR, phy_id,
GM_MGMT_REG_ADDR, location );
efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_ADR_REG_MAC );
udelay ( 10 );
/* Request data to be read */
EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_RD_CYC, 1 );
efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CMD_REG_MAC );
/* Wait for data to be become available */
if ( mentormac_gmii_wait ( efab ) ) {
/* Read data */
efab->op->mac_readl ( efab, &reg, GM_MII_MGMT_STAT_REG_MAC );
value = EFAB_DWORD_FIELD ( reg, GM_MGMT_STAT );
EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
phy_id, location, value );
}
/* Signal completion */
EFAB_ZERO_DWORD ( reg );
efab->op->mac_writel ( efab, &reg, GM_MII_MGMT_CMD_REG_MAC );
udelay ( 10 );
out:
/* Restore efab->port */
efab->port = save_port;
return value;
}
/**************************************************************************
*
* EF1002 routines
*
**************************************************************************
*/
/** Control and General Status */
#define EF1_CTR_GEN_STATUS0_REG 0x0
#define EF1_MASTER_EVENTS_LBN 12
#define EF1_MASTER_EVENTS_WIDTH 1
#define EF1_TX_ENGINE_EN_LBN 19
#define EF1_TX_ENGINE_EN_WIDTH 1
#define EF1_RX_ENGINE_EN_LBN 18
#define EF1_RX_ENGINE_EN_WIDTH 1
#define EF1_LB_RESET_LBN 3
#define EF1_LB_RESET_WIDTH 1
#define EF1_MAC_RESET_LBN 2
#define EF1_MAC_RESET_WIDTH 1
#define EF1_CAM_ENABLE_LBN 1
#define EF1_CAM_ENABLE_WIDTH 1
/** IRQ sources */
#define EF1_IRQ_SRC_REG 0x0008
/** IRQ mask */
#define EF1_IRQ_MASK_REG 0x000c
#define EF1_IRQ_PHY1_LBN 11
#define EF1_IRQ_PHY1_WIDTH 1
#define EF1_IRQ_PHY0_LBN 10
#define EF1_IRQ_PHY0_WIDTH 1
#define EF1_IRQ_SERR_LBN 7
#define EF1_IRQ_SERR_WIDTH 1
#define EF1_IRQ_EVQ_LBN 3
#define EF1_IRQ_EVQ_WIDTH 1
/** Event generation */
#define EF1_EVT3_REG 0x38
/** EEPROM access */
#define EF1_EEPROM_REG 0x0040
/** Control register 2 */
#define EF1_CTL2_REG 0x4c
#define EF1_MEM_MAP_4MB_LBN 11
#define EF1_MEM_MAP_4MB_WIDTH 1
#define EF1_EV_INTR_CLR_WRITE_LBN 6
#define EF1_EV_INTR_CLR_WRITE_WIDTH 1
#define EF1_SW_RESET_LBN 2
#define EF1_SW_RESET_WIDTH 1
#define EF1_INTR_AFTER_EVENT_LBN 1
#define EF1_INTR_AFTER_EVENT_WIDTH 1
/** Event FIFO */
#define EF1_EVENT_FIFO_REG 0x50
/** Event FIFO count */
#define EF1_EVENT_FIFO_COUNT_REG 0x5c
#define EF1_EV_COUNT_LBN 0
#define EF1_EV_COUNT_WIDTH 16
/** TX DMA control and status */
#define EF1_DMA_TX_CSR_REG 0x80
#define EF1_DMA_TX_CSR_CHAIN_EN_LBN 8
#define EF1_DMA_TX_CSR_CHAIN_EN_WIDTH 1
#define EF1_DMA_TX_CSR_ENABLE_LBN 4
#define EF1_DMA_TX_CSR_ENABLE_WIDTH 1
#define EF1_DMA_TX_CSR_INT_EN_LBN 0
#define EF1_DMA_TX_CSR_INT_EN_WIDTH 1
/** RX DMA control and status */
#define EF1_DMA_RX_CSR_REG 0xa0
#define EF1_DMA_RX_ABOVE_1GB_EN_LBN 6
#define EF1_DMA_RX_ABOVE_1GB_EN_WIDTH 1
#define EF1_DMA_RX_BELOW_1MB_EN_LBN 5
#define EF1_DMA_RX_BELOW_1MB_EN_WIDTH 1
#define EF1_DMA_RX_CSR_ENABLE_LBN 0
#define EF1_DMA_RX_CSR_ENABLE_WIDTH 1
/** Level 5 watermark register (in MAC space) */
#define EF1_GMF_L5WM_REG_MAC 0x20
#define EF1_L5WM_LBN 0
#define EF1_L5WM_WIDTH 32
/** MAC clock */
#define EF1_GM_MAC_CLK_REG 0x112000
#define EF1_GM_PORT0_MAC_CLK_LBN 0
#define EF1_GM_PORT0_MAC_CLK_WIDTH 1
#define EF1_GM_PORT1_MAC_CLK_LBN 1
#define EF1_GM_PORT1_MAC_CLK_WIDTH 1
/** TX descriptor FIFO */
#define EF1_TX_DESC_FIFO 0x141000
#define EF1_TX_KER_EVQ_LBN 80
#define EF1_TX_KER_EVQ_WIDTH 12
#define EF1_TX_KER_IDX_LBN 64
#define EF1_TX_KER_IDX_WIDTH 16
#define EF1_TX_KER_MODE_LBN 63
#define EF1_TX_KER_MODE_WIDTH 1
#define EF1_TX_KER_PORT_LBN 60
#define EF1_TX_KER_PORT_WIDTH 1
#define EF1_TX_KER_CONT_LBN 56
#define EF1_TX_KER_CONT_WIDTH 1
#define EF1_TX_KER_BYTE_CNT_LBN 32
#define EF1_TX_KER_BYTE_CNT_WIDTH 24
#define EF1_TX_KER_BUF_ADR_LBN 0
#define EF1_TX_KER_BUF_ADR_WIDTH 32
/** TX descriptor FIFO flush */
#define EF1_TX_DESC_FIFO_FLUSH 0x141ffc
/** RX descriptor FIFO */
#define EF1_RX_DESC_FIFO 0x145000
#define EF1_RX_KER_EVQ_LBN 48
#define EF1_RX_KER_EVQ_WIDTH 12
#define EF1_RX_KER_IDX_LBN 32
#define EF1_RX_KER_IDX_WIDTH 16
#define EF1_RX_KER_BUF_ADR_LBN 0
#define EF1_RX_KER_BUF_ADR_WIDTH 32
/** RX descriptor FIFO flush */
#define EF1_RX_DESC_FIFO_FLUSH 0x145ffc
/** CAM */
#define EF1_CAM_BASE 0x1c0000
#define EF1_CAM_WTF_DOES_THIS_DO_LBN 0
#define EF1_CAM_WTF_DOES_THIS_DO_WIDTH 32
/** Event queue pointers */
#define EF1_EVQ_PTR_BASE 0x260000
#define EF1_EVQ_SIZE_LBN 29
#define EF1_EVQ_SIZE_WIDTH 2
#define EF1_EVQ_SIZE_4K 3
#define EF1_EVQ_SIZE_2K 2
#define EF1_EVQ_SIZE_1K 1
#define EF1_EVQ_SIZE_512 0
#define EF1_EVQ_BUF_BASE_ID_LBN 0
#define EF1_EVQ_BUF_BASE_ID_WIDTH 29
/* MAC registers */
#define EF1002_MAC_REGBANK 0x110000
#define EF1002_MAC_REGBANK_SIZE 0x1000
#define EF1002_MAC_REG_SIZE 0x08
/** Offset of a MAC register within EF1002 */
#define EF1002_MAC_REG( efab, mac_reg ) \
( EF1002_MAC_REGBANK + \
( (efab)->port * EF1002_MAC_REGBANK_SIZE ) + \
( (mac_reg) * EF1002_MAC_REG_SIZE ) )
/* Event queue entries */
#define EF1_EV_CODE_LBN 20
#define EF1_EV_CODE_WIDTH 8
#define EF1_RX_EV_DECODE 0x01
#define EF1_TX_EV_DECODE 0x02
#define EF1_DRV_GEN_EV_DECODE 0x0f
/* Receive events */
#define EF1_RX_EV_LEN_LBN 48
#define EF1_RX_EV_LEN_WIDTH 16
#define EF1_RX_EV_PORT_LBN 17
#define EF1_RX_EV_PORT_WIDTH 3
#define EF1_RX_EV_OK_LBN 16
#define EF1_RX_EV_OK_WIDTH 1
#define EF1_RX_EV_IDX_LBN 0
#define EF1_RX_EV_IDX_WIDTH 16
/* Transmit events */
#define EF1_TX_EV_PORT_LBN 17
#define EF1_TX_EV_PORT_WIDTH 3
#define EF1_TX_EV_OK_LBN 16
#define EF1_TX_EV_OK_WIDTH 1
#define EF1_TX_EV_IDX_LBN 0
#define EF1_TX_EV_IDX_WIDTH 16
/**
* Write dword to EF1002 register
*
*/
static inline void ef1002_writel ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
EFAB_REGDUMP ( "Writing register %x with " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
writel ( value->u32[0], efab->membase + reg );
}
/**
* Read dword from an EF1002 register
*
*/
static inline void ef1002_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
value->u32[0] = readl ( efab->membase + reg );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
}
/**
* Read dword from an EF1002 register, silently
*
*/
static inline void ef1002_readl_silent ( struct efab_nic *efab,
efab_dword_t *value,
unsigned int reg ) {
value->u32[0] = readl ( efab->membase + reg );
}
/**
* Get memory base
*
*/
static void ef1002_get_membase ( struct efab_nic *efab ) {
unsigned long membase_phys;
membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_0 );
efab->membase = ioremap ( membase_phys, 0x800000 );
}
/** PCI registers to backup/restore over a device reset */
static const unsigned int efab_pci_reg_addr[] = {
PCI_COMMAND, 0x0c /* PCI_CACHE_LINE_SIZE */,
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2,
PCI_BASE_ADDRESS_3, PCI_ROM_ADDRESS, PCI_INTERRUPT_LINE,
};
/** Number of registers in efab_pci_reg_addr */
#define EFAB_NUM_PCI_REG \
( sizeof ( efab_pci_reg_addr ) / sizeof ( efab_pci_reg_addr[0] ) )
/** PCI configuration space backup */
struct efab_pci_reg {
uint32_t reg[EFAB_NUM_PCI_REG];
};
/**
* Reset device
*
*/
static int ef1002_reset ( struct efab_nic *efab ) {
struct efab_pci_reg pci_reg;
struct pci_device *pci_dev = efab->pci;
efab_dword_t reg;
unsigned int i;
uint32_t tmp;
/* Back up PCI configuration registers */
for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i],
&pci_reg.reg[i] );
}
/* Reset the whole device. */
EFAB_POPULATE_DWORD_1 ( reg, EF1_SW_RESET, 1 );
ef1002_writel ( efab, &reg, EF1_CTL2_REG );
mdelay ( 200 );
/* Restore PCI configuration space */
for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
pci_write_config_dword ( pci_dev, efab_pci_reg_addr[i],
pci_reg.reg[i] );
}
/* Verify PCI configuration space */
for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) {
pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i], &tmp );
if ( tmp != pci_reg.reg[i] ) {
printf ( "PCI restore failed on register %02x "
"(is %08x, should be %08x); reboot\n",
i, tmp, pci_reg.reg[i] );
return 0;
}
}
/* Verify device reset complete */
ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
if ( EFAB_DWORD_IS_ALL_ONES ( reg ) ) {
printf ( "Reset failed\n" );
return 0;
}
return 1;
}
/**
* Initialise NIC
*
*/
static int ef1002_init_nic ( struct efab_nic *efab ) {
efab_dword_t reg;
int save_port;
/* No idea what CAM is, but the 'datasheet' says that we have
* to write these values in at start of day
*/
EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x6 );
ef1002_writel ( efab, &reg, EF1_CAM_BASE + 0x20018 );
udelay ( 1000 );
EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x01000000 );
ef1002_writel ( efab, &reg, EF1_CAM_BASE + 0x00018 );
udelay ( 1000 );
/* General control register 0 */
ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_MASTER_EVENTS, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_CAM_ENABLE, 1 );
ef1002_writel ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
udelay ( 1000 );
/* General control register 2 */
ef1002_readl ( efab, &reg, EF1_CTL2_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_INTR_AFTER_EVENT, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_EV_INTR_CLR_WRITE, 0 );
EFAB_SET_DWORD_FIELD ( reg, EF1_MEM_MAP_4MB, 0 );
ef1002_writel ( efab, &reg, EF1_CTL2_REG );
udelay ( 1000 );
/* Enable RX DMA */
ef1002_readl ( efab, &reg, EF1_DMA_RX_CSR_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_CSR_ENABLE, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_BELOW_1MB_EN, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_ABOVE_1GB_EN, 1 );
ef1002_writel ( efab, &reg, EF1_DMA_RX_CSR_REG );
udelay ( 1000 );
/* Enable TX DMA */
ef1002_readl ( efab, &reg, EF1_DMA_TX_CSR_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_CHAIN_EN, 1 );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_ENABLE, 0 /* ?? */ );
EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_INT_EN, 0 /* ?? */ );
ef1002_writel ( efab, &reg, EF1_DMA_TX_CSR_REG );
udelay ( 1000 );
/* Flush descriptor queues */
EFAB_ZERO_DWORD ( reg );
ef1002_writel ( efab, &reg, EF1_RX_DESC_FIFO_FLUSH );
ef1002_writel ( efab, &reg, EF1_TX_DESC_FIFO_FLUSH );
wmb();
udelay ( 10000 );
/* Reset both MACs */
save_port = efab->port;
efab->port = 0;
mentormac_reset ( efab, 1 );
efab->port = 1;
mentormac_reset ( efab, 1 );
/* Reset both PHYs */
ef1002_readl ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
EFAB_SET_DWORD_FIELD ( reg, EF1_MAC_RESET, 1 );
ef1002_writel ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
udelay ( 10000 );
EFAB_SET_DWORD_FIELD ( reg, EF1_MAC_RESET, 0 );
ef1002_writel ( efab, &reg, EF1_CTR_GEN_STATUS0_REG );
udelay ( 10000 );
/* Take MACs out of reset */
efab->port = 0;
mentormac_reset ( efab, 0 );
efab->port = 1;
mentormac_reset ( efab, 0 );
efab->port = save_port;
/* Give PHY time to wake up. It takes a while. */
sleep ( 2 );
return 1;
}
/**
* Read MAC address from EEPROM
*
*/
static int ef1002_read_eeprom ( struct efab_nic *efab ) {
return efab_eeprom_read_mac ( efab->membase + EF1_EEPROM_REG,
efab->mac_addr );
}
/** RX descriptor */
typedef efab_qword_t ef1002_rx_desc_t;
/**
* Build RX descriptor
*
*/
static void ef1002_build_rx_desc ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf ) {
ef1002_rx_desc_t rxd;
EFAB_POPULATE_QWORD_3 ( rxd,
EF1_RX_KER_EVQ, 0,
EF1_RX_KER_IDX, rx_buf->id,
EF1_RX_KER_BUF_ADR,
virt_to_bus ( rx_buf->addr ) );
ef1002_writel ( efab, &rxd.dword[0], EF1_RX_DESC_FIFO + 0 );
ef1002_writel ( efab, &rxd.dword[1], EF1_RX_DESC_FIFO + 4 );
udelay ( 10 );
}
/**
* Update RX descriptor write pointer
*
*/
static void ef1002_notify_rx_desc ( struct efab_nic *efab __unused ) {
/* Nothing to do */
}
/** TX descriptor */
typedef efab_oword_t ef1002_tx_desc_t;
/**
* Build TX descriptor
*
*/
static void ef1002_build_tx_desc ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf ) {
ef1002_tx_desc_t txd;
EFAB_POPULATE_OWORD_7 ( txd,
EF1_TX_KER_EVQ, 0,
EF1_TX_KER_IDX, tx_buf->id,
EF1_TX_KER_MODE, 0 /* IP mode */,
EF1_TX_KER_PORT, efab->port,
EF1_TX_KER_CONT, 0,
EF1_TX_KER_BYTE_CNT, tx_buf->len,
EF1_TX_KER_BUF_ADR,
virt_to_bus ( tx_buf->addr ) );
ef1002_writel ( efab, &txd.dword[0], EF1_TX_DESC_FIFO + 0 );
ef1002_writel ( efab, &txd.dword[1], EF1_TX_DESC_FIFO + 4 );
ef1002_writel ( efab, &txd.dword[2], EF1_TX_DESC_FIFO + 8 );
udelay ( 10 );
}
/**
* Update TX descriptor write pointer
*
*/
static void ef1002_notify_tx_desc ( struct efab_nic *efab __unused ) {
/* Nothing to do */
}
/** An event */
typedef efab_qword_t ef1002_event_t;
/**
* Retrieve event from event queue
*
*/
static int ef1002_fetch_event ( struct efab_nic *efab,
struct efab_event *event ) {
efab_dword_t reg;
int ev_code;
int words;
/* Check event FIFO depth */
ef1002_readl_silent ( efab, &reg, EF1_EVENT_FIFO_COUNT_REG );
words = EFAB_DWORD_FIELD ( reg, EF1_EV_COUNT );
if ( ! words )
return 0;
/* Read event data */
ef1002_readl ( efab, &reg, EF1_EVENT_FIFO_REG );
DBG ( "Event is " EFAB_DWORD_FMT "\n", EFAB_DWORD_VAL ( reg ) );
/* Decode event */
ev_code = EFAB_DWORD_FIELD ( reg, EF1_EV_CODE );
switch ( ev_code ) {
case EF1_TX_EV_DECODE:
event->type = EFAB_EV_TX;
break;
case EF1_RX_EV_DECODE:
event->type = EFAB_EV_RX;
event->rx_id = EFAB_DWORD_FIELD ( reg, EF1_RX_EV_IDX );
/* RX len not available via event FIFO */
event->rx_len = ETH_FRAME_LEN;
break;
default:
printf ( "Unknown event type %d\n", ev_code );
event->type = EFAB_EV_NONE;
}
/* Clear any pending interrupts */
ef1002_readl ( efab, &reg, EF1_IRQ_SRC_REG );
return 1;
}
/**
* Enable/disable interrupts
*
*/
static void ef1002_mask_irq ( struct efab_nic *efab, int enabled ) {
efab_dword_t irq_mask;
EFAB_POPULATE_DWORD_2 ( irq_mask,
EF1_IRQ_SERR, enabled,
EF1_IRQ_EVQ, enabled );
ef1002_writel ( efab, &irq_mask, EF1_IRQ_MASK_REG );
}
/**
* Generate interrupt
*
*/
static void ef1002_generate_irq ( struct efab_nic *efab ) {
ef1002_event_t test_event;
EFAB_POPULATE_QWORD_1 ( test_event,
EF1_EV_CODE, EF1_DRV_GEN_EV_DECODE );
ef1002_writel ( efab, &test_event.dword[0], EF1_EVT3_REG );
}
/**
* Write dword to an EF1002 MAC register
*
*/
static void ef1002_mac_writel ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
ef1002_writel ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
}
/**
* Read dword from an EF1002 MAC register
*
*/
static void ef1002_mac_readl ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
ef1002_readl ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) );
}
/**
* Initialise MAC
*
*/
static int ef1002_init_mac ( struct efab_nic *efab ) {
static struct efab_mentormac_parameters ef1002_mentormac_params = {
.gmf_cfgfrth = 0x13,
.gmf_cfgftth = 0x10,
.gmf_cfghwmft = 0x555,
.gmf_cfghwm = 0x2a,
.gmf_cfglwm = 0x15,
};
efab_dword_t reg;
unsigned int mac_clk;
/* Initialise PHY */
alaska_init ( efab );
/* Initialise MAC */
mentormac_init ( efab, &ef1002_mentormac_params );
/* Write Level 5 watermark register */
EFAB_POPULATE_DWORD_1 ( reg, EF1_L5WM, 0x10040000 );
efab->op->mac_writel ( efab, &reg, EF1_GMF_L5WM_REG_MAC );
udelay ( 10 );
/* Set MAC clock speed */
ef1002_readl ( efab, &reg, EF1_GM_MAC_CLK_REG );
mac_clk = ( efab->link_options & LPA_1000 ) ? 0 : 1;
if ( efab->port == 0 ) {
EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT0_MAC_CLK, mac_clk );
} else {
EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT1_MAC_CLK, mac_clk );
}
ef1002_writel ( efab, &reg, EF1_GM_MAC_CLK_REG );
udelay ( 10 );
return 1;
}
/** MDIO write */
static void ef1002_mdio_write ( struct efab_nic *efab, int location,
int value ) {
mentormac_mdio_write ( efab, efab->port + 2, location, value );
}
/** MDIO read */
static int ef1002_mdio_read ( struct efab_nic *efab, int location ) {
return mentormac_mdio_read ( efab, efab->port + 2, location );
}
static struct efab_operations ef1002_operations = {
.get_membase = ef1002_get_membase,
.reset = ef1002_reset,
.init_nic = ef1002_init_nic,
.read_eeprom = ef1002_read_eeprom,
.build_rx_desc = ef1002_build_rx_desc,
.notify_rx_desc = ef1002_notify_rx_desc,
.build_tx_desc = ef1002_build_tx_desc,
.notify_tx_desc = ef1002_notify_tx_desc,
.fetch_event = ef1002_fetch_event,
.mask_irq = ef1002_mask_irq,
.generate_irq = ef1002_generate_irq,
.mac_writel = ef1002_mac_writel,
.mac_readl = ef1002_mac_readl,
.init_mac = ef1002_init_mac,
.mdio_write = ef1002_mdio_write,
.mdio_read = ef1002_mdio_read,
};
/**************************************************************************
*
* Falcon routines
*
**************************************************************************
*/
/* I/O BAR address register */
#define FCN_IOM_IND_ADR_REG 0x0
/* I/O BAR data register */
#define FCN_IOM_IND_DAT_REG 0x4
/* Interrupt enable register */
#define FCN_INT_EN_REG_KER 0x0010
#define FCN_MEM_PERR_INT_EN_KER_LBN 5
#define FCN_MEM_PERR_INT_EN_KER_WIDTH 1
#define FCN_KER_INT_CHAR_LBN 4
#define FCN_KER_INT_CHAR_WIDTH 1
#define FCN_KER_INT_KER_LBN 3
#define FCN_KER_INT_KER_WIDTH 1
#define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2
#define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1
#define FCN_SRM_PERR_INT_EN_KER_LBN 1
#define FCN_SRM_PERR_INT_EN_KER_WIDTH 1
#define FCN_DRV_INT_EN_KER_LBN 0
#define FCN_DRV_INT_EN_KER_WIDTH 1
/* Interrupt status register */
#define FCN_INT_ADR_REG_KER 0x0030
#define FCN_INT_ADR_KER_LBN 0
#define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 )
/* Interrupt acknowledge register */
#define FCN_INT_ACK_KER_REG 0x0050
/* SPI host command register */
#define FCN_EE_SPI_HCMD_REG_KER 0x0100
#define FCN_EE_SPI_HCMD_CMD_EN_LBN 31
#define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1
#define FCN_EE_WR_TIMER_ACTIVE_LBN 28
#define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1
#define FCN_EE_SPI_HCMD_SF_SEL_LBN 24
#define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1
#define FCN_EE_SPI_EEPROM 0
#define FCN_EE_SPI_FLASH 1
#define FCN_EE_SPI_HCMD_DABCNT_LBN 16
#define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5
#define FCN_EE_SPI_HCMD_READ_LBN 15
#define FCN_EE_SPI_HCMD_READ_WIDTH 1
#define FCN_EE_SPI_READ 1
#define FCN_EE_SPI_WRITE 0
#define FCN_EE_SPI_HCMD_DUBCNT_LBN 12
#define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ADBCNT_LBN 8
#define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2
#define FCN_EE_SPI_HCMD_ENC_LBN 0
#define FCN_EE_SPI_HCMD_ENC_WIDTH 8
/* SPI host address register */
#define FCN_EE_SPI_HADR_REG_KER 0x0110
#define FCN_EE_SPI_HADR_DUBYTE_LBN 24
#define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8
#define FCN_EE_SPI_HADR_ADR_LBN 0
#define FCN_EE_SPI_HADR_ADR_WIDTH 24
/* SPI host data register */
#define FCN_EE_SPI_HDATA_REG_KER 0x0120
#define FCN_EE_SPI_HDATA3_LBN 96
#define FCN_EE_SPI_HDATA3_WIDTH 32
#define FCN_EE_SPI_HDATA2_LBN 64
#define FCN_EE_SPI_HDATA2_WIDTH 32
#define FCN_EE_SPI_HDATA1_LBN 32
#define FCN_EE_SPI_HDATA1_WIDTH 32
#define FCN_EE_SPI_HDATA0_LBN 0
#define FCN_EE_SPI_HDATA0_WIDTH 32
/* GPIO control register */
#define FCN_GPIO_CTL_REG_KER 0x0210
#define FCN_FLASH_PRESENT_LBN 7
#define FCN_FLASH_PRESENT_WIDTH 1
#define FCN_EEPROM_PRESENT_LBN 6
#define FCN_EEPROM_PRESENT_WIDTH 1
/* Global control register */
#define FCN_GLB_CTL_REG_KER 0x0220
#define FCN_EXT_PHY_RST_CTL_LBN 63
#define FCN_EXT_PHY_RST_CTL_WIDTH 1
#define FCN_PCIE_SD_RST_CTL_LBN 61
#define FCN_PCIE_SD_RST_CTL_WIDTH 1
#define FCN_PCIX_RST_CTL_LBN 60
#define FCN_PCIX_RST_CTL_WIDTH 1
#define FCN_RST_EXT_PHY_LBN 31
#define FCN_RST_EXT_PHY_WIDTH 1
#define FCN_INT_RST_DUR_LBN 4
#define FCN_INT_RST_DUR_WIDTH 3
#define FCN_EXT_PHY_RST_DUR_LBN 1
#define FCN_EXT_PHY_RST_DUR_WIDTH 3
#define FCN_SWRST_LBN 0
#define FCN_SWRST_WIDTH 1
#define FCN_INCLUDE_IN_RESET 0
#define FCN_EXCLUDE_FROM_RESET 1
/* Timer table for kernel access */
#define FCN_TIMER_CMD_REG_KER 0x420
#define FCN_TIMER_MODE_LBN 12
#define FCN_TIMER_MODE_WIDTH 2
#define FCN_TIMER_MODE_DIS 0
#define FCN_TIMER_MODE_INT_HLDOFF 1
#define FCN_TIMER_VAL_LBN 0
#define FCN_TIMER_VAL_WIDTH 12
/* SRAM receive descriptor cache configuration register */
#define FCN_SRM_RX_DC_CFG_REG_KER 0x610
#define FCN_SRM_RX_DC_BASE_ADR_LBN 0
#define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21
/* SRAM transmit descriptor cache configuration register */
#define FCN_SRM_TX_DC_CFG_REG_KER 0x620
#define FCN_SRM_TX_DC_BASE_ADR_LBN 0
#define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21
/* Receive filter control register */
#define FCN_RX_FILTER_CTL_REG_KER 0x810
#define FCN_NUM_KER_LBN 24
#define FCN_NUM_KER_WIDTH 2
/* Receive descriptor update register */
#define FCN_RX_DESC_UPD_REG_KER 0x0830
#define FCN_RX_DESC_WPTR_LBN 96
#define FCN_RX_DESC_WPTR_WIDTH 12
#define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 )
#define FCN_RX_DESC_WPTR_DWORD_LBN 0
#define FCN_RX_DESC_WPTR_DWORD_WIDTH 12
/* Receive descriptor cache configuration register */
#define FCN_RX_DC_CFG_REG_KER 0x840
#define FCN_RX_DC_SIZE_LBN 0
#define FCN_RX_DC_SIZE_WIDTH 2
/* Transmit descriptor update register */
#define FCN_TX_DESC_UPD_REG_KER 0x0a10
#define FCN_TX_DESC_WPTR_LBN 96
#define FCN_TX_DESC_WPTR_WIDTH 12
#define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 )
#define FCN_TX_DESC_WPTR_DWORD_LBN 0
#define FCN_TX_DESC_WPTR_DWORD_WIDTH 12
/* Transmit descriptor cache configuration register */
#define FCN_TX_DC_CFG_REG_KER 0xa20
#define FCN_TX_DC_SIZE_LBN 0
#define FCN_TX_DC_SIZE_WIDTH 2
/* PHY management transmit data register */
#define FCN_MD_TXD_REG_KER 0xc00
#define FCN_MD_TXD_LBN 0
#define FCN_MD_TXD_WIDTH 16
/* PHY management receive data register */
#define FCN_MD_RXD_REG_KER 0xc10
#define FCN_MD_RXD_LBN 0
#define FCN_MD_RXD_WIDTH 16
/* PHY management configuration & status register */
#define FCN_MD_CS_REG_KER 0xc20
#define FCN_MD_GC_LBN 4
#define FCN_MD_GC_WIDTH 1
#define FCN_MD_RIC_LBN 2
#define FCN_MD_RIC_WIDTH 1
#define FCN_MD_WRC_LBN 0
#define FCN_MD_WRC_WIDTH 1
/* PHY management PHY address register */
#define FCN_MD_PHY_ADR_REG_KER 0xc30
#define FCN_MD_PHY_ADR_LBN 0
#define FCN_MD_PHY_ADR_WIDTH 16
/* PHY management ID register */
#define FCN_MD_ID_REG_KER 0xc40
#define FCN_MD_PRT_ADR_LBN 11
#define FCN_MD_PRT_ADR_WIDTH 5
#define FCN_MD_DEV_ADR_LBN 6
#define FCN_MD_DEV_ADR_WIDTH 5
/* PHY management status & mask register */
#define FCN_MD_STAT_REG_KER 0xc50
#define FCN_MD_BSY_LBN 0
#define FCN_MD_BSY_WIDTH 1
/* Port 0 and 1 MAC control registers */
#define FCN_MAC0_CTRL_REG_KER 0xc80
#define FCN_MAC1_CTRL_REG_KER 0xc90
#define FCN_MAC_XOFF_VAL_LBN 16
#define FCN_MAC_XOFF_VAL_WIDTH 16
#define FCN_MAC_BCAD_ACPT_LBN 4
#define FCN_MAC_BCAD_ACPT_WIDTH 1
#define FCN_MAC_UC_PROM_LBN 3
#define FCN_MAC_UC_PROM_WIDTH 1
#define FCN_MAC_LINK_STATUS_LBN 2
#define FCN_MAC_LINK_STATUS_WIDTH 1
#define FCN_MAC_SPEED_LBN 0
#define FCN_MAC_SPEED_WIDTH 2
/* XGMAC global configuration - port 0*/
#define FCN_XM_GLB_CFG_REG_P0_KER 0x1220
#define FCN_XM_RX_STAT_EN_LBN 11
#define FCN_XM_RX_STAT_EN_WIDTH 1
#define FCN_XM_TX_STAT_EN_LBN 10
#define FCN_XM_TX_STAT_EN_WIDTH 1
#define FCN_XM_CUT_THRU_MODE_LBN 7
#define FCN_XM_CUT_THRU_MODE_WIDTH 1
#define FCN_XM_RX_JUMBO_MODE_LBN 6
#define FCN_XM_RX_JUMBO_MODE_WIDTH 1
/* XGMAC transmit configuration - port 0 */
#define FCN_XM_TX_CFG_REG_P0_KER 0x1230
#define FCN_XM_IPG_LBN 16
#define FCN_XM_IPG_WIDTH 4
#define FCN_XM_WTF_DOES_THIS_DO_LBN 9
#define FCN_XM_WTF_DOES_THIS_DO_WIDTH 1
#define FCN_XM_TXCRC_LBN 8
#define FCN_XM_TXCRC_WIDTH 1
#define FCN_XM_AUTO_PAD_LBN 5
#define FCN_XM_AUTO_PAD_WIDTH 1
#define FCN_XM_TX_PRMBL_LBN 2
#define FCN_XM_TX_PRMBL_WIDTH 1
#define FCN_XM_TXEN_LBN 1
#define FCN_XM_TXEN_WIDTH 1
/* XGMAC receive configuration - port 0 */
#define FCN_XM_RX_CFG_REG_P0_KER 0x1240
#define FCN_XM_PASS_CRC_ERR_LBN 25
#define FCN_XM_PASS_CRC_ERR_WIDTH 1
#define FCN_XM_AUTO_DEPAD_LBN 8
#define FCN_XM_AUTO_DEPAD_WIDTH 1
#define FCN_XM_RXEN_LBN 1
#define FCN_XM_RXEN_WIDTH 1
/* Receive descriptor pointer table */
#define FCN_RX_DESC_PTR_TBL_KER 0x11800
#define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_RX_DESCQ_EVQ_ID_LBN 24
#define FCN_RX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_RX_DESCQ_OWNER_ID_LBN 10
#define FCN_RX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_RX_DESCQ_SIZE_LBN 3
#define FCN_RX_DESCQ_SIZE_WIDTH 2
#define FCN_RX_DESCQ_SIZE_4K 3
#define FCN_RX_DESCQ_SIZE_2K 2
#define FCN_RX_DESCQ_SIZE_1K 1
#define FCN_RX_DESCQ_SIZE_512 0
#define FCN_RX_DESCQ_TYPE_LBN 2
#define FCN_RX_DESCQ_TYPE_WIDTH 1
#define FCN_RX_DESCQ_JUMBO_LBN 1
#define FCN_RX_DESCQ_JUMBO_WIDTH 1
#define FCN_RX_DESCQ_EN_LBN 0
#define FCN_RX_DESCQ_EN_WIDTH 1
/* Transmit descriptor pointer table */
#define FCN_TX_DESC_PTR_TBL_KER 0x11900
#define FCN_TX_DESCQ_EN_LBN 88
#define FCN_TX_DESCQ_EN_WIDTH 1
#define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36
#define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20
#define FCN_TX_DESCQ_EVQ_ID_LBN 24
#define FCN_TX_DESCQ_EVQ_ID_WIDTH 12
#define FCN_TX_DESCQ_OWNER_ID_LBN 10
#define FCN_TX_DESCQ_OWNER_ID_WIDTH 14
#define FCN_TX_DESCQ_SIZE_LBN 3
#define FCN_TX_DESCQ_SIZE_WIDTH 2
#define FCN_TX_DESCQ_SIZE_4K 3
#define FCN_TX_DESCQ_SIZE_2K 2
#define FCN_TX_DESCQ_SIZE_1K 1
#define FCN_TX_DESCQ_SIZE_512 0
#define FCN_TX_DESCQ_TYPE_LBN 1
#define FCN_TX_DESCQ_TYPE_WIDTH 2
#define FCN_TX_DESCQ_FLUSH_LBN 0
#define FCN_TX_DESCQ_FLUSH_WIDTH 1
/* Event queue pointer */
#define FCN_EVQ_PTR_TBL_KER 0x11a00
#define FCN_EVQ_EN_LBN 23
#define FCN_EVQ_EN_WIDTH 1
#define FCN_EVQ_SIZE_LBN 20
#define FCN_EVQ_SIZE_WIDTH 3
#define FCN_EVQ_SIZE_32K 6
#define FCN_EVQ_SIZE_16K 5
#define FCN_EVQ_SIZE_8K 4
#define FCN_EVQ_SIZE_4K 3
#define FCN_EVQ_SIZE_2K 2
#define FCN_EVQ_SIZE_1K 1
#define FCN_EVQ_SIZE_512 0
#define FCN_EVQ_BUF_BASE_ID_LBN 0
#define FCN_EVQ_BUF_BASE_ID_WIDTH 20
/* Event queue read pointer */
#define FCN_EVQ_RPTR_REG_KER 0x11b00
#define FCN_EVQ_RPTR_LBN 0
#define FCN_EVQ_RPTR_WIDTH 14
#define FCN_EVQ_RPTR_REG_KER_DWORD ( FCN_EVQ_RPTR_REG_KER + 0 )
#define FCN_EVQ_RPTR_DWORD_LBN 0
#define FCN_EVQ_RPTR_DWORD_WIDTH 14
/* Special buffer descriptors */
#define FCN_BUF_FULL_TBL_KER 0x18000
#define FCN_IP_DAT_BUF_SIZE_LBN 50
#define FCN_IP_DAT_BUF_SIZE_WIDTH 1
#define FCN_IP_DAT_BUF_SIZE_8K 1
#define FCN_IP_DAT_BUF_SIZE_4K 0
#define FCN_BUF_ADR_FBUF_LBN 14
#define FCN_BUF_ADR_FBUF_WIDTH 34
#define FCN_BUF_OWNER_ID_FBUF_LBN 0
#define FCN_BUF_OWNER_ID_FBUF_WIDTH 14
/* MAC registers */
#define FALCON_MAC_REGBANK 0xe00
#define FALCON_MAC_REGBANK_SIZE 0x200
#define FALCON_MAC_REG_SIZE 0x10
/** Offset of a MAC register within Falcon */
#define FALCON_MAC_REG( efab, mac_reg ) \
( FALCON_MAC_REGBANK + \
( (efab)->port * FALCON_MAC_REGBANK_SIZE ) + \
( (mac_reg) * FALCON_MAC_REG_SIZE ) )
#define FCN_MAC_DATA_LBN 0
#define FCN_MAC_DATA_WIDTH 32
/* Transmit descriptor */
#define FCN_TX_KER_PORT_LBN 63
#define FCN_TX_KER_PORT_WIDTH 1
#define FCN_TX_KER_BYTE_CNT_LBN 48
#define FCN_TX_KER_BYTE_CNT_WIDTH 14
#define FCN_TX_KER_BUF_ADR_LBN 0
#define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
/* Receive descriptor */
#define FCN_RX_KER_BUF_SIZE_LBN 48
#define FCN_RX_KER_BUF_SIZE_WIDTH 14
#define FCN_RX_KER_BUF_ADR_LBN 0
#define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 )
/* Event queue entries */
#define FCN_EV_CODE_LBN 60
#define FCN_EV_CODE_WIDTH 4
#define FCN_RX_IP_EV_DECODE 0
#define FCN_TX_IP_EV_DECODE 2
#define FCN_DRIVER_EV_DECODE 5
/* Receive events */
#define FCN_RX_PORT_LBN 30
#define FCN_RX_PORT_WIDTH 1
#define FCN_RX_EV_BYTE_CNT_LBN 16
#define FCN_RX_EV_BYTE_CNT_WIDTH 14
#define FCN_RX_EV_DESC_PTR_LBN 0
#define FCN_RX_EV_DESC_PTR_WIDTH 12
/* Transmit events */
#define FCN_TX_EV_DESC_PTR_LBN 0
#define FCN_TX_EV_DESC_PTR_WIDTH 12
/* Fixed special buffer numbers to use */
#define FALCON_EVQ_ID 0
#define FALCON_TXD_ID 1
#define FALCON_RXD_ID 2
#if FALCON_USE_IO_BAR
/* Write dword via the I/O BAR */
static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value,
unsigned int reg ) {
outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG );
}
/* Read dword via the I/O BAR */
static inline uint32_t _falcon_readl ( struct efab_nic *efab,
unsigned int reg ) {
outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG );
return inl ( efab->iobase + FCN_IOM_IND_DAT_REG );
}
#else /* FALCON_USE_IO_BAR */
#define _falcon_writel( efab, value, reg ) \
writel ( (value), (efab)->membase + (reg) )
#define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) )
#endif /* FALCON_USE_IO_BAR */
/**
* Write to a Falcon register
*
*/
static inline void falcon_write ( struct efab_nic *efab, efab_oword_t *value,
unsigned int reg ) {
EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n",
reg, EFAB_OWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg + 0 );
_falcon_writel ( efab, value->u32[1], reg + 4 );
_falcon_writel ( efab, value->u32[2], reg + 8 );
_falcon_writel ( efab, value->u32[3], reg + 12 );
wmb();
}
/**
* Write to Falcon SRAM
*
*/
static inline void falcon_write_sram ( struct efab_nic *efab,
efab_qword_t *value,
unsigned int index ) {
unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
( index * sizeof ( *value ) ) );
EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n",
reg, EFAB_QWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg + 0 );
_falcon_writel ( efab, value->u32[1], reg + 4 );
wmb();
}
/**
* Write dword to Falcon register that allows partial writes
*
*/
static inline void falcon_writel ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
_falcon_writel ( efab, value->u32[0], reg );
}
/**
* Read from a Falcon register
*
*/
static inline void falcon_read ( struct efab_nic *efab, efab_oword_t *value,
unsigned int reg ) {
value->u32[0] = _falcon_readl ( efab, reg + 0 );
value->u32[1] = _falcon_readl ( efab, reg + 4 );
value->u32[2] = _falcon_readl ( efab, reg + 8 );
value->u32[3] = _falcon_readl ( efab, reg + 12 );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n",
reg, EFAB_OWORD_VAL ( *value ) );
}
/**
* Read from Falcon SRAM
*
*/
static inline void falcon_read_sram ( struct efab_nic *efab,
efab_qword_t *value,
unsigned int index ) {
unsigned int reg = ( FCN_BUF_FULL_TBL_KER +
( index * sizeof ( *value ) ) );
value->u32[0] = _falcon_readl ( efab, reg + 0 );
value->u32[1] = _falcon_readl ( efab, reg + 4 );
EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n",
reg, EFAB_QWORD_VAL ( *value ) );
}
/**
* Read dword from a portion of a Falcon register
*
*/
static inline void falcon_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int reg ) {
value->u32[0] = _falcon_readl ( efab, reg );
EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n",
reg, EFAB_DWORD_VAL ( *value ) );
}
/**
* Verified write to Falcon SRAM
*
*/
static inline void falcon_write_sram_verify ( struct efab_nic *efab,
efab_qword_t *value,
unsigned int index ) {
efab_qword_t verify;
falcon_write_sram ( efab, value, index );
udelay ( 1000 );
falcon_read_sram ( efab, &verify, index );
if ( memcmp ( &verify, value, sizeof ( verify ) ) != 0 ) {
printf ( "SRAM index %x failure: wrote " EFAB_QWORD_FMT
" got " EFAB_QWORD_FMT "\n", index,
EFAB_QWORD_VAL ( *value ),
EFAB_QWORD_VAL ( verify ) );
}
}
/**
* Get memory base
*
*/
static void falcon_get_membase ( struct efab_nic *efab ) {
unsigned long membase_phys;
membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_2 );
efab->membase = ioremap ( membase_phys, 0x20000 );
}
#define FCN_DUMP_REG( efab, _reg ) do { \
efab_oword_t reg; \
falcon_read ( efab, &reg, _reg ); \
printf ( #_reg " = " EFAB_OWORD_FMT "\n", \
EFAB_OWORD_VAL ( reg ) ); \
} while ( 0 );
#define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \
efab_dword_t reg; \
efab->op->mac_readl ( efab, &reg, _mac_reg ); \
printf ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \
EFAB_DWORD_VAL ( reg ) ); \
} while ( 0 );
/**
* Dump register contents (for debugging)
*
* Marked as static inline so that it will not be compiled in if not
* used.
*/
static inline void falcon_dump_regs ( struct efab_nic *efab ) {
FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER );
FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER );
FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER );
FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER );
FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER );
FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER );
FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER );
FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER );
FCN_DUMP_REG ( efab, FCN_XM_GLB_CFG_REG_P0_KER );
FCN_DUMP_REG ( efab, FCN_XM_TX_CFG_REG_P0_KER );
FCN_DUMP_REG ( efab, FCN_XM_RX_CFG_REG_P0_KER );
FCN_DUMP_REG ( efab, FCN_RX_DESC_PTR_TBL_KER );
FCN_DUMP_REG ( efab, FCN_TX_DESC_PTR_TBL_KER );
FCN_DUMP_REG ( efab, FCN_EVQ_PTR_TBL_KER );
FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC );
FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC );
}
/**
* Create special buffer
*
*/
static void falcon_create_special_buffer ( struct efab_nic *efab,
void *addr, unsigned int index ) {
efab_qword_t buf_desc;
unsigned long dma_addr;
memset ( addr, 0, 4096 );
dma_addr = virt_to_bus ( addr );
EFAB_ASSERT ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 );
EFAB_POPULATE_QWORD_3 ( buf_desc,
FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K,
FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ),
FCN_BUF_OWNER_ID_FBUF, 0 );
falcon_write_sram_verify ( efab, &buf_desc, index );
}
/**
* Update event queue read pointer
*
*/
static void falcon_eventq_read_ack ( struct efab_nic *efab ) {
efab_dword_t reg;
EFAB_ASSERT ( efab->eventq_read_ptr < EFAB_EVQ_SIZE );
EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD,
efab->eventq_read_ptr );
falcon_writel ( efab, &reg, FCN_EVQ_RPTR_REG_KER_DWORD );
}
/**
* Reset device
*
*/
static int falcon_reset ( struct efab_nic *efab ) {
efab_oword_t glb_ctl_reg_ker;
/* Initiate software reset */
EFAB_POPULATE_OWORD_5 ( glb_ctl_reg_ker,
FCN_EXT_PHY_RST_CTL, FCN_EXCLUDE_FROM_RESET,
FCN_PCIE_SD_RST_CTL, FCN_EXCLUDE_FROM_RESET,
FCN_PCIX_RST_CTL, FCN_EXCLUDE_FROM_RESET,
FCN_INT_RST_DUR, 0x7 /* datasheet */,
FCN_SWRST, 1 );
falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
/* Allow 20ms for reset */
mdelay ( 20 );
/* Check for device reset complete */
falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER );
if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) {
printf ( "Reset failed\n" );
return 0;
}
return 1;
}
/**
* Initialise NIC
*
*/
static int falcon_init_nic ( struct efab_nic *efab ) {
efab_oword_t reg;
efab_dword_t timer_cmd;
/* Set up TX and RX descriptor caches in SRAM */
EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR,
0x130000 /* recommended in datasheet */ );
falcon_write ( efab, &reg, FCN_SRM_TX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 2 /* 32 descriptors */ );
falcon_write ( efab, &reg, FCN_TX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR,
0x100000 /* recommended in datasheet */ );
falcon_write ( efab, &reg, FCN_SRM_RX_DC_CFG_REG_KER );
EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ );
falcon_write ( efab, &reg, FCN_RX_DC_CFG_REG_KER );
/* Set number of RSS CPUs */
EFAB_POPULATE_OWORD_1 ( reg, FCN_NUM_KER, 0 );
falcon_write ( efab, &reg, FCN_RX_FILTER_CTL_REG_KER );
udelay ( 1000 );
/* Reset the MAC */
mentormac_reset ( efab, 1 );
/* Take MAC out of reset */
mentormac_reset ( efab, 0 );
/* Set up event queue */
falcon_create_special_buffer ( efab, efab->eventq, FALCON_EVQ_ID );
EFAB_POPULATE_OWORD_3 ( reg,
FCN_EVQ_EN, 1,
FCN_EVQ_SIZE, FCN_EVQ_SIZE_512,
FCN_EVQ_BUF_BASE_ID, FALCON_EVQ_ID );
falcon_write ( efab, &reg, FCN_EVQ_PTR_TBL_KER );
udelay ( 1000 );
/* Set timer register */
EFAB_POPULATE_DWORD_2 ( timer_cmd,
FCN_TIMER_MODE, FCN_TIMER_MODE_DIS,
FCN_TIMER_VAL, 0 );
falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER );
udelay ( 1000 );
/* Initialise event queue read pointer */
falcon_eventq_read_ack ( efab );
/* Set up TX descriptor ring */
falcon_create_special_buffer ( efab, efab->txd, FALCON_TXD_ID );
EFAB_POPULATE_OWORD_5 ( reg,
FCN_TX_DESCQ_EN, 1,
FCN_TX_DESCQ_BUF_BASE_ID, FALCON_TXD_ID,
FCN_TX_DESCQ_EVQ_ID, 0,
FCN_TX_DESCQ_SIZE, FCN_TX_DESCQ_SIZE_512,
FCN_TX_DESCQ_TYPE, 0 /* kernel queue */ );
falcon_write ( efab, &reg, FCN_TX_DESC_PTR_TBL_KER );
/* Set up RX descriptor ring */
falcon_create_special_buffer ( efab, efab->rxd, FALCON_RXD_ID );
EFAB_POPULATE_OWORD_6 ( reg,
FCN_RX_DESCQ_BUF_BASE_ID, FALCON_RXD_ID,
FCN_RX_DESCQ_EVQ_ID, 0,
FCN_RX_DESCQ_SIZE, FCN_RX_DESCQ_SIZE_512,
FCN_RX_DESCQ_TYPE, 0 /* kernel queue */,
FCN_RX_DESCQ_JUMBO, 1,
FCN_RX_DESCQ_EN, 1 );
falcon_write ( efab, &reg, FCN_RX_DESC_PTR_TBL_KER );
/* Program INT_ADR_REG_KER */
EFAB_POPULATE_OWORD_1 ( reg,
FCN_INT_ADR_KER,
virt_to_bus ( &efab->int_ker ) );
falcon_write ( efab, &reg, FCN_INT_ADR_REG_KER );
udelay ( 1000 );
return 1;
}
/** SPI device */
struct efab_spi_device {
/** Device ID */
unsigned int device_id;
/** Address length (in bytes) */
unsigned int addr_len;
/** Read command */
unsigned int read_command;
};
/**
* Wait for SPI command completion
*
*/
static int falcon_spi_wait ( struct efab_nic *efab ) {
efab_oword_t reg;
int count;
count = 0;
do {
udelay ( 100 );
falcon_read ( efab, &reg, FCN_EE_SPI_HCMD_REG_KER );
if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 )
return 1;
} while ( ++count < 1000 );
printf ( "Timed out waiting for SPI\n" );
return 0;
}
/**
* Perform SPI read
*
*/
static int falcon_spi_read ( struct efab_nic *efab,
struct efab_spi_device *spi,
int address, void *data, unsigned int len ) {
efab_oword_t reg;
/* Program address register */
EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address );
falcon_write ( efab, &reg, FCN_EE_SPI_HADR_REG_KER );
/* Issue read command */
EFAB_POPULATE_OWORD_7 ( reg,
FCN_EE_SPI_HCMD_CMD_EN, 1,
FCN_EE_SPI_HCMD_SF_SEL, spi->device_id,
FCN_EE_SPI_HCMD_DABCNT, len,
FCN_EE_SPI_HCMD_READ, FCN_EE_SPI_READ,
FCN_EE_SPI_HCMD_DUBCNT, 0,
FCN_EE_SPI_HCMD_ADBCNT, spi->addr_len,
FCN_EE_SPI_HCMD_ENC, spi->read_command );
falcon_write ( efab, &reg, FCN_EE_SPI_HCMD_REG_KER );
/* Wait for read to complete */
if ( ! falcon_spi_wait ( efab ) )
return 0;
/* Read data */
falcon_read ( efab, &reg, FCN_EE_SPI_HDATA_REG_KER );
memcpy ( data, &reg, len );
return 1;
}
#define SPI_READ_CMD 0x03
#define AT25F1024_ADDR_LEN 3
#define AT25F1024_READ_CMD SPI_READ_CMD
#define MC25XX640_ADDR_LEN 2
#define MC25XX640_READ_CMD SPI_READ_CMD
/** Falcon Flash SPI device */
static struct efab_spi_device falcon_spi_flash = {
.device_id = FCN_EE_SPI_FLASH,
.addr_len = AT25F1024_ADDR_LEN,
.read_command = AT25F1024_READ_CMD,
};
/** Falcon EEPROM SPI device */
static struct efab_spi_device falcon_spi_large_eeprom = {
.device_id = FCN_EE_SPI_EEPROM,
.addr_len = MC25XX640_ADDR_LEN,
.read_command = MC25XX640_READ_CMD,
};
/** Offset of MAC address within EEPROM or Flash */
#define FALCON_MAC_ADDRESS_OFFSET(port) ( 0x310 + 0x08 * (port) )
/**
* Read MAC address from EEPROM
*
*/
static int falcon_read_eeprom ( struct efab_nic *efab ) {
efab_oword_t reg;
int has_flash;
struct efab_spi_device *spi;
/* Determine the SPI device containing the MAC address */
falcon_read ( efab, &reg, FCN_GPIO_CTL_REG_KER );
has_flash = EFAB_OWORD_FIELD ( reg, FCN_FLASH_PRESENT );
spi = has_flash ? &falcon_spi_flash : &falcon_spi_large_eeprom;
return falcon_spi_read ( efab, spi,
FALCON_MAC_ADDRESS_OFFSET ( efab->port ),
efab->mac_addr, sizeof ( efab->mac_addr ) );
}
/** RX descriptor */
typedef efab_qword_t falcon_rx_desc_t;
/**
* Build RX descriptor
*
*/
static void falcon_build_rx_desc ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf ) {
falcon_rx_desc_t *rxd;
rxd = ( ( falcon_rx_desc_t * ) efab->rxd ) + rx_buf->id;
EFAB_POPULATE_QWORD_2 ( *rxd,
FCN_RX_KER_BUF_SIZE, EFAB_DATA_BUF_SIZE,
FCN_RX_KER_BUF_ADR,
virt_to_bus ( rx_buf->addr ) );
}
/**
* Update RX descriptor write pointer
*
*/
static void falcon_notify_rx_desc ( struct efab_nic *efab ) {
efab_dword_t reg;
EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD,
efab->rx_write_ptr );
falcon_writel ( efab, &reg, FCN_RX_DESC_UPD_REG_KER_DWORD );
}
/** TX descriptor */
typedef efab_qword_t falcon_tx_desc_t;
/**
* Build TX descriptor
*
*/
static void falcon_build_tx_desc ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf ) {
falcon_rx_desc_t *txd;
txd = ( ( falcon_rx_desc_t * ) efab->txd ) + tx_buf->id;
EFAB_POPULATE_QWORD_3 ( *txd,
FCN_TX_KER_PORT, efab->port,
FCN_TX_KER_BYTE_CNT, tx_buf->len,
FCN_TX_KER_BUF_ADR,
virt_to_bus ( tx_buf->addr ) );
}
/**
* Update TX descriptor write pointer
*
*/
static void falcon_notify_tx_desc ( struct efab_nic *efab ) {
efab_dword_t reg;
EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD,
efab->tx_write_ptr );
falcon_writel ( efab, &reg, FCN_TX_DESC_UPD_REG_KER_DWORD );
}
/** An event */
typedef efab_qword_t falcon_event_t;
/**
* Retrieve event from event queue
*
*/
static int falcon_fetch_event ( struct efab_nic *efab,
struct efab_event *event ) {
falcon_event_t *evt;
int ev_code;
int rx_port;
/* Check for event */
evt = ( ( falcon_event_t * ) efab->eventq ) + efab->eventq_read_ptr;
if ( EFAB_QWORD_IS_ZERO ( *evt ) ) {
/* No event */
return 0;
}
DBG ( "Event is " EFAB_QWORD_FMT "\n", EFAB_QWORD_VAL ( *evt ) );
/* Decode event */
ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE );
switch ( ev_code ) {
case FCN_TX_IP_EV_DECODE:
event->type = EFAB_EV_TX;
break;
case FCN_RX_IP_EV_DECODE:
event->type = EFAB_EV_RX;
event->rx_id = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR );
event->rx_len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT );
rx_port = EFAB_QWORD_FIELD ( *evt, FCN_RX_PORT );
if ( rx_port != efab->port ) {
/* Ignore packets on the wrong port. We can't
* just set event->type = EFAB_EV_NONE,
* because then the descriptor ring won't get
* refilled.
*/
event->rx_len = 0;
}
break;
case FCN_DRIVER_EV_DECODE:
/* Ignore start-of-day events */
event->type = EFAB_EV_NONE;
break;
default:
printf ( "Unknown event type %d\n", ev_code );
event->type = EFAB_EV_NONE;
}
/* Clear event and any pending interrupts */
EFAB_ZERO_QWORD ( *evt );
falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG );
udelay ( 10 );
/* Increment and update event queue read pointer */
efab->eventq_read_ptr = ( ( efab->eventq_read_ptr + 1 )
% EFAB_EVQ_SIZE );
falcon_eventq_read_ack ( efab );
return 1;
}
/**
* Enable/disable/generate interrupt
*
*/
static inline void falcon_interrupts ( struct efab_nic *efab, int enabled,
int force ) {
efab_oword_t int_en_reg_ker;
EFAB_POPULATE_OWORD_2 ( int_en_reg_ker,
FCN_KER_INT_KER, force,
FCN_DRV_INT_EN_KER, enabled );
falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER );
}
/**
* Enable/disable interrupts
*
*/
static void falcon_mask_irq ( struct efab_nic *efab, int enabled ) {
falcon_interrupts ( efab, enabled, 0 );
if ( enabled ) {
/* Events won't trigger interrupts until we do this */
falcon_eventq_read_ack ( efab );
}
}
/**
* Generate interrupt
*
*/
static void falcon_generate_irq ( struct efab_nic *efab ) {
falcon_interrupts ( efab, 1, 1 );
}
/**
* Write dword to a Falcon MAC register
*
*/
static void falcon_mac_writel ( struct efab_nic *efab,
efab_dword_t *value, unsigned int mac_reg ) {
efab_oword_t temp;
EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA,
EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) );
falcon_write ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) );
}
/**
* Read dword from a Falcon MAC register
*
*/
static void falcon_mac_readl ( struct efab_nic *efab, efab_dword_t *value,
unsigned int mac_reg ) {
efab_oword_t temp;
falcon_read ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) );
EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA,
EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) );
}
/**
* Initialise MAC
*
*/
static int falcon_init_mac ( struct efab_nic *efab ) {
static struct efab_mentormac_parameters falcon_mentormac_params = {
.gmf_cfgfrth = 0x12,
.gmf_cfgftth = 0x08,
.gmf_cfghwmft = 0x1c,
.gmf_cfghwm = 0x3f,
.gmf_cfglwm = 0xa,
};
efab_oword_t reg;
int link_speed;
/* Initialise PHY */
alaska_init ( efab );
/* Initialise MAC */
mentormac_init ( efab, &falcon_mentormac_params );
/* Configure the Falcon MAC wrapper */
EFAB_POPULATE_OWORD_4 ( reg,
FCN_XM_RX_JUMBO_MODE, 0,
FCN_XM_CUT_THRU_MODE, 0,
FCN_XM_TX_STAT_EN, 1,
FCN_XM_RX_STAT_EN, 1);
falcon_write ( efab, &reg, FCN_XM_GLB_CFG_REG_P0_KER );
EFAB_POPULATE_OWORD_6 ( reg,
FCN_XM_TXEN, 1,
FCN_XM_TX_PRMBL, 1,
FCN_XM_AUTO_PAD, 1,
FCN_XM_TXCRC, 1,
FCN_XM_WTF_DOES_THIS_DO, 1,
FCN_XM_IPG, 0x3 );
falcon_write ( efab, &reg, FCN_XM_TX_CFG_REG_P0_KER );
EFAB_POPULATE_OWORD_3 ( reg,
FCN_XM_RXEN, 1,
FCN_XM_AUTO_DEPAD, 1,
FCN_XM_PASS_CRC_ERR, 1 );
falcon_write ( efab, &reg, FCN_XM_RX_CFG_REG_P0_KER );
#warning "10G support not yet present"
#define LPA_10000 0
if ( efab->link_options & LPA_10000 ) {
link_speed = 0x3;
} else if ( efab->link_options & LPA_1000 ) {
link_speed = 0x2;
} else if ( efab->link_options & LPA_100 ) {
link_speed = 0x1;
} else {
link_speed = 0x0;
}
EFAB_POPULATE_OWORD_5 ( reg,
FCN_MAC_XOFF_VAL, 0xffff /* datasheet */,
FCN_MAC_BCAD_ACPT, 1,
FCN_MAC_UC_PROM, 0,
FCN_MAC_LINK_STATUS, 1,
FCN_MAC_SPEED, link_speed );
falcon_write ( efab, &reg, ( efab->port == 0 ?
FCN_MAC0_CTRL_REG_KER : FCN_MAC1_CTRL_REG_KER ) );
return 1;
}
/**
* Wait for GMII access to complete
*
*/
static int falcon_gmii_wait ( struct efab_nic *efab ) {
efab_oword_t md_stat;
int count;
for ( count = 0 ; count < 1000 ; count++ ) {
udelay ( 10 );
falcon_read ( efab, &md_stat, FCN_MD_STAT_REG_KER );
if ( EFAB_OWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 )
return 1;
}
printf ( "Timed out waiting for GMII\n" );
return 0;
}
/** MDIO write */
static void falcon_mdio_write ( struct efab_nic *efab, int location,
int value ) {
int phy_id = efab->port + 2;
efab_oword_t reg;
#warning "10G PHY access not yet in place"
EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n",
phy_id, location, value );
/* Check MII not currently being accessed */
if ( ! falcon_gmii_wait ( efab ) )
return;
/* Write the address registers */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
udelay ( 10 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, phy_id,
FCN_MD_DEV_ADR, location );
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
udelay ( 10 );
/* Write data */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value );
falcon_write ( efab, &reg, FCN_MD_TXD_REG_KER );
udelay ( 10 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_WRC, 1,
FCN_MD_GC, 1 );
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
udelay ( 10 );
/* Wait for data to be written */
falcon_gmii_wait ( efab );
}
/** MDIO read */
static int falcon_mdio_read ( struct efab_nic *efab, int location ) {
int phy_id = efab->port + 2;
efab_oword_t reg;
int value;
/* Check MII not currently being accessed */
if ( ! falcon_gmii_wait ( efab ) )
return 0xffff;
/* Write the address registers */
EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ );
falcon_write ( efab, &reg, FCN_MD_PHY_ADR_REG_KER );
udelay ( 10 );
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_PRT_ADR, phy_id,
FCN_MD_DEV_ADR, location );
falcon_write ( efab, &reg, FCN_MD_ID_REG_KER );
udelay ( 10 );
/* Request data to be read */
EFAB_POPULATE_OWORD_2 ( reg,
FCN_MD_RIC, 1,
FCN_MD_GC, 1 );
falcon_write ( efab, &reg, FCN_MD_CS_REG_KER );
udelay ( 10 );
/* Wait for data to become available */
falcon_gmii_wait ( efab );
/* Read the data */
falcon_read ( efab, &reg, FCN_MD_RXD_REG_KER );
value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD );
EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n",
phy_id, location, value );
return value;
}
static struct efab_operations falcon_operations = {
.get_membase = falcon_get_membase,
.reset = falcon_reset,
.init_nic = falcon_init_nic,
.read_eeprom = falcon_read_eeprom,
.build_rx_desc = falcon_build_rx_desc,
.notify_rx_desc = falcon_notify_rx_desc,
.build_tx_desc = falcon_build_tx_desc,
.notify_tx_desc = falcon_notify_tx_desc,
.fetch_event = falcon_fetch_event,
.mask_irq = falcon_mask_irq,
.generate_irq = falcon_generate_irq,
.mac_writel = falcon_mac_writel,
.mac_readl = falcon_mac_readl,
.init_mac = falcon_init_mac,
.mdio_write = falcon_mdio_write,
.mdio_read = falcon_mdio_read,
};
/**************************************************************************
*
* Etherfabric abstraction layer
*
**************************************************************************
*/
/**
* Push RX buffer to RXD ring
*
*/
static inline void efab_push_rx_buffer ( struct efab_nic *efab,
struct efab_rx_buf *rx_buf ) {
/* Create RX descriptor */
rx_buf->id = efab->rx_write_ptr;
efab->op->build_rx_desc ( efab, rx_buf );
/* Update RX write pointer */
efab->rx_write_ptr = ( efab->rx_write_ptr + 1 ) % EFAB_RXD_SIZE;
efab->op->notify_rx_desc ( efab );
DBG ( "Added RX id %x\n", rx_buf->id );
}
/**
* Push TX buffer to TXD ring
*
*/
static inline void efab_push_tx_buffer ( struct efab_nic *efab,
struct efab_tx_buf *tx_buf ) {
/* Create TX descriptor */
tx_buf->id = efab->tx_write_ptr;
efab->op->build_tx_desc ( efab, tx_buf );
/* Update TX write pointer */
efab->tx_write_ptr = ( efab->tx_write_ptr + 1 ) % EFAB_TXD_SIZE;
efab->op->notify_tx_desc ( efab );
DBG ( "Added TX id %x\n", tx_buf->id );
}
/**
* Initialise MAC and wait for link up
*
*/
static int efab_init_mac ( struct efab_nic *efab ) {
int count;
/* This can take several seconds */
printf ( "Waiting for link.." );
count = 0;
do {
putchar ( '.' );
if ( ! efab->op->init_mac ( efab ) ) {
printf ( "failed\n" );
return 0;
}
if ( efab->link_up ) {
/* PHY init printed the message for us */
return 1;
}
sleep ( 1 );
} while ( ++count < 5 );
printf ( "timed out\n" );
return 0;
}
/**
* Initialise NIC
*
*/
static int efab_init_nic ( struct efab_nic *efab ) {
int i;
/* Reset NIC */
if ( ! efab->op->reset ( efab ) )
return 0;
/* Initialise NIC */
if ( ! efab->op->init_nic ( efab ) )
return 0;
/* Push RX descriptors */
for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
efab_push_rx_buffer ( efab, &efab->rx_bufs[i] );
}
/* Read MAC address from EEPROM */
if ( ! efab->op->read_eeprom ( efab ) )
return 0;
efab->mac_addr[ETH_ALEN-1] += efab->port;
/* Initialise MAC and wait for link up */
if ( ! efab_init_mac ( efab ) )
return 0;
return 1;
}
/**************************************************************************
*
* Etherboot interface
*
**************************************************************************
*/
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int etherfabric_poll ( struct nic *nic, int retrieve ) {
struct efab_nic *efab = nic->priv_data;
struct efab_event event;
static struct efab_rx_buf *rx_buf = NULL;
int i;
/* Process the event queue until we hit either a packet
* received event or an empty event slot.
*/
while ( ( rx_buf == NULL ) &&
efab->op->fetch_event ( efab, &event ) ) {
if ( event.type == EFAB_EV_TX ) {
/* TX completed - mark as done */
DBG ( "TX id %x complete\n",
efab->tx_buf.id );
efab->tx_in_progress = 0;
} else if ( event.type == EFAB_EV_RX ) {
/* RX - find corresponding buffer */
for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
if ( efab->rx_bufs[i].id == event.rx_id ) {
rx_buf = &efab->rx_bufs[i];
rx_buf->len = event.rx_len;
DBG ( "RX id %x (len %x) received\n",
rx_buf->id, rx_buf->len );
break;
}
}
if ( ! rx_buf ) {
printf ( "Invalid RX ID %x\n", event.rx_id );
}
} else if ( event.type == EFAB_EV_NONE ) {
DBG ( "Ignorable event\n" );
} else {
DBG ( "Unknown event\n" );
}
}
/* If there is no packet, return 0 */
if ( ! rx_buf )
return 0;
/* If we don't want to retrieve it just yet, return 1 */
if ( ! retrieve )
return 1;
/* Copy packet contents */
nic->packetlen = rx_buf->len;
memcpy ( nic->packet, rx_buf->addr, nic->packetlen );
/* Give this buffer back to the NIC */
efab_push_rx_buffer ( efab, rx_buf );
/* Prepare to receive next packet */
rx_buf = NULL;
return 1;
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void etherfabric_transmit ( struct nic *nic, const char *dest,
unsigned int type, unsigned int size,
const char *data ) {
struct efab_nic *efab = nic->priv_data;
unsigned int nstype = htons ( type );
/* We can only transmit one packet at a time; a TX completion
* event must be received before we can transmit the next
* packet. Since there is only one static TX buffer, we don't
* worry unduly about overflow, but we report it anyway.
*/
if ( efab->tx_in_progress ) {
printf ( "TX overflow!\n" );
}
/* Fill TX buffer, pad to ETH_ZLEN */
memcpy ( efab->tx_buf.addr, dest, ETH_ALEN );
memcpy ( efab->tx_buf.addr + ETH_ALEN, nic->node_addr, ETH_ALEN );
memcpy ( efab->tx_buf.addr + 2 * ETH_ALEN, &nstype, 2 );
memcpy ( efab->tx_buf.addr + ETH_HLEN, data, size );
size += ETH_HLEN;
while ( size < ETH_ZLEN ) {
efab->tx_buf.addr[size++] = '\0';
}
efab->tx_buf.len = size;
/* Push TX descriptor */
efab_push_tx_buffer ( efab, &efab->tx_buf );
/* There is no way to wait for TX complete (i.e. TX buffer
* available to re-use for the next transmit) without reading
* from the event queue. We therefore simply leave the TX
* buffer marked as "in use" until a TX completion event
* happens to be picked up by a call to etherfabric_poll().
*/
efab->tx_in_progress = 1;
return;
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void etherfabric_disable ( struct nic *nic,
struct pci_device *pci __unused ) {
struct efab_nic *efab = nic->priv_data;
efab->op->reset ( efab );
if ( efab->membase )
iounmap ( efab->membase );
}
/**************************************************************************
IRQ - handle interrupts
***************************************************************************/
static void etherfabric_irq ( struct nic *nic, irq_action_t action ) {
struct efab_nic *efab = nic->priv_data;
switch ( action ) {
case DISABLE :
efab->op->mask_irq ( efab, 1 );
break;
case ENABLE :
efab->op->mask_irq ( efab, 0 );
break;
case FORCE :
/* Force NIC to generate a receive interrupt */
efab->op->generate_irq ( efab );
break;
}
return;
}
static struct nic_operations etherfabric_operations = {
.connect = dummy_connect,
.poll = etherfabric_poll,
.transmit = etherfabric_transmit,
.irq = etherfabric_irq,
};
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
static int etherfabric_probe ( struct dev *dev, struct pci_device *pci ) {
struct nic *nic = ( struct nic * ) dev;
static struct efab_nic efab;
static int nic_port = 1;
struct efab_buffers *buffers;
int i;
/* Set up our private data structure */
nic->priv_data = &efab;
memset ( &efab, 0, sizeof ( efab ) );
memset ( &efab_buffers, 0, sizeof ( efab_buffers ) );
/* Hook in appropriate operations table. Do this early. */
if ( pci->device == EF1002_DEVID ) {
efab.op = &ef1002_operations;
} else {
efab.op = &falcon_operations;
}
/* Initialise efab data structure */
efab.pci = pci;
buffers = ( ( struct efab_buffers * )
( ( ( void * ) &efab_buffers ) +
( - virt_to_bus ( &efab_buffers ) ) % EFAB_BUF_ALIGN ) );
efab.eventq = buffers->eventq;
efab.txd = buffers->txd;
efab.rxd = buffers->rxd;
efab.tx_buf.addr = buffers->tx_buf;
for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) {
efab.rx_bufs[i].addr = buffers->rx_buf[i];
}
/* Enable the PCI device */
adjust_pci_device ( pci );
nic->ioaddr = pci->ioaddr & ~3;
nic->irqno = pci->irq;
/* Get iobase/membase */
efab.iobase = nic->ioaddr;
efab.op->get_membase ( &efab );
/* Switch NIC ports (i.e. try different ports on each probe) */
nic_port = 1 - nic_port;
efab.port = nic_port;
/* Initialise hardware */
if ( ! efab_init_nic ( &efab ) )
return 0;
memcpy ( nic->node_addr, efab.mac_addr, ETH_ALEN );
/* hello world */
printf ( "Found EtherFabric %s NIC %!\n", pci->name, nic->node_addr );
/* point to NIC specific routines */
nic->nic_op = &etherfabric_operations;
return 1;
}
static struct pci_device_id etherfabric_nics[] = {
PCI_ROM(0x1924, 0xC101, "ef1002", "EtherFabric EF1002"),
PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon"),
};
PCI_DRIVER ( etherfabric_driver, etherfabric_nics, PCI_NO_CLASS );
DRIVER ( "EFAB", nic_driver, pci_driver, etherfabric_driver,
etherfabric_probe, etherfabric_disable );
/*
* Local variables:
* c-basic-offset: 8
* c-indent-level: 8
* tab-width: 8
* End:
*/