mirror of
https://github.com/xcat2/xNBA.git
synced 2024-12-16 00:01:34 +00:00
195 lines
4.4 KiB
C
195 lines
4.4 KiB
C
/* A couple of routines to implement a low-overhead timer for drivers */
|
|
|
|
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2, or (at
|
|
* your option) any later version.
|
|
*/
|
|
|
|
#include "etherboot.h"
|
|
#include "timer.h"
|
|
#include "latch.h"
|
|
#include <gpxe/init.h>
|
|
|
|
void __load_timer2(unsigned int ticks)
|
|
{
|
|
/*
|
|
* Now let's take care of PPC channel 2
|
|
*
|
|
* Set the Gate high, program PPC channel 2 for mode 0,
|
|
* (interrupt on terminal count mode), binary count,
|
|
* load 5 * LATCH count, (LSB and MSB) to begin countdown.
|
|
*
|
|
* Note some implementations have a bug where the high bits byte
|
|
* of channel 2 is ignored.
|
|
*/
|
|
/* Set up the timer gate, turn off the speaker */
|
|
/* Set the Gate high, disable speaker */
|
|
outb((inb(PPC_PORTB) & ~PPCB_SPKR) | PPCB_T2GATE, PPC_PORTB);
|
|
/* binary, mode 0, LSB/MSB, Ch 2 */
|
|
outb(TIMER2_SEL|WORD_ACCESS|MODE0|BINARY_COUNT, TIMER_MODE_PORT);
|
|
/* LSB of ticks */
|
|
outb(ticks & 0xFF, TIMER2_PORT);
|
|
/* MSB of ticks */
|
|
outb(ticks >> 8, TIMER2_PORT);
|
|
}
|
|
|
|
static int __timer2_running(void)
|
|
{
|
|
return ((inb(PPC_PORTB) & PPCB_T2OUT) == 0);
|
|
}
|
|
|
|
#if !defined(CONFIG_TSC_CURRTICKS)
|
|
static void setup_timers(void)
|
|
{
|
|
return;
|
|
}
|
|
|
|
void load_timer2(unsigned int ticks)
|
|
{
|
|
return __load_timer2(ticks);
|
|
}
|
|
|
|
int timer2_running(void)
|
|
{
|
|
return __timer2_running();
|
|
}
|
|
|
|
void ndelay(unsigned int nsecs)
|
|
{
|
|
waiton_timer2((nsecs * CLOCK_TICK_RATE)/1000000000);
|
|
}
|
|
void udelay(unsigned int usecs)
|
|
{
|
|
waiton_timer2((usecs * TICKS_PER_MS)/1000);
|
|
}
|
|
#endif /* !defined(CONFIG_TSC_CURRTICKS) */
|
|
|
|
#if defined(CONFIG_TSC_CURRTICKS)
|
|
|
|
#define rdtsc(low,high) \
|
|
__asm__ __volatile__("rdtsc" : "=a" (low), "=d" (high))
|
|
|
|
#define rdtscll(val) \
|
|
__asm__ __volatile__ ("rdtsc" : "=A" (val))
|
|
|
|
|
|
/* Number of clock ticks to time with the rtc */
|
|
#define LATCH 0xFF
|
|
|
|
#define LATCHES_PER_SEC ((CLOCK_TICK_RATE + (LATCH/2))/LATCH)
|
|
#define TICKS_PER_LATCH ((LATCHES_PER_SEC + (TICKS_PER_SEC/2))/TICKS_PER_SEC)
|
|
|
|
static void sleep_latch(void)
|
|
{
|
|
__load_timer2(LATCH);
|
|
while(__timer2_running());
|
|
}
|
|
|
|
/* ------ Calibrate the TSC -------
|
|
* Time how long it takes to excute a loop that runs in known time.
|
|
* And find the convertion needed to get to CLOCK_TICK_RATE
|
|
*/
|
|
|
|
|
|
static unsigned long long calibrate_tsc(void)
|
|
{
|
|
unsigned long startlow, starthigh;
|
|
unsigned long endlow, endhigh;
|
|
|
|
rdtsc(startlow,starthigh);
|
|
sleep_latch();
|
|
rdtsc(endlow,endhigh);
|
|
|
|
/* 64-bit subtract - gcc just messes up with long longs */
|
|
__asm__("subl %2,%0\n\t"
|
|
"sbbl %3,%1"
|
|
:"=a" (endlow), "=d" (endhigh)
|
|
:"g" (startlow), "g" (starthigh),
|
|
"0" (endlow), "1" (endhigh));
|
|
|
|
/* Error: ECPUTOOFAST */
|
|
if (endhigh)
|
|
goto bad_ctc;
|
|
|
|
endlow *= TICKS_PER_LATCH;
|
|
return endlow;
|
|
|
|
/*
|
|
* The CTC wasn't reliable: we got a hit on the very first read,
|
|
* or the CPU was so fast/slow that the quotient wouldn't fit in
|
|
* 32 bits..
|
|
*/
|
|
bad_ctc:
|
|
printf("bad_ctc\n");
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long clocks_per_tick;
|
|
static void setup_timers(void)
|
|
{
|
|
if (!clocks_per_tick) {
|
|
clocks_per_tick = calibrate_tsc();
|
|
/* Display the CPU Mhz to easily test if the calibration was bad */
|
|
printf("CPU %ld Mhz\n", (clocks_per_tick/1000 * TICKS_PER_SEC)/1000);
|
|
}
|
|
}
|
|
|
|
unsigned long currticks(void)
|
|
{
|
|
unsigned long clocks_high, clocks_low;
|
|
unsigned long currticks;
|
|
/* Read the Time Stamp Counter */
|
|
rdtsc(clocks_low, clocks_high);
|
|
|
|
/* currticks = clocks / clocks_per_tick; */
|
|
__asm__("divl %1"
|
|
:"=a" (currticks)
|
|
:"r" (clocks_per_tick), "0" (clocks_low), "d" (clocks_high));
|
|
|
|
|
|
return currticks;
|
|
}
|
|
|
|
static unsigned long long timer_timeout;
|
|
static int __timer_running(void)
|
|
{
|
|
unsigned long long now;
|
|
rdtscll(now);
|
|
return now < timer_timeout;
|
|
}
|
|
|
|
void udelay(unsigned int usecs)
|
|
{
|
|
unsigned long long now;
|
|
rdtscll(now);
|
|
timer_timeout = now + usecs * ((clocks_per_tick * TICKS_PER_SEC)/(1000*1000));
|
|
while(__timer_running());
|
|
}
|
|
void ndelay(unsigned int nsecs)
|
|
{
|
|
unsigned long long now;
|
|
rdtscll(now);
|
|
timer_timeout = now + nsecs * ((clocks_per_tick * TICKS_PER_SEC)/(1000*1000*1000));
|
|
while(__timer_running());
|
|
}
|
|
|
|
void load_timer2(unsigned int timer2_ticks)
|
|
{
|
|
unsigned long long now;
|
|
unsigned long clocks;
|
|
rdtscll(now);
|
|
clocks = timer2_ticks * ((clocks_per_tick * TICKS_PER_SEC)/CLOCK_TICK_RATE);
|
|
timer_timeout = now + clocks;
|
|
}
|
|
|
|
int timer2_running(void)
|
|
{
|
|
return __timer_running();
|
|
}
|
|
|
|
#endif /* RTC_CURRTICKS */
|
|
|
|
INIT_FN ( INIT_TIMERS, setup_timers, NULL, NULL );
|