#include #include #include #include #include #include #include #include #include #include #include #include #include "uip/uip.h" #include #include /** @file * * IPv4 protocol * * The gPXE IP stack is currently implemented on top of the uIP * protocol stack. This file provides wrappers around uIP so that * higher-level protocol implementations do not need to talk directly * to uIP (which has a somewhat baroque API). * */ /* Unique IP datagram identification number */ static uint16_t next_ident = 0; struct net_protocol ipv4_protocol; /** An IPv4 address/routing table entry */ struct ipv4_miniroute { /** List of miniroutes */ struct list_head list; /** Network device */ struct net_device *netdev; /** IPv4 address */ struct in_addr address; /** Subnet mask */ struct in_addr netmask; /** Gateway address */ struct in_addr gateway; }; /** List of IPv4 miniroutes */ static LIST_HEAD ( miniroutes ); /** List of fragment reassembly buffers */ static LIST_HEAD ( frag_buffers ); /** * Add IPv4 interface * * @v netdev Network device * @v address IPv4 address * @v netmask Subnet mask * @v gateway Gateway address (or @c INADDR_NONE for no gateway) * @ret rc Return status code * */ int add_ipv4_address ( struct net_device *netdev, struct in_addr address, struct in_addr netmask, struct in_addr gateway ) { struct ipv4_miniroute *miniroute; /* Allocate and populate miniroute structure */ miniroute = malloc ( sizeof ( *miniroute ) ); if ( ! miniroute ) return -ENOMEM; miniroute->netdev = netdev; miniroute->address = address; miniroute->netmask = netmask; miniroute->gateway = gateway; /* Add to end of list if we have a gateway, otherwise to start * of list. */ if ( gateway.s_addr != INADDR_NONE ) { list_add_tail ( &miniroute->list, &miniroutes ); } else { list_add ( &miniroute->list, &miniroutes ); } return 0; } /** * Remove IPv4 interface * * @v netdev Network device */ void del_ipv4_address ( struct net_device *netdev ) { struct ipv4_miniroute *miniroute; list_for_each_entry ( miniroute, &miniroutes, list ) { if ( miniroute->netdev == netdev ) { list_del ( &miniroute->list ); break; } } } /** * Dump IPv4 packet header * * @v iphdr IPv4 header */ static void ipv4_dump ( struct iphdr *iphdr __unused ) { DBG ( "IP4 %p transmitting %p+%d ident %d protocol %d header-csum %x\n", &ipv4_protocol, iphdr, ntohs ( iphdr->len ), ntohs ( iphdr->ident ), iphdr->protocol, ntohs ( iphdr->chksum ) ); DBG ( "src %s, dest %s\n", inet_ntoa ( iphdr->src ), inet_ntoa ( iphdr->dest ) ); } /** * Fragment reassembly counter timeout * * @v timer Retry timer * @v over If asserted, the timer is greater than @c MAX_TIMEOUT */ static void ipv4_frag_expired ( struct retry_timer *timer __unused, int over ) { if ( over ) { DBG ( "Fragment reassembly timeout" ); /* Free the fragment buffer */ } } /** * Free fragment buffer * * @v fragbug Fragment buffer */ static void free_fragbuf ( struct frag_buffer *fragbuf ) { if ( fragbuf ) { free_dma ( fragbuf, sizeof ( *fragbuf ) ); } } /** * Fragment reassembler * * @v pkb Packet buffer, fragment of the datagram * @ret frag_pkb Reassembled packet, or NULL */ static struct pk_buff * ipv4_reassemble ( struct pk_buff * pkb ) { struct iphdr *iphdr = pkb->data; struct frag_buffer *fragbuf; /** * Check if the fragment belongs to any fragment series */ list_for_each_entry ( fragbuf, &frag_buffers, list ) { if ( fragbuf->ident == iphdr->ident && fragbuf->src.s_addr == iphdr->src.s_addr ) { /** * Check if the packet is the expected fragment * * The offset of the new packet must be equal to the * length of the data accumulated so far (the length of * the reassembled packet buffer */ if ( pkb_len ( fragbuf->frag_pkb ) == ( iphdr->frags & IP_MASK_OFFSET ) ) { /** * Append the contents of the fragment to the * reassembled packet buffer */ pkb_pull ( pkb, sizeof ( *iphdr ) ); memcpy ( pkb_put ( fragbuf->frag_pkb, pkb_len ( pkb ) ), pkb->data, pkb_len ( pkb ) ); free_pkb ( pkb ); /** Check if the fragment series is over */ if ( !iphdr->frags & IP_MASK_MOREFRAGS ) { pkb = fragbuf->frag_pkb; free_fragbuf ( fragbuf ); return pkb; } } else { /* Discard the fragment series */ free_fragbuf ( fragbuf ); free_pkb ( pkb ); } return NULL; } } /** Check if the fragment is the first in the fragment series */ if ( iphdr->frags & IP_MASK_MOREFRAGS && ( ( iphdr->frags & IP_MASK_OFFSET ) == 0 ) ) { /** Create a new fragment buffer */ fragbuf = ( struct frag_buffer* ) malloc ( sizeof( *fragbuf ) ); fragbuf->ident = iphdr->ident; fragbuf->src = iphdr->src; /* Set up the reassembly packet buffer */ fragbuf->frag_pkb = alloc_pkb ( IP_FRAG_PKB_SIZE ); pkb_pull ( pkb, sizeof ( *iphdr ) ); memcpy ( pkb_put ( fragbuf->frag_pkb, pkb_len ( pkb ) ), pkb->data, pkb_len ( pkb ) ); free_pkb ( pkb ); /* Set the reassembly timer */ fragbuf->frag_timer.timeout = IP_FRAG_TIMEOUT; fragbuf->frag_timer.expired = ipv4_frag_expired; start_timer ( &fragbuf->frag_timer ); /* Add the fragment buffer to the list of fragment buffers */ list_add ( &fragbuf->list, &frag_buffers ); } return NULL; } /** * Complete the transport-layer checksum * * @v pkb Packet buffer * @v tcpip Transport-layer protocol * * This function calculates the tcpip */ static void ipv4_tx_csum ( struct pk_buff *pkb, struct tcpip_protocol *tcpip ) { struct iphdr *iphdr = pkb->data; struct ipv4_pseudo_header pshdr; uint16_t *csum = ( ( ( void * ) iphdr ) + sizeof ( *iphdr ) + tcpip->csum_offset ); /* Calculate pseudo header */ pshdr.src = iphdr->src; pshdr.dest = iphdr->dest; pshdr.zero_padding = 0x00; pshdr.protocol = iphdr->protocol; /* This is only valid when IPv4 does not have options */ pshdr.len = htons ( pkb_len ( pkb ) - sizeof ( *iphdr ) ); /* Update the checksum value */ *csum = tcpip_continue_chksum ( *csum, &pshdr, sizeof ( pshdr ) ); } /** * Calculate the transport-layer checksum while processing packets */ static uint16_t ipv4_rx_csum ( struct pk_buff *pkb __unused, uint8_t trans_proto __unused ) { /** * This function needs to be implemented. Until then, it will return * 0xffffffff every time */ return 0xffff; } /** * Transmit IP packet * * @v pkb Packet buffer * @v tcpip Transport-layer protocol * @v st_dest Destination network-layer address * @ret rc Status * * This function expects a transport-layer segment and prepends the IP header */ static int ipv4_tx ( struct pk_buff *pkb, struct tcpip_protocol *tcpip_protocol, struct sockaddr_tcpip *st_dest ) { struct iphdr *iphdr = pkb_push ( pkb, sizeof ( *iphdr ) ); struct sockaddr_in *sin_dest = ( ( struct sockaddr_in * ) st_dest ); struct ipv4_miniroute *miniroute; struct net_device *netdev = NULL; struct in_addr next_hop; uint8_t ll_dest_buf[MAX_LL_ADDR_LEN]; const uint8_t *ll_dest = ll_dest_buf; int rc; /* Fill up the IP header, except source address */ iphdr->verhdrlen = ( IP_VER << 4 ) | ( sizeof ( *iphdr ) / 4 ); iphdr->service = IP_TOS; iphdr->len = htons ( pkb_len ( pkb ) ); iphdr->ident = htons ( next_ident++ ); iphdr->frags = 0; iphdr->ttl = IP_TTL; iphdr->protocol = tcpip_protocol->tcpip_proto; /* Copy destination address */ iphdr->dest = sin_dest->sin_addr; /** * All fields in the IP header filled in except the source network * address (which requires routing) and the header checksum (which * requires the source network address). As the pseudo header requires * the source address as well and the transport-layer checksum is * updated after routing. */ /* Use routing table to identify next hop and transmitting netdev */ next_hop = iphdr->dest; list_for_each_entry ( miniroute, &miniroutes, list ) { int local, has_gw; local = ( ( ( iphdr->dest.s_addr ^ miniroute->address.s_addr ) & miniroute->netmask.s_addr ) == 0 ); has_gw = ( miniroute->gateway.s_addr != INADDR_NONE ); if ( local || has_gw ) { netdev = miniroute->netdev; iphdr->src = miniroute->address; if ( ! local ) next_hop = miniroute->gateway; break; } } /* Abort if no network device identified */ if ( ! netdev ) { DBG ( "No route to %s\n", inet_ntoa ( iphdr->dest ) ); rc = -EHOSTUNREACH; goto err; } /* Calculate the transport layer checksum */ if ( tcpip_protocol->csum_offset > 0 ) { ipv4_tx_csum ( pkb, tcpip_protocol ); } /* Calculate header checksum, in network byte order */ iphdr->chksum = 0; iphdr->chksum = tcpip_chksum ( iphdr, sizeof ( *iphdr ) ); /* Print IP4 header for debugging */ ipv4_dump ( iphdr ); /* Determine link-layer destination address */ if ( next_hop.s_addr == INADDR_BROADCAST ) { /* Broadcast address */ ll_dest = netdev->ll_protocol->ll_broadcast; } else if ( IN_MULTICAST ( next_hop.s_addr ) ) { /* Special case: IPv4 multicast over Ethernet. This * code may need to be generalised once we find out * what happens for other link layers. */ uint8_t *next_hop_bytes = ( uint8_t * ) &next_hop; ll_dest_buf[0] = 0x01; ll_dest_buf[0] = 0x00; ll_dest_buf[0] = 0x5e; ll_dest_buf[3] = next_hop_bytes[1] & 0x7f; ll_dest_buf[4] = next_hop_bytes[2]; ll_dest_buf[5] = next_hop_bytes[3]; } else { /* Unicast address: resolve via ARP */ if ( ( rc = arp_resolve ( netdev, &ipv4_protocol, &next_hop, &iphdr->src, ll_dest_buf ) ) != 0 ) { DBG ( "No ARP entry for %s\n", inet_ntoa ( iphdr->dest ) ); goto err; } } /* Hand off to link layer */ return net_tx ( pkb, netdev, &ipv4_protocol, ll_dest ); err: free_pkb ( pkb ); return rc; } /** * Process incoming packets * * @v pkb Packet buffer * @v netdev Network device * @v ll_source Link-layer destination source * * This function expects an IP4 network datagram. It processes the headers * and sends it to the transport layer. */ static int ipv4_rx ( struct pk_buff *pkb, struct net_device *netdev __unused, const void *ll_source __unused ) { struct iphdr *iphdr = pkb->data; union { struct sockaddr_in sin; struct sockaddr_tcpip st; } src, dest; uint16_t chksum; /* Sanity check */ if ( pkb_len ( pkb ) < sizeof ( *iphdr ) ) { DBG ( "IP datagram too short (%d bytes)\n", pkb_len ( pkb ) ); return -EINVAL; } /* Print IP4 header for debugging */ ipv4_dump ( iphdr ); /* Validate version and header length */ if ( iphdr->verhdrlen != 0x45 ) { DBG ( "Bad version and header length %x\n", iphdr->verhdrlen ); return -EINVAL; } /* Validate length of IP packet */ if ( ntohs ( iphdr->len ) > pkb_len ( pkb ) ) { DBG ( "Inconsistent packet length %d\n", ntohs ( iphdr->len ) ); return -EINVAL; } /* Verify the checksum */ if ( ( chksum = ipv4_rx_csum ( pkb, iphdr->protocol ) ) != 0xffff ) { DBG ( "Bad checksum %x\n", chksum ); } /* Fragment reassembly */ if ( iphdr->frags & IP_MASK_MOREFRAGS || ( !iphdr->frags & IP_MASK_MOREFRAGS && iphdr->frags & IP_MASK_OFFSET != 0 ) ) { /* Pass the fragment to the reassembler ipv4_ressable() which * either returns a fully reassembled packet buffer or NULL. */ pkb = ipv4_reassemble ( pkb ); if ( !pkb ) { return 0; } } /* To reduce code size, the following functions are not implemented: * 1. Check the destination address * 2. Check the TTL field * 3. Check the service field */ /* Construct socket addresses */ memset ( &src, 0, sizeof ( src ) ); src.sin.sin_family = AF_INET; src.sin.sin_addr = iphdr->src; memset ( &dest, 0, sizeof ( dest ) ); dest.sin.sin_family = AF_INET; dest.sin.sin_addr = iphdr->dest; /* Strip header */ pkb_pull ( pkb, sizeof ( *iphdr ) ); pkb_unput ( pkb, pkb_len ( pkb ) - htons ( iphdr->len ) ); /* Send it to the transport layer */ return tcpip_rx ( pkb, iphdr->protocol, &src.st, &dest.st ); } /** * Check existence of IPv4 address for ARP * * @v netdev Network device * @v net_addr Network-layer address * @ret rc Return status code */ static int ipv4_arp_check ( struct net_device *netdev, const void *net_addr ) { const struct in_addr *address = net_addr; struct ipv4_miniroute *miniroute; list_for_each_entry ( miniroute, &miniroutes, list ) { if ( ( miniroute->netdev == netdev ) && ( miniroute->address.s_addr == address->s_addr ) ) { /* Found matching address */ return 0; } } return -ENOENT; } /** * Convert IPv4 address to dotted-quad notation * * @v in IP address * @ret string IP address in dotted-quad notation */ char * inet_ntoa ( struct in_addr in ) { static char buf[16]; /* "xxx.xxx.xxx.xxx" */ uint8_t *bytes = ( uint8_t * ) ∈ sprintf ( buf, "%d.%d.%d.%d", bytes[0], bytes[1], bytes[2], bytes[3] ); return buf; } /** * Transcribe IP address * * @v net_addr IP address * @ret string IP address in dotted-quad notation * */ static const char * ipv4_ntoa ( const void *net_addr ) { return inet_ntoa ( * ( ( struct in_addr * ) net_addr ) ); } /** IPv4 protocol */ struct net_protocol ipv4_protocol = { .name = "IP", .net_proto = htons ( ETH_P_IP ), .net_addr_len = sizeof ( struct in_addr ), .rx = ipv4_rx, .ntoa = ipv4_ntoa, }; NET_PROTOCOL ( ipv4_protocol ); /** IPv4 TCPIP net protocol */ struct tcpip_net_protocol ipv4_tcpip_protocol = { .name = "IPv4", .sa_family = AF_INET, .tx = ipv4_tx, }; TCPIP_NET_PROTOCOL ( ipv4_tcpip_protocol ); /** IPv4 ARP protocol */ struct arp_net_protocol ipv4_arp_protocol __arp_net_protocol = { .net_protocol = &ipv4_protocol, .check = ipv4_arp_check, };