/************************************************************************** * * Etherboot driver for Level 5 Etherfabric network cards * * Written by Michael Brown * * Copyright Fen Systems Ltd. 2005 * Copyright Level 5 Networks Inc. 2005 * * This software may be used and distributed according to the terms of * the GNU General Public License (GPL), incorporated herein by * reference. Drivers based on or derived from this code fall under * the GPL and must retain the authorship, copyright and license * notice. * ************************************************************************** */ #include "etherboot.h" #include "nic.h" #include #include #include #include "timer.h" #define dma_addr_t unsigned long #include "etherfabric.h" /************************************************************************** * * Constants and macros * ************************************************************************** */ #define EFAB_ASSERT(x) \ do { \ if ( ! (x) ) { \ DBG ( "ASSERT(%s) failed at %s line %d [%s]\n", #x, \ __FILE__, __LINE__, __FUNCTION__ ); \ } \ } while (0) #define EFAB_TRACE(...) #define EFAB_REGDUMP(...) #define FALCON_USE_IO_BAR 1 /* * EtherFabric constants * */ /* PCI Definitions */ #define EFAB_VENDID_LEVEL5 0x1924 #define FALCON_P_DEVID 0x0703 /* Temporary PCI ID */ #define EF1002_DEVID 0xC101 /************************************************************************** * * Data structures * ************************************************************************** */ /* * Buffers used for TX, RX and event queue * */ #define EFAB_BUF_ALIGN 4096 #define EFAB_DATA_BUF_SIZE 2048 #define EFAB_RX_BUFS 16 #define EFAB_RXD_SIZE 512 #define EFAB_TXD_SIZE 512 #define EFAB_EVQ_SIZE 512 struct efab_buffers { uint8_t eventq[4096]; uint8_t rxd[4096]; uint8_t txd[4096]; uint8_t tx_buf[EFAB_DATA_BUF_SIZE]; uint8_t rx_buf[EFAB_RX_BUFS][EFAB_DATA_BUF_SIZE]; uint8_t padding[EFAB_BUF_ALIGN-1]; }; static struct efab_buffers efab_buffers; /** An RX buffer */ struct efab_rx_buf { uint8_t *addr; unsigned int len; int id; }; /** A TX buffer */ struct efab_tx_buf { uint8_t *addr; unsigned int len; int id; }; /** Etherfabric event type */ enum efab_event_type { EFAB_EV_NONE = 0, EFAB_EV_TX, EFAB_EV_RX, }; /** Etherfabric event */ struct efab_event { /** Event type */ enum efab_event_type type; /** RX buffer ID */ int rx_id; /** RX length */ unsigned int rx_len; }; /* * Etherfabric abstraction layer * */ struct efab_nic; struct efab_operations { void ( * get_membase ) ( struct efab_nic *efab ); int ( * reset ) ( struct efab_nic *efab ); int ( * init_nic ) ( struct efab_nic *efab ); int ( * read_eeprom ) ( struct efab_nic *efab ); void ( * build_rx_desc ) ( struct efab_nic *efab, struct efab_rx_buf *rx_buf ); void ( * notify_rx_desc ) ( struct efab_nic *efab ); void ( * build_tx_desc ) ( struct efab_nic *efab, struct efab_tx_buf *tx_buf ); void ( * notify_tx_desc ) ( struct efab_nic *efab ); int ( * fetch_event ) ( struct efab_nic *efab, struct efab_event *event ); void ( * mask_irq ) ( struct efab_nic *efab, int enabled ); void ( * generate_irq ) ( struct efab_nic *efab ); void ( * mac_writel ) ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ); void ( * mac_readl ) ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ); int ( * init_mac ) ( struct efab_nic *efab ); void ( * mdio_write ) ( struct efab_nic *efab, int location, int value ); int ( * mdio_read ) ( struct efab_nic *efab, int location ); }; /* * Driver private data structure * */ struct efab_nic { /** PCI device */ struct pci_device *pci; /** Operations table */ struct efab_operations *op; /** Memory base */ void *membase; /** I/O base */ unsigned int iobase; /** Buffers */ uint8_t *eventq; /* Falcon only */ uint8_t *txd; /* Falcon only */ uint8_t *rxd; /* Falcon only */ struct efab_tx_buf tx_buf; struct efab_rx_buf rx_bufs[EFAB_RX_BUFS]; /** Buffer pointers */ unsigned int eventq_read_ptr; /* Falcon only */ unsigned int tx_write_ptr; unsigned int rx_write_ptr; int tx_in_progress; /** Port 0/1 on the NIC */ int port; /** MAC address */ uint8_t mac_addr[ETH_ALEN]; /** GMII link options */ unsigned int link_options; /** Link status */ int link_up; /** INT_REG_KER for Falcon */ efab_oword_t int_ker __attribute__ (( aligned ( 16 ) )); /** EEPROM access */ struct i2c_bit_basher ef1002_i2c; unsigned long ef1002_i2c_outputs; struct i2c_device ef1002_eeprom; }; /************************************************************************** * * GMII routines * ************************************************************************** */ /* GMII registers */ #define MII_BMSR 0x01 /* Basic mode status register */ #define MII_ADVERTISE 0x04 /* Advertisement control register */ #define MII_LPA 0x05 /* Link partner ability register*/ #define GMII_GTCR 0x09 /* 1000BASE-T control register */ #define GMII_GTSR 0x0a /* 1000BASE-T status register */ #define GMII_PSSR 0x11 /* PHY-specific status register */ /* Basic mode status register. */ #define BMSR_LSTATUS 0x0004 /* Link status */ /* Link partner ability register. */ #define LPA_10HALF 0x0020 /* Can do 10mbps half-duplex */ #define LPA_10FULL 0x0040 /* Can do 10mbps full-duplex */ #define LPA_100HALF 0x0080 /* Can do 100mbps half-duplex */ #define LPA_100FULL 0x0100 /* Can do 100mbps full-duplex */ #define LPA_100BASE4 0x0200 /* Can do 100mbps 4k packets */ #define LPA_PAUSE 0x0400 /* Bit 10 - MAC pause */ /* Pseudo extensions to the link partner ability register */ #define LPA_1000FULL 0x00020000 #define LPA_1000HALF 0x00010000 #define LPA_100 (LPA_100FULL | LPA_100HALF | LPA_100BASE4) #define LPA_1000 ( LPA_1000FULL | LPA_1000HALF ) #define LPA_DUPLEX ( LPA_10FULL | LPA_100FULL | LPA_1000FULL ) /* Mask of bits not associated with speed or duplexity. */ #define LPA_OTHER ~( LPA_10FULL | LPA_10HALF | LPA_100FULL | \ LPA_100HALF | LPA_1000FULL | LPA_1000HALF ) /* PHY-specific status register */ #define PSSR_LSTATUS 0x0400 /* Bit 10 - link status */ /** * Retrieve GMII autonegotiation advertised abilities * */ static unsigned int gmii_autoneg_advertised ( struct efab_nic *efab ) { unsigned int mii_advertise; unsigned int gmii_advertise; /* Extended bits are in bits 8 and 9 of GMII_GTCR */ mii_advertise = efab->op->mdio_read ( efab, MII_ADVERTISE ); gmii_advertise = ( ( efab->op->mdio_read ( efab, GMII_GTCR ) >> 8 ) & 0x03 ); return ( ( gmii_advertise << 16 ) | mii_advertise ); } /** * Retrieve GMII autonegotiation link partner abilities * */ static unsigned int gmii_autoneg_lpa ( struct efab_nic *efab ) { unsigned int mii_lpa; unsigned int gmii_lpa; /* Extended bits are in bits 10 and 11 of GMII_GTSR */ mii_lpa = efab->op->mdio_read ( efab, MII_LPA ); gmii_lpa = ( efab->op->mdio_read ( efab, GMII_GTSR ) >> 10 ) & 0x03; return ( ( gmii_lpa << 16 ) | mii_lpa ); } /** * Calculate GMII autonegotiated link technology * */ static unsigned int gmii_nway_result ( unsigned int negotiated ) { unsigned int other_bits; /* Mask out the speed and duplexity bits */ other_bits = negotiated & LPA_OTHER; if ( negotiated & LPA_1000FULL ) return ( other_bits | LPA_1000FULL ); else if ( negotiated & LPA_1000HALF ) return ( other_bits | LPA_1000HALF ); else if ( negotiated & LPA_100FULL ) return ( other_bits | LPA_100FULL ); else if ( negotiated & LPA_100BASE4 ) return ( other_bits | LPA_100BASE4 ); else if ( negotiated & LPA_100HALF ) return ( other_bits | LPA_100HALF ); else if ( negotiated & LPA_10FULL ) return ( other_bits | LPA_10FULL ); else return ( other_bits | LPA_10HALF ); } /** * Check GMII PHY link status * */ static int gmii_link_ok ( struct efab_nic *efab ) { int status; int phy_status; /* BMSR is latching - it returns "link down" if the link has * been down at any point since the last read. To get a * real-time status, we therefore read the register twice and * use the result of the second read. */ efab->op->mdio_read ( efab, MII_BMSR ); status = efab->op->mdio_read ( efab, MII_BMSR ); /* Read the PHY-specific Status Register. This is * non-latching, so we need do only a single read. */ phy_status = efab->op->mdio_read ( efab, GMII_PSSR ); return ( ( status & BMSR_LSTATUS ) && ( phy_status & PSSR_LSTATUS ) ); } /************************************************************************** * * Alaska PHY * ************************************************************************** */ /** * Initialise Alaska PHY * */ static void alaska_init ( struct efab_nic *efab ) { unsigned int advertised, lpa; /* Read link up status */ efab->link_up = gmii_link_ok ( efab ); if ( ! efab->link_up ) return; /* Determine link options from PHY. */ advertised = gmii_autoneg_advertised ( efab ); lpa = gmii_autoneg_lpa ( efab ); efab->link_options = gmii_nway_result ( advertised & lpa ); printf ( "%dMbps %s-duplex (%04x,%04x)\n", ( efab->link_options & LPA_1000 ? 1000 : ( efab->link_options & LPA_100 ? 100 : 10 ) ), ( efab->link_options & LPA_DUPLEX ? "full" : "half" ), advertised, lpa ); } /************************************************************************** * * Mentor MAC * ************************************************************************** */ /* GMAC configuration register 1 */ #define GM_CFG1_REG_MAC 0x00 #define GM_SW_RST_LBN 31 #define GM_SW_RST_WIDTH 1 #define GM_RX_FC_EN_LBN 5 #define GM_RX_FC_EN_WIDTH 1 #define GM_TX_FC_EN_LBN 4 #define GM_TX_FC_EN_WIDTH 1 #define GM_RX_EN_LBN 2 #define GM_RX_EN_WIDTH 1 #define GM_TX_EN_LBN 0 #define GM_TX_EN_WIDTH 1 /* GMAC configuration register 2 */ #define GM_CFG2_REG_MAC 0x01 #define GM_PAMBL_LEN_LBN 12 #define GM_PAMBL_LEN_WIDTH 4 #define GM_IF_MODE_LBN 8 #define GM_IF_MODE_WIDTH 2 #define GM_PAD_CRC_EN_LBN 2 #define GM_PAD_CRC_EN_WIDTH 1 #define GM_FD_LBN 0 #define GM_FD_WIDTH 1 /* GMAC maximum frame length register */ #define GM_MAX_FLEN_REG_MAC 0x04 #define GM_MAX_FLEN_LBN 0 #define GM_MAX_FLEN_WIDTH 16 /* GMAC MII management configuration register */ #define GM_MII_MGMT_CFG_REG_MAC 0x08 #define GM_MGMT_CLK_SEL_LBN 0 #define GM_MGMT_CLK_SEL_WIDTH 3 /* GMAC MII management command register */ #define GM_MII_MGMT_CMD_REG_MAC 0x09 #define GM_MGMT_SCAN_CYC_LBN 1 #define GM_MGMT_SCAN_CYC_WIDTH 1 #define GM_MGMT_RD_CYC_LBN 0 #define GM_MGMT_RD_CYC_WIDTH 1 /* GMAC MII management address register */ #define GM_MII_MGMT_ADR_REG_MAC 0x0a #define GM_MGMT_PHY_ADDR_LBN 8 #define GM_MGMT_PHY_ADDR_WIDTH 5 #define GM_MGMT_REG_ADDR_LBN 0 #define GM_MGMT_REG_ADDR_WIDTH 5 /* GMAC MII management control register */ #define GM_MII_MGMT_CTL_REG_MAC 0x0b #define GM_MGMT_CTL_LBN 0 #define GM_MGMT_CTL_WIDTH 16 /* GMAC MII management status register */ #define GM_MII_MGMT_STAT_REG_MAC 0x0c #define GM_MGMT_STAT_LBN 0 #define GM_MGMT_STAT_WIDTH 16 /* GMAC MII management indicators register */ #define GM_MII_MGMT_IND_REG_MAC 0x0d #define GM_MGMT_BUSY_LBN 0 #define GM_MGMT_BUSY_WIDTH 1 /* GMAC station address register 1 */ #define GM_ADR1_REG_MAC 0x10 #define GM_HWADDR_5_LBN 24 #define GM_HWADDR_5_WIDTH 8 #define GM_HWADDR_4_LBN 16 #define GM_HWADDR_4_WIDTH 8 #define GM_HWADDR_3_LBN 8 #define GM_HWADDR_3_WIDTH 8 #define GM_HWADDR_2_LBN 0 #define GM_HWADDR_2_WIDTH 8 /* GMAC station address register 2 */ #define GM_ADR2_REG_MAC 0x11 #define GM_HWADDR_1_LBN 24 #define GM_HWADDR_1_WIDTH 8 #define GM_HWADDR_0_LBN 16 #define GM_HWADDR_0_WIDTH 8 /* GMAC FIFO configuration register 0 */ #define GMF_CFG0_REG_MAC 0x12 #define GMF_FTFENREQ_LBN 12 #define GMF_FTFENREQ_WIDTH 1 #define GMF_STFENREQ_LBN 11 #define GMF_STFENREQ_WIDTH 1 #define GMF_FRFENREQ_LBN 10 #define GMF_FRFENREQ_WIDTH 1 #define GMF_SRFENREQ_LBN 9 #define GMF_SRFENREQ_WIDTH 1 #define GMF_WTMENREQ_LBN 8 #define GMF_WTMENREQ_WIDTH 1 /* GMAC FIFO configuration register 1 */ #define GMF_CFG1_REG_MAC 0x13 #define GMF_CFGFRTH_LBN 16 #define GMF_CFGFRTH_WIDTH 5 #define GMF_CFGXOFFRTX_LBN 0 #define GMF_CFGXOFFRTX_WIDTH 16 /* GMAC FIFO configuration register 2 */ #define GMF_CFG2_REG_MAC 0x14 #define GMF_CFGHWM_LBN 16 #define GMF_CFGHWM_WIDTH 6 #define GMF_CFGLWM_LBN 0 #define GMF_CFGLWM_WIDTH 6 /* GMAC FIFO configuration register 3 */ #define GMF_CFG3_REG_MAC 0x15 #define GMF_CFGHWMFT_LBN 16 #define GMF_CFGHWMFT_WIDTH 6 #define GMF_CFGFTTH_LBN 0 #define GMF_CFGFTTH_WIDTH 6 /* GMAC FIFO configuration register 4 */ #define GMF_CFG4_REG_MAC 0x16 #define GMF_HSTFLTRFRM_PAUSE_LBN 12 #define GMF_HSTFLTRFRM_PAUSE_WIDTH 12 /* GMAC FIFO configuration register 5 */ #define GMF_CFG5_REG_MAC 0x17 #define GMF_CFGHDPLX_LBN 22 #define GMF_CFGHDPLX_WIDTH 1 #define GMF_CFGBYTMODE_LBN 19 #define GMF_CFGBYTMODE_WIDTH 1 #define GMF_HSTDRPLT64_LBN 18 #define GMF_HSTDRPLT64_WIDTH 1 #define GMF_HSTFLTRFRMDC_PAUSE_LBN 12 #define GMF_HSTFLTRFRMDC_PAUSE_WIDTH 1 struct efab_mentormac_parameters { int gmf_cfgfrth; int gmf_cfgftth; int gmf_cfghwmft; int gmf_cfghwm; int gmf_cfglwm; }; /** * Reset Mentor MAC * */ static void mentormac_reset ( struct efab_nic *efab, int reset ) { efab_dword_t reg; EFAB_POPULATE_DWORD_1 ( reg, GM_SW_RST, reset ); efab->op->mac_writel ( efab, ®, GM_CFG1_REG_MAC ); udelay ( 1000 ); if ( ( ! reset ) && ( efab->port == 0 ) ) { /* Configure GMII interface so PHY is accessible. * Note that GMII interface is connected only to port * 0 */ EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CLK_SEL, 0x4 ); efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CFG_REG_MAC ); udelay ( 10 ); } } /** * Initialise Mentor MAC * */ static void mentormac_init ( struct efab_nic *efab, struct efab_mentormac_parameters *params ) { int pause, if_mode, full_duplex, bytemode, half_duplex; efab_dword_t reg; /* Configuration register 1 */ pause = ( efab->link_options & LPA_PAUSE ) ? 1 : 0; if ( ! ( efab->link_options & LPA_DUPLEX ) ) { /* Half-duplex operation requires TX flow control */ pause = 1; } EFAB_POPULATE_DWORD_4 ( reg, GM_TX_EN, 1, GM_TX_FC_EN, pause, GM_RX_EN, 1, GM_RX_FC_EN, 1 ); efab->op->mac_writel ( efab, ®, GM_CFG1_REG_MAC ); udelay ( 10 ); /* Configuration register 2 */ if_mode = ( efab->link_options & LPA_1000 ) ? 2 : 1; full_duplex = ( efab->link_options & LPA_DUPLEX ) ? 1 : 0; EFAB_POPULATE_DWORD_4 ( reg, GM_IF_MODE, if_mode, GM_PAD_CRC_EN, 1, GM_FD, full_duplex, GM_PAMBL_LEN, 0x7 /* ? */ ); efab->op->mac_writel ( efab, ®, GM_CFG2_REG_MAC ); udelay ( 10 ); /* Max frame len register */ EFAB_POPULATE_DWORD_1 ( reg, GM_MAX_FLEN, ETH_FRAME_LEN ); efab->op->mac_writel ( efab, ®, GM_MAX_FLEN_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 0 */ EFAB_POPULATE_DWORD_5 ( reg, GMF_FTFENREQ, 1, GMF_STFENREQ, 1, GMF_FRFENREQ, 1, GMF_SRFENREQ, 1, GMF_WTMENREQ, 1 ); efab->op->mac_writel ( efab, ®, GMF_CFG0_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 1 */ EFAB_POPULATE_DWORD_2 ( reg, GMF_CFGFRTH, params->gmf_cfgfrth, GMF_CFGXOFFRTX, 0xffff ); efab->op->mac_writel ( efab, ®, GMF_CFG1_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 2 */ EFAB_POPULATE_DWORD_2 ( reg, GMF_CFGHWM, params->gmf_cfghwm, GMF_CFGLWM, params->gmf_cfglwm ); efab->op->mac_writel ( efab, ®, GMF_CFG2_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 3 */ EFAB_POPULATE_DWORD_2 ( reg, GMF_CFGHWMFT, params->gmf_cfghwmft, GMF_CFGFTTH, params->gmf_cfgftth ); efab->op->mac_writel ( efab, ®, GMF_CFG3_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 4 */ EFAB_POPULATE_DWORD_1 ( reg, GMF_HSTFLTRFRM_PAUSE, 1 ); efab->op->mac_writel ( efab, ®, GMF_CFG4_REG_MAC ); udelay ( 10 ); /* FIFO configuration register 5 */ bytemode = ( efab->link_options & LPA_1000 ) ? 1 : 0; half_duplex = ( efab->link_options & LPA_DUPLEX ) ? 0 : 1; efab->op->mac_readl ( efab, ®, GMF_CFG5_REG_MAC ); EFAB_SET_DWORD_FIELD ( reg, GMF_CFGBYTMODE, bytemode ); EFAB_SET_DWORD_FIELD ( reg, GMF_CFGHDPLX, half_duplex ); EFAB_SET_DWORD_FIELD ( reg, GMF_HSTDRPLT64, half_duplex ); EFAB_SET_DWORD_FIELD ( reg, GMF_HSTFLTRFRMDC_PAUSE, 0 ); efab->op->mac_writel ( efab, ®, GMF_CFG5_REG_MAC ); udelay ( 10 ); /* MAC address */ EFAB_POPULATE_DWORD_4 ( reg, GM_HWADDR_5, efab->mac_addr[5], GM_HWADDR_4, efab->mac_addr[4], GM_HWADDR_3, efab->mac_addr[3], GM_HWADDR_2, efab->mac_addr[2] ); efab->op->mac_writel ( efab, ®, GM_ADR1_REG_MAC ); udelay ( 10 ); EFAB_POPULATE_DWORD_2 ( reg, GM_HWADDR_1, efab->mac_addr[1], GM_HWADDR_0, efab->mac_addr[0] ); efab->op->mac_writel ( efab, ®, GM_ADR2_REG_MAC ); udelay ( 10 ); } /** * Wait for GMII access to complete * */ static int mentormac_gmii_wait ( struct efab_nic *efab ) { int count; efab_dword_t indicator; for ( count = 0 ; count < 1000 ; count++ ) { udelay ( 10 ); efab->op->mac_readl ( efab, &indicator, GM_MII_MGMT_IND_REG_MAC ); if ( EFAB_DWORD_FIELD ( indicator, GM_MGMT_BUSY ) == 0 ) return 1; } printf ( "Timed out waiting for GMII\n" ); return 0; } /** * Write a GMII register * */ static void mentormac_mdio_write ( struct efab_nic *efab, int phy_id, int location, int value ) { efab_dword_t reg; int save_port; EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", phy_id, location, value ); /* Mentor MAC connects both PHYs to MAC 0 */ save_port = efab->port; efab->port = 0; /* Check MII not currently being accessed */ if ( ! mentormac_gmii_wait ( efab ) ) goto out; /* Write the address register */ EFAB_POPULATE_DWORD_2 ( reg, GM_MGMT_PHY_ADDR, phy_id, GM_MGMT_REG_ADDR, location ); efab->op->mac_writel ( efab, ®, GM_MII_MGMT_ADR_REG_MAC ); udelay ( 10 ); /* Write data */ EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_CTL, value ); efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CTL_REG_MAC ); /* Wait for data to be written */ mentormac_gmii_wait ( efab ); out: /* Restore efab->port */ efab->port = save_port; } /** * Read a GMII register * */ static int mentormac_mdio_read ( struct efab_nic *efab, int phy_id, int location ) { efab_dword_t reg; int value = 0xffff; int save_port; /* Mentor MAC connects both PHYs to MAC 0 */ save_port = efab->port; efab->port = 0; /* Check MII not currently being accessed */ if ( ! mentormac_gmii_wait ( efab ) ) goto out; /* Write the address register */ EFAB_POPULATE_DWORD_2 ( reg, GM_MGMT_PHY_ADDR, phy_id, GM_MGMT_REG_ADDR, location ); efab->op->mac_writel ( efab, ®, GM_MII_MGMT_ADR_REG_MAC ); udelay ( 10 ); /* Request data to be read */ EFAB_POPULATE_DWORD_1 ( reg, GM_MGMT_RD_CYC, 1 ); efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CMD_REG_MAC ); /* Wait for data to be become available */ if ( mentormac_gmii_wait ( efab ) ) { /* Read data */ efab->op->mac_readl ( efab, ®, GM_MII_MGMT_STAT_REG_MAC ); value = EFAB_DWORD_FIELD ( reg, GM_MGMT_STAT ); EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n", phy_id, location, value ); } /* Signal completion */ EFAB_ZERO_DWORD ( reg ); efab->op->mac_writel ( efab, ®, GM_MII_MGMT_CMD_REG_MAC ); udelay ( 10 ); out: /* Restore efab->port */ efab->port = save_port; return value; } /************************************************************************** * * EF1002 routines * ************************************************************************** */ /** Control and General Status */ #define EF1_CTR_GEN_STATUS0_REG 0x0 #define EF1_MASTER_EVENTS_LBN 12 #define EF1_MASTER_EVENTS_WIDTH 1 #define EF1_TX_ENGINE_EN_LBN 19 #define EF1_TX_ENGINE_EN_WIDTH 1 #define EF1_RX_ENGINE_EN_LBN 18 #define EF1_RX_ENGINE_EN_WIDTH 1 #define EF1_LB_RESET_LBN 3 #define EF1_LB_RESET_WIDTH 1 #define EF1_MAC_RESET_LBN 2 #define EF1_MAC_RESET_WIDTH 1 #define EF1_CAM_ENABLE_LBN 1 #define EF1_CAM_ENABLE_WIDTH 1 /** IRQ sources */ #define EF1_IRQ_SRC_REG 0x0008 /** IRQ mask */ #define EF1_IRQ_MASK_REG 0x000c #define EF1_IRQ_PHY1_LBN 11 #define EF1_IRQ_PHY1_WIDTH 1 #define EF1_IRQ_PHY0_LBN 10 #define EF1_IRQ_PHY0_WIDTH 1 #define EF1_IRQ_SERR_LBN 7 #define EF1_IRQ_SERR_WIDTH 1 #define EF1_IRQ_EVQ_LBN 3 #define EF1_IRQ_EVQ_WIDTH 1 /** Event generation */ #define EF1_EVT3_REG 0x38 /** EEPROM access */ #define EF1_EEPROM_REG 0x0040 #define EF1_EEPROM_LBN 0 #define EF1_EEPROM_WIDTH 32 /** Control register 2 */ #define EF1_CTL2_REG 0x4c #define EF1_MEM_MAP_4MB_LBN 11 #define EF1_MEM_MAP_4MB_WIDTH 1 #define EF1_EV_INTR_CLR_WRITE_LBN 6 #define EF1_EV_INTR_CLR_WRITE_WIDTH 1 #define EF1_SW_RESET_LBN 2 #define EF1_SW_RESET_WIDTH 1 #define EF1_INTR_AFTER_EVENT_LBN 1 #define EF1_INTR_AFTER_EVENT_WIDTH 1 /** Event FIFO */ #define EF1_EVENT_FIFO_REG 0x50 /** Event FIFO count */ #define EF1_EVENT_FIFO_COUNT_REG 0x5c #define EF1_EV_COUNT_LBN 0 #define EF1_EV_COUNT_WIDTH 16 /** TX DMA control and status */ #define EF1_DMA_TX_CSR_REG 0x80 #define EF1_DMA_TX_CSR_CHAIN_EN_LBN 8 #define EF1_DMA_TX_CSR_CHAIN_EN_WIDTH 1 #define EF1_DMA_TX_CSR_ENABLE_LBN 4 #define EF1_DMA_TX_CSR_ENABLE_WIDTH 1 #define EF1_DMA_TX_CSR_INT_EN_LBN 0 #define EF1_DMA_TX_CSR_INT_EN_WIDTH 1 /** RX DMA control and status */ #define EF1_DMA_RX_CSR_REG 0xa0 #define EF1_DMA_RX_ABOVE_1GB_EN_LBN 6 #define EF1_DMA_RX_ABOVE_1GB_EN_WIDTH 1 #define EF1_DMA_RX_BELOW_1MB_EN_LBN 5 #define EF1_DMA_RX_BELOW_1MB_EN_WIDTH 1 #define EF1_DMA_RX_CSR_ENABLE_LBN 0 #define EF1_DMA_RX_CSR_ENABLE_WIDTH 1 /** Level 5 watermark register (in MAC space) */ #define EF1_GMF_L5WM_REG_MAC 0x20 #define EF1_L5WM_LBN 0 #define EF1_L5WM_WIDTH 32 /** MAC clock */ #define EF1_GM_MAC_CLK_REG 0x112000 #define EF1_GM_PORT0_MAC_CLK_LBN 0 #define EF1_GM_PORT0_MAC_CLK_WIDTH 1 #define EF1_GM_PORT1_MAC_CLK_LBN 1 #define EF1_GM_PORT1_MAC_CLK_WIDTH 1 /** TX descriptor FIFO */ #define EF1_TX_DESC_FIFO 0x141000 #define EF1_TX_KER_EVQ_LBN 80 #define EF1_TX_KER_EVQ_WIDTH 12 #define EF1_TX_KER_IDX_LBN 64 #define EF1_TX_KER_IDX_WIDTH 16 #define EF1_TX_KER_MODE_LBN 63 #define EF1_TX_KER_MODE_WIDTH 1 #define EF1_TX_KER_PORT_LBN 60 #define EF1_TX_KER_PORT_WIDTH 1 #define EF1_TX_KER_CONT_LBN 56 #define EF1_TX_KER_CONT_WIDTH 1 #define EF1_TX_KER_BYTE_CNT_LBN 32 #define EF1_TX_KER_BYTE_CNT_WIDTH 24 #define EF1_TX_KER_BUF_ADR_LBN 0 #define EF1_TX_KER_BUF_ADR_WIDTH 32 /** TX descriptor FIFO flush */ #define EF1_TX_DESC_FIFO_FLUSH 0x141ffc /** RX descriptor FIFO */ #define EF1_RX_DESC_FIFO 0x145000 #define EF1_RX_KER_EVQ_LBN 48 #define EF1_RX_KER_EVQ_WIDTH 12 #define EF1_RX_KER_IDX_LBN 32 #define EF1_RX_KER_IDX_WIDTH 16 #define EF1_RX_KER_BUF_ADR_LBN 0 #define EF1_RX_KER_BUF_ADR_WIDTH 32 /** RX descriptor FIFO flush */ #define EF1_RX_DESC_FIFO_FLUSH 0x145ffc /** CAM */ #define EF1_CAM_BASE 0x1c0000 #define EF1_CAM_WTF_DOES_THIS_DO_LBN 0 #define EF1_CAM_WTF_DOES_THIS_DO_WIDTH 32 /** Event queue pointers */ #define EF1_EVQ_PTR_BASE 0x260000 #define EF1_EVQ_SIZE_LBN 29 #define EF1_EVQ_SIZE_WIDTH 2 #define EF1_EVQ_SIZE_4K 3 #define EF1_EVQ_SIZE_2K 2 #define EF1_EVQ_SIZE_1K 1 #define EF1_EVQ_SIZE_512 0 #define EF1_EVQ_BUF_BASE_ID_LBN 0 #define EF1_EVQ_BUF_BASE_ID_WIDTH 29 /* MAC registers */ #define EF1002_MAC_REGBANK 0x110000 #define EF1002_MAC_REGBANK_SIZE 0x1000 #define EF1002_MAC_REG_SIZE 0x08 /** Offset of a MAC register within EF1002 */ #define EF1002_MAC_REG( efab, mac_reg ) \ ( EF1002_MAC_REGBANK + \ ( (efab)->port * EF1002_MAC_REGBANK_SIZE ) + \ ( (mac_reg) * EF1002_MAC_REG_SIZE ) ) /* Event queue entries */ #define EF1_EV_CODE_LBN 20 #define EF1_EV_CODE_WIDTH 8 #define EF1_RX_EV_DECODE 0x01 #define EF1_TX_EV_DECODE 0x02 #define EF1_DRV_GEN_EV_DECODE 0x0f /* Receive events */ #define EF1_RX_EV_LEN_LBN 48 #define EF1_RX_EV_LEN_WIDTH 16 #define EF1_RX_EV_PORT_LBN 17 #define EF1_RX_EV_PORT_WIDTH 3 #define EF1_RX_EV_OK_LBN 16 #define EF1_RX_EV_OK_WIDTH 1 #define EF1_RX_EV_IDX_LBN 0 #define EF1_RX_EV_IDX_WIDTH 16 /* Transmit events */ #define EF1_TX_EV_PORT_LBN 17 #define EF1_TX_EV_PORT_WIDTH 3 #define EF1_TX_EV_OK_LBN 16 #define EF1_TX_EV_OK_WIDTH 1 #define EF1_TX_EV_IDX_LBN 0 #define EF1_TX_EV_IDX_WIDTH 16 /* I2C ID of the EEPROM */ #define EF1_EEPROM_I2C_ID 0x50 /* Offset of MAC address within EEPROM */ #define EF1_EEPROM_HWADDR_OFFSET 0x0 /** * Write dword to EF1002 register * */ static inline void ef1002_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { EFAB_REGDUMP ( "Writing register %x with " EFAB_DWORD_FMT "\n", reg, EFAB_DWORD_VAL ( *value ) ); writel ( value->u32[0], efab->membase + reg ); } /** * Read dword from an EF1002 register * */ static inline void ef1002_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { value->u32[0] = readl ( efab->membase + reg ); EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n", reg, EFAB_DWORD_VAL ( *value ) ); } /** * Read dword from an EF1002 register, silently * */ static inline void ef1002_readl_silent ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { value->u32[0] = readl ( efab->membase + reg ); } /** * Get memory base * */ static void ef1002_get_membase ( struct efab_nic *efab ) { unsigned long membase_phys; membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_0 ); efab->membase = ioremap ( membase_phys, 0x800000 ); } /** PCI registers to backup/restore over a device reset */ static const unsigned int efab_pci_reg_addr[] = { PCI_COMMAND, 0x0c /* PCI_CACHE_LINE_SIZE */, PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1, PCI_BASE_ADDRESS_2, PCI_BASE_ADDRESS_3, PCI_ROM_ADDRESS, PCI_INTERRUPT_LINE, }; /** Number of registers in efab_pci_reg_addr */ #define EFAB_NUM_PCI_REG \ ( sizeof ( efab_pci_reg_addr ) / sizeof ( efab_pci_reg_addr[0] ) ) /** PCI configuration space backup */ struct efab_pci_reg { uint32_t reg[EFAB_NUM_PCI_REG]; }; /* * I2C interface and EEPROM * */ static unsigned long ef1002_i2c_bits[] = { [I2C_BIT_SCL] = ( 1 << 30 ), [I2C_BIT_SDA] = ( 1 << 31 ), }; static void ef1002_i2c_write_bit ( struct bit_basher *basher, unsigned int bit_id, unsigned long data ) { struct efab_nic *efab = container_of ( basher, struct efab_nic, ef1002_i2c.basher ); unsigned long mask; efab_dword_t reg; mask = ef1002_i2c_bits[bit_id]; efab->ef1002_i2c_outputs &= ~mask; efab->ef1002_i2c_outputs |= ( data & mask ); EFAB_POPULATE_DWORD_1 ( reg, EF1_EEPROM, efab->ef1002_i2c_outputs ); ef1002_writel ( efab, ®, EF1_EEPROM_REG ); } static int ef1002_i2c_read_bit ( struct bit_basher *basher, unsigned int bit_id ) { struct efab_nic *efab = container_of ( basher, struct efab_nic, ef1002_i2c.basher ); unsigned long mask; efab_dword_t reg; mask = ef1002_i2c_bits[bit_id]; ef1002_readl ( efab, ®, EF1_EEPROM_REG ); return ( EFAB_DWORD_FIELD ( reg, EF1_EEPROM ) & mask ); } static void ef1002_init_eeprom ( struct efab_nic *efab ) { efab->ef1002_i2c.basher.write = ef1002_i2c_write_bit; efab->ef1002_i2c.basher.read = ef1002_i2c_read_bit; init_i2c_bit_basher ( &efab->ef1002_i2c ); efab->ef1002_eeprom.address = EF1_EEPROM_I2C_ID; } /** * Reset device * */ static int ef1002_reset ( struct efab_nic *efab ) { struct efab_pci_reg pci_reg; struct pci_device *pci_dev = efab->pci; efab_dword_t reg; unsigned int i; uint32_t tmp; /* Back up PCI configuration registers */ for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) { pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i], &pci_reg.reg[i] ); } /* Reset the whole device. */ EFAB_POPULATE_DWORD_1 ( reg, EF1_SW_RESET, 1 ); ef1002_writel ( efab, ®, EF1_CTL2_REG ); mdelay ( 200 ); /* Restore PCI configuration space */ for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) { pci_write_config_dword ( pci_dev, efab_pci_reg_addr[i], pci_reg.reg[i] ); } /* Verify PCI configuration space */ for ( i = 0 ; i < EFAB_NUM_PCI_REG ; i++ ) { pci_read_config_dword ( pci_dev, efab_pci_reg_addr[i], &tmp ); if ( tmp != pci_reg.reg[i] ) { printf ( "PCI restore failed on register %02x " "(is %08x, should be %08x); reboot\n", i, tmp, pci_reg.reg[i] ); return 0; } } /* Verify device reset complete */ ef1002_readl ( efab, ®, EF1_CTR_GEN_STATUS0_REG ); if ( EFAB_DWORD_IS_ALL_ONES ( reg ) ) { printf ( "Reset failed\n" ); return 0; } return 1; } /** * Initialise NIC * */ static int ef1002_init_nic ( struct efab_nic *efab ) { efab_dword_t reg; int save_port; /* No idea what CAM is, but the 'datasheet' says that we have * to write these values in at start of day */ EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x6 ); ef1002_writel ( efab, ®, EF1_CAM_BASE + 0x20018 ); udelay ( 1000 ); EFAB_POPULATE_DWORD_1 ( reg, EF1_CAM_WTF_DOES_THIS_DO, 0x01000000 ); ef1002_writel ( efab, ®, EF1_CAM_BASE + 0x00018 ); udelay ( 1000 ); /* General control register 0 */ ef1002_readl ( efab, ®, EF1_CTR_GEN_STATUS0_REG ); EFAB_SET_DWORD_FIELD ( reg, EF1_MASTER_EVENTS, 0 ); EFAB_SET_DWORD_FIELD ( reg, EF1_CAM_ENABLE, 1 ); ef1002_writel ( efab, ®, EF1_CTR_GEN_STATUS0_REG ); udelay ( 1000 ); /* General control register 2 */ ef1002_readl ( efab, ®, EF1_CTL2_REG ); EFAB_SET_DWORD_FIELD ( reg, EF1_INTR_AFTER_EVENT, 1 ); EFAB_SET_DWORD_FIELD ( reg, EF1_EV_INTR_CLR_WRITE, 0 ); EFAB_SET_DWORD_FIELD ( reg, EF1_MEM_MAP_4MB, 0 ); ef1002_writel ( efab, ®, EF1_CTL2_REG ); udelay ( 1000 ); /* Enable RX DMA */ ef1002_readl ( efab, ®, EF1_DMA_RX_CSR_REG ); EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_CSR_ENABLE, 1 ); EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_BELOW_1MB_EN, 1 ); EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_RX_ABOVE_1GB_EN, 1 ); ef1002_writel ( efab, ®, EF1_DMA_RX_CSR_REG ); udelay ( 1000 ); /* Enable TX DMA */ ef1002_readl ( efab, ®, EF1_DMA_TX_CSR_REG ); EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_CHAIN_EN, 1 ); EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_ENABLE, 0 /* ?? */ ); EFAB_SET_DWORD_FIELD ( reg, EF1_DMA_TX_CSR_INT_EN, 0 /* ?? */ ); ef1002_writel ( efab, ®, EF1_DMA_TX_CSR_REG ); udelay ( 1000 ); /* Flush descriptor queues */ EFAB_ZERO_DWORD ( reg ); ef1002_writel ( efab, ®, EF1_RX_DESC_FIFO_FLUSH ); ef1002_writel ( efab, ®, EF1_TX_DESC_FIFO_FLUSH ); wmb(); udelay ( 10000 ); /* Reset both MACs */ save_port = efab->port; efab->port = 0; mentormac_reset ( efab, 1 ); efab->port = 1; mentormac_reset ( efab, 1 ); /* Reset both PHYs */ ef1002_readl ( efab, ®, EF1_CTR_GEN_STATUS0_REG ); EFAB_SET_DWORD_FIELD ( reg, EF1_MAC_RESET, 1 ); ef1002_writel ( efab, ®, EF1_CTR_GEN_STATUS0_REG ); udelay ( 10000 ); EFAB_SET_DWORD_FIELD ( reg, EF1_MAC_RESET, 0 ); ef1002_writel ( efab, ®, EF1_CTR_GEN_STATUS0_REG ); udelay ( 10000 ); /* Take MACs out of reset */ efab->port = 0; mentormac_reset ( efab, 0 ); efab->port = 1; mentormac_reset ( efab, 0 ); efab->port = save_port; /* Give PHY time to wake up. It takes a while. */ sleep ( 2 ); /* Attach I2C bus */ ef1002_init_eeprom ( efab ); return 1; } /** * Read MAC address from EEPROM * */ static int ef1002_read_eeprom ( struct efab_nic *efab ) { struct i2c_interface *i2c = &efab->ef1002_i2c.i2c; struct i2c_device *i2cdev = &efab->ef1002_eeprom; return ( i2c->read ( i2c, i2cdev, EF1_EEPROM_HWADDR_OFFSET, efab->mac_addr, sizeof ( efab->mac_addr ) ) == 0); } /** RX descriptor */ typedef efab_qword_t ef1002_rx_desc_t; /** * Build RX descriptor * */ static void ef1002_build_rx_desc ( struct efab_nic *efab, struct efab_rx_buf *rx_buf ) { ef1002_rx_desc_t rxd; EFAB_POPULATE_QWORD_3 ( rxd, EF1_RX_KER_EVQ, 0, EF1_RX_KER_IDX, rx_buf->id, EF1_RX_KER_BUF_ADR, virt_to_bus ( rx_buf->addr ) ); ef1002_writel ( efab, &rxd.dword[0], EF1_RX_DESC_FIFO + 0 ); ef1002_writel ( efab, &rxd.dword[1], EF1_RX_DESC_FIFO + 4 ); udelay ( 10 ); } /** * Update RX descriptor write pointer * */ static void ef1002_notify_rx_desc ( struct efab_nic *efab __unused ) { /* Nothing to do */ } /** TX descriptor */ typedef efab_oword_t ef1002_tx_desc_t; /** * Build TX descriptor * */ static void ef1002_build_tx_desc ( struct efab_nic *efab, struct efab_tx_buf *tx_buf ) { ef1002_tx_desc_t txd; EFAB_POPULATE_OWORD_7 ( txd, EF1_TX_KER_EVQ, 0, EF1_TX_KER_IDX, tx_buf->id, EF1_TX_KER_MODE, 0 /* IP mode */, EF1_TX_KER_PORT, efab->port, EF1_TX_KER_CONT, 0, EF1_TX_KER_BYTE_CNT, tx_buf->len, EF1_TX_KER_BUF_ADR, virt_to_bus ( tx_buf->addr ) ); ef1002_writel ( efab, &txd.dword[0], EF1_TX_DESC_FIFO + 0 ); ef1002_writel ( efab, &txd.dword[1], EF1_TX_DESC_FIFO + 4 ); ef1002_writel ( efab, &txd.dword[2], EF1_TX_DESC_FIFO + 8 ); udelay ( 10 ); } /** * Update TX descriptor write pointer * */ static void ef1002_notify_tx_desc ( struct efab_nic *efab __unused ) { /* Nothing to do */ } /** An event */ typedef efab_qword_t ef1002_event_t; /** * Retrieve event from event queue * */ static int ef1002_fetch_event ( struct efab_nic *efab, struct efab_event *event ) { efab_dword_t reg; int ev_code; int words; /* Check event FIFO depth */ ef1002_readl_silent ( efab, ®, EF1_EVENT_FIFO_COUNT_REG ); words = EFAB_DWORD_FIELD ( reg, EF1_EV_COUNT ); if ( ! words ) return 0; /* Read event data */ ef1002_readl ( efab, ®, EF1_EVENT_FIFO_REG ); DBG ( "Event is " EFAB_DWORD_FMT "\n", EFAB_DWORD_VAL ( reg ) ); /* Decode event */ ev_code = EFAB_DWORD_FIELD ( reg, EF1_EV_CODE ); switch ( ev_code ) { case EF1_TX_EV_DECODE: event->type = EFAB_EV_TX; break; case EF1_RX_EV_DECODE: event->type = EFAB_EV_RX; event->rx_id = EFAB_DWORD_FIELD ( reg, EF1_RX_EV_IDX ); /* RX len not available via event FIFO */ event->rx_len = ETH_FRAME_LEN; break; default: printf ( "Unknown event type %d\n", ev_code ); event->type = EFAB_EV_NONE; } /* Clear any pending interrupts */ ef1002_readl ( efab, ®, EF1_IRQ_SRC_REG ); return 1; } /** * Enable/disable interrupts * */ static void ef1002_mask_irq ( struct efab_nic *efab, int enabled ) { efab_dword_t irq_mask; EFAB_POPULATE_DWORD_2 ( irq_mask, EF1_IRQ_SERR, enabled, EF1_IRQ_EVQ, enabled ); ef1002_writel ( efab, &irq_mask, EF1_IRQ_MASK_REG ); } /** * Generate interrupt * */ static void ef1002_generate_irq ( struct efab_nic *efab ) { ef1002_event_t test_event; EFAB_POPULATE_QWORD_1 ( test_event, EF1_EV_CODE, EF1_DRV_GEN_EV_DECODE ); ef1002_writel ( efab, &test_event.dword[0], EF1_EVT3_REG ); } /** * Write dword to an EF1002 MAC register * */ static void ef1002_mac_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { ef1002_writel ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) ); } /** * Read dword from an EF1002 MAC register * */ static void ef1002_mac_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { ef1002_readl ( efab, value, EF1002_MAC_REG ( efab, mac_reg ) ); } /** * Initialise MAC * */ static int ef1002_init_mac ( struct efab_nic *efab ) { static struct efab_mentormac_parameters ef1002_mentormac_params = { .gmf_cfgfrth = 0x13, .gmf_cfgftth = 0x10, .gmf_cfghwmft = 0x555, .gmf_cfghwm = 0x2a, .gmf_cfglwm = 0x15, }; efab_dword_t reg; unsigned int mac_clk; /* Initialise PHY */ alaska_init ( efab ); /* Initialise MAC */ mentormac_init ( efab, &ef1002_mentormac_params ); /* Write Level 5 watermark register */ EFAB_POPULATE_DWORD_1 ( reg, EF1_L5WM, 0x10040000 ); efab->op->mac_writel ( efab, ®, EF1_GMF_L5WM_REG_MAC ); udelay ( 10 ); /* Set MAC clock speed */ ef1002_readl ( efab, ®, EF1_GM_MAC_CLK_REG ); mac_clk = ( efab->link_options & LPA_1000 ) ? 0 : 1; if ( efab->port == 0 ) { EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT0_MAC_CLK, mac_clk ); } else { EFAB_SET_DWORD_FIELD ( reg, EF1_GM_PORT1_MAC_CLK, mac_clk ); } ef1002_writel ( efab, ®, EF1_GM_MAC_CLK_REG ); udelay ( 10 ); return 1; } /** MDIO write */ static void ef1002_mdio_write ( struct efab_nic *efab, int location, int value ) { mentormac_mdio_write ( efab, efab->port + 2, location, value ); } /** MDIO read */ static int ef1002_mdio_read ( struct efab_nic *efab, int location ) { return mentormac_mdio_read ( efab, efab->port + 2, location ); } static struct efab_operations ef1002_operations = { .get_membase = ef1002_get_membase, .reset = ef1002_reset, .init_nic = ef1002_init_nic, .read_eeprom = ef1002_read_eeprom, .build_rx_desc = ef1002_build_rx_desc, .notify_rx_desc = ef1002_notify_rx_desc, .build_tx_desc = ef1002_build_tx_desc, .notify_tx_desc = ef1002_notify_tx_desc, .fetch_event = ef1002_fetch_event, .mask_irq = ef1002_mask_irq, .generate_irq = ef1002_generate_irq, .mac_writel = ef1002_mac_writel, .mac_readl = ef1002_mac_readl, .init_mac = ef1002_init_mac, .mdio_write = ef1002_mdio_write, .mdio_read = ef1002_mdio_read, }; /************************************************************************** * * Falcon routines * ************************************************************************** */ /* I/O BAR address register */ #define FCN_IOM_IND_ADR_REG 0x0 /* I/O BAR data register */ #define FCN_IOM_IND_DAT_REG 0x4 /* Interrupt enable register */ #define FCN_INT_EN_REG_KER 0x0010 #define FCN_MEM_PERR_INT_EN_KER_LBN 5 #define FCN_MEM_PERR_INT_EN_KER_WIDTH 1 #define FCN_KER_INT_CHAR_LBN 4 #define FCN_KER_INT_CHAR_WIDTH 1 #define FCN_KER_INT_KER_LBN 3 #define FCN_KER_INT_KER_WIDTH 1 #define FCN_ILL_ADR_ERR_INT_EN_KER_LBN 2 #define FCN_ILL_ADR_ERR_INT_EN_KER_WIDTH 1 #define FCN_SRM_PERR_INT_EN_KER_LBN 1 #define FCN_SRM_PERR_INT_EN_KER_WIDTH 1 #define FCN_DRV_INT_EN_KER_LBN 0 #define FCN_DRV_INT_EN_KER_WIDTH 1 /* Interrupt status register */ #define FCN_INT_ADR_REG_KER 0x0030 #define FCN_INT_ADR_KER_LBN 0 #define FCN_INT_ADR_KER_WIDTH EFAB_DMA_TYPE_WIDTH ( 64 ) /* Interrupt acknowledge register */ #define FCN_INT_ACK_KER_REG 0x0050 /* SPI host command register */ #define FCN_EE_SPI_HCMD_REG_KER 0x0100 #define FCN_EE_SPI_HCMD_CMD_EN_LBN 31 #define FCN_EE_SPI_HCMD_CMD_EN_WIDTH 1 #define FCN_EE_WR_TIMER_ACTIVE_LBN 28 #define FCN_EE_WR_TIMER_ACTIVE_WIDTH 1 #define FCN_EE_SPI_HCMD_SF_SEL_LBN 24 #define FCN_EE_SPI_HCMD_SF_SEL_WIDTH 1 #define FCN_EE_SPI_EEPROM 0 #define FCN_EE_SPI_FLASH 1 #define FCN_EE_SPI_HCMD_DABCNT_LBN 16 #define FCN_EE_SPI_HCMD_DABCNT_WIDTH 5 #define FCN_EE_SPI_HCMD_READ_LBN 15 #define FCN_EE_SPI_HCMD_READ_WIDTH 1 #define FCN_EE_SPI_READ 1 #define FCN_EE_SPI_WRITE 0 #define FCN_EE_SPI_HCMD_DUBCNT_LBN 12 #define FCN_EE_SPI_HCMD_DUBCNT_WIDTH 2 #define FCN_EE_SPI_HCMD_ADBCNT_LBN 8 #define FCN_EE_SPI_HCMD_ADBCNT_WIDTH 2 #define FCN_EE_SPI_HCMD_ENC_LBN 0 #define FCN_EE_SPI_HCMD_ENC_WIDTH 8 /* SPI host address register */ #define FCN_EE_SPI_HADR_REG_KER 0x0110 #define FCN_EE_SPI_HADR_DUBYTE_LBN 24 #define FCN_EE_SPI_HADR_DUBYTE_WIDTH 8 #define FCN_EE_SPI_HADR_ADR_LBN 0 #define FCN_EE_SPI_HADR_ADR_WIDTH 24 /* SPI host data register */ #define FCN_EE_SPI_HDATA_REG_KER 0x0120 #define FCN_EE_SPI_HDATA3_LBN 96 #define FCN_EE_SPI_HDATA3_WIDTH 32 #define FCN_EE_SPI_HDATA2_LBN 64 #define FCN_EE_SPI_HDATA2_WIDTH 32 #define FCN_EE_SPI_HDATA1_LBN 32 #define FCN_EE_SPI_HDATA1_WIDTH 32 #define FCN_EE_SPI_HDATA0_LBN 0 #define FCN_EE_SPI_HDATA0_WIDTH 32 /* GPIO control register */ #define FCN_GPIO_CTL_REG_KER 0x0210 #define FCN_FLASH_PRESENT_LBN 7 #define FCN_FLASH_PRESENT_WIDTH 1 #define FCN_EEPROM_PRESENT_LBN 6 #define FCN_EEPROM_PRESENT_WIDTH 1 /* Global control register */ #define FCN_GLB_CTL_REG_KER 0x0220 #define FCN_EXT_PHY_RST_CTL_LBN 63 #define FCN_EXT_PHY_RST_CTL_WIDTH 1 #define FCN_PCIE_SD_RST_CTL_LBN 61 #define FCN_PCIE_SD_RST_CTL_WIDTH 1 #define FCN_PCIX_RST_CTL_LBN 60 #define FCN_PCIX_RST_CTL_WIDTH 1 #define FCN_RST_EXT_PHY_LBN 31 #define FCN_RST_EXT_PHY_WIDTH 1 #define FCN_INT_RST_DUR_LBN 4 #define FCN_INT_RST_DUR_WIDTH 3 #define FCN_EXT_PHY_RST_DUR_LBN 1 #define FCN_EXT_PHY_RST_DUR_WIDTH 3 #define FCN_SWRST_LBN 0 #define FCN_SWRST_WIDTH 1 #define FCN_INCLUDE_IN_RESET 0 #define FCN_EXCLUDE_FROM_RESET 1 /* Timer table for kernel access */ #define FCN_TIMER_CMD_REG_KER 0x420 #define FCN_TIMER_MODE_LBN 12 #define FCN_TIMER_MODE_WIDTH 2 #define FCN_TIMER_MODE_DIS 0 #define FCN_TIMER_MODE_INT_HLDOFF 1 #define FCN_TIMER_VAL_LBN 0 #define FCN_TIMER_VAL_WIDTH 12 /* SRAM receive descriptor cache configuration register */ #define FCN_SRM_RX_DC_CFG_REG_KER 0x610 #define FCN_SRM_RX_DC_BASE_ADR_LBN 0 #define FCN_SRM_RX_DC_BASE_ADR_WIDTH 21 /* SRAM transmit descriptor cache configuration register */ #define FCN_SRM_TX_DC_CFG_REG_KER 0x620 #define FCN_SRM_TX_DC_BASE_ADR_LBN 0 #define FCN_SRM_TX_DC_BASE_ADR_WIDTH 21 /* Receive filter control register */ #define FCN_RX_FILTER_CTL_REG_KER 0x810 #define FCN_NUM_KER_LBN 24 #define FCN_NUM_KER_WIDTH 2 /* Receive descriptor update register */ #define FCN_RX_DESC_UPD_REG_KER 0x0830 #define FCN_RX_DESC_WPTR_LBN 96 #define FCN_RX_DESC_WPTR_WIDTH 12 #define FCN_RX_DESC_UPD_REG_KER_DWORD ( FCN_RX_DESC_UPD_REG_KER + 12 ) #define FCN_RX_DESC_WPTR_DWORD_LBN 0 #define FCN_RX_DESC_WPTR_DWORD_WIDTH 12 /* Receive descriptor cache configuration register */ #define FCN_RX_DC_CFG_REG_KER 0x840 #define FCN_RX_DC_SIZE_LBN 0 #define FCN_RX_DC_SIZE_WIDTH 2 /* Transmit descriptor update register */ #define FCN_TX_DESC_UPD_REG_KER 0x0a10 #define FCN_TX_DESC_WPTR_LBN 96 #define FCN_TX_DESC_WPTR_WIDTH 12 #define FCN_TX_DESC_UPD_REG_KER_DWORD ( FCN_TX_DESC_UPD_REG_KER + 12 ) #define FCN_TX_DESC_WPTR_DWORD_LBN 0 #define FCN_TX_DESC_WPTR_DWORD_WIDTH 12 /* Transmit descriptor cache configuration register */ #define FCN_TX_DC_CFG_REG_KER 0xa20 #define FCN_TX_DC_SIZE_LBN 0 #define FCN_TX_DC_SIZE_WIDTH 2 /* PHY management transmit data register */ #define FCN_MD_TXD_REG_KER 0xc00 #define FCN_MD_TXD_LBN 0 #define FCN_MD_TXD_WIDTH 16 /* PHY management receive data register */ #define FCN_MD_RXD_REG_KER 0xc10 #define FCN_MD_RXD_LBN 0 #define FCN_MD_RXD_WIDTH 16 /* PHY management configuration & status register */ #define FCN_MD_CS_REG_KER 0xc20 #define FCN_MD_GC_LBN 4 #define FCN_MD_GC_WIDTH 1 #define FCN_MD_RIC_LBN 2 #define FCN_MD_RIC_WIDTH 1 #define FCN_MD_WRC_LBN 0 #define FCN_MD_WRC_WIDTH 1 /* PHY management PHY address register */ #define FCN_MD_PHY_ADR_REG_KER 0xc30 #define FCN_MD_PHY_ADR_LBN 0 #define FCN_MD_PHY_ADR_WIDTH 16 /* PHY management ID register */ #define FCN_MD_ID_REG_KER 0xc40 #define FCN_MD_PRT_ADR_LBN 11 #define FCN_MD_PRT_ADR_WIDTH 5 #define FCN_MD_DEV_ADR_LBN 6 #define FCN_MD_DEV_ADR_WIDTH 5 /* PHY management status & mask register */ #define FCN_MD_STAT_REG_KER 0xc50 #define FCN_MD_BSY_LBN 0 #define FCN_MD_BSY_WIDTH 1 /* Port 0 and 1 MAC control registers */ #define FCN_MAC0_CTRL_REG_KER 0xc80 #define FCN_MAC1_CTRL_REG_KER 0xc90 #define FCN_MAC_XOFF_VAL_LBN 16 #define FCN_MAC_XOFF_VAL_WIDTH 16 #define FCN_MAC_BCAD_ACPT_LBN 4 #define FCN_MAC_BCAD_ACPT_WIDTH 1 #define FCN_MAC_UC_PROM_LBN 3 #define FCN_MAC_UC_PROM_WIDTH 1 #define FCN_MAC_LINK_STATUS_LBN 2 #define FCN_MAC_LINK_STATUS_WIDTH 1 #define FCN_MAC_SPEED_LBN 0 #define FCN_MAC_SPEED_WIDTH 2 /* XGMAC global configuration - port 0*/ #define FCN_XM_GLB_CFG_REG_P0_KER 0x1220 #define FCN_XM_RX_STAT_EN_LBN 11 #define FCN_XM_RX_STAT_EN_WIDTH 1 #define FCN_XM_TX_STAT_EN_LBN 10 #define FCN_XM_TX_STAT_EN_WIDTH 1 #define FCN_XM_CUT_THRU_MODE_LBN 7 #define FCN_XM_CUT_THRU_MODE_WIDTH 1 #define FCN_XM_RX_JUMBO_MODE_LBN 6 #define FCN_XM_RX_JUMBO_MODE_WIDTH 1 /* XGMAC transmit configuration - port 0 */ #define FCN_XM_TX_CFG_REG_P0_KER 0x1230 #define FCN_XM_IPG_LBN 16 #define FCN_XM_IPG_WIDTH 4 #define FCN_XM_WTF_DOES_THIS_DO_LBN 9 #define FCN_XM_WTF_DOES_THIS_DO_WIDTH 1 #define FCN_XM_TXCRC_LBN 8 #define FCN_XM_TXCRC_WIDTH 1 #define FCN_XM_AUTO_PAD_LBN 5 #define FCN_XM_AUTO_PAD_WIDTH 1 #define FCN_XM_TX_PRMBL_LBN 2 #define FCN_XM_TX_PRMBL_WIDTH 1 #define FCN_XM_TXEN_LBN 1 #define FCN_XM_TXEN_WIDTH 1 /* XGMAC receive configuration - port 0 */ #define FCN_XM_RX_CFG_REG_P0_KER 0x1240 #define FCN_XM_PASS_CRC_ERR_LBN 25 #define FCN_XM_PASS_CRC_ERR_WIDTH 1 #define FCN_XM_AUTO_DEPAD_LBN 8 #define FCN_XM_AUTO_DEPAD_WIDTH 1 #define FCN_XM_RXEN_LBN 1 #define FCN_XM_RXEN_WIDTH 1 /* Receive descriptor pointer table */ #define FCN_RX_DESC_PTR_TBL_KER 0x11800 #define FCN_RX_DESCQ_BUF_BASE_ID_LBN 36 #define FCN_RX_DESCQ_BUF_BASE_ID_WIDTH 20 #define FCN_RX_DESCQ_EVQ_ID_LBN 24 #define FCN_RX_DESCQ_EVQ_ID_WIDTH 12 #define FCN_RX_DESCQ_OWNER_ID_LBN 10 #define FCN_RX_DESCQ_OWNER_ID_WIDTH 14 #define FCN_RX_DESCQ_SIZE_LBN 3 #define FCN_RX_DESCQ_SIZE_WIDTH 2 #define FCN_RX_DESCQ_SIZE_4K 3 #define FCN_RX_DESCQ_SIZE_2K 2 #define FCN_RX_DESCQ_SIZE_1K 1 #define FCN_RX_DESCQ_SIZE_512 0 #define FCN_RX_DESCQ_TYPE_LBN 2 #define FCN_RX_DESCQ_TYPE_WIDTH 1 #define FCN_RX_DESCQ_JUMBO_LBN 1 #define FCN_RX_DESCQ_JUMBO_WIDTH 1 #define FCN_RX_DESCQ_EN_LBN 0 #define FCN_RX_DESCQ_EN_WIDTH 1 /* Transmit descriptor pointer table */ #define FCN_TX_DESC_PTR_TBL_KER 0x11900 #define FCN_TX_DESCQ_EN_LBN 88 #define FCN_TX_DESCQ_EN_WIDTH 1 #define FCN_TX_DESCQ_BUF_BASE_ID_LBN 36 #define FCN_TX_DESCQ_BUF_BASE_ID_WIDTH 20 #define FCN_TX_DESCQ_EVQ_ID_LBN 24 #define FCN_TX_DESCQ_EVQ_ID_WIDTH 12 #define FCN_TX_DESCQ_OWNER_ID_LBN 10 #define FCN_TX_DESCQ_OWNER_ID_WIDTH 14 #define FCN_TX_DESCQ_SIZE_LBN 3 #define FCN_TX_DESCQ_SIZE_WIDTH 2 #define FCN_TX_DESCQ_SIZE_4K 3 #define FCN_TX_DESCQ_SIZE_2K 2 #define FCN_TX_DESCQ_SIZE_1K 1 #define FCN_TX_DESCQ_SIZE_512 0 #define FCN_TX_DESCQ_TYPE_LBN 1 #define FCN_TX_DESCQ_TYPE_WIDTH 2 #define FCN_TX_DESCQ_FLUSH_LBN 0 #define FCN_TX_DESCQ_FLUSH_WIDTH 1 /* Event queue pointer */ #define FCN_EVQ_PTR_TBL_KER 0x11a00 #define FCN_EVQ_EN_LBN 23 #define FCN_EVQ_EN_WIDTH 1 #define FCN_EVQ_SIZE_LBN 20 #define FCN_EVQ_SIZE_WIDTH 3 #define FCN_EVQ_SIZE_32K 6 #define FCN_EVQ_SIZE_16K 5 #define FCN_EVQ_SIZE_8K 4 #define FCN_EVQ_SIZE_4K 3 #define FCN_EVQ_SIZE_2K 2 #define FCN_EVQ_SIZE_1K 1 #define FCN_EVQ_SIZE_512 0 #define FCN_EVQ_BUF_BASE_ID_LBN 0 #define FCN_EVQ_BUF_BASE_ID_WIDTH 20 /* Event queue read pointer */ #define FCN_EVQ_RPTR_REG_KER 0x11b00 #define FCN_EVQ_RPTR_LBN 0 #define FCN_EVQ_RPTR_WIDTH 14 #define FCN_EVQ_RPTR_REG_KER_DWORD ( FCN_EVQ_RPTR_REG_KER + 0 ) #define FCN_EVQ_RPTR_DWORD_LBN 0 #define FCN_EVQ_RPTR_DWORD_WIDTH 14 /* Special buffer descriptors */ #define FCN_BUF_FULL_TBL_KER 0x18000 #define FCN_IP_DAT_BUF_SIZE_LBN 50 #define FCN_IP_DAT_BUF_SIZE_WIDTH 1 #define FCN_IP_DAT_BUF_SIZE_8K 1 #define FCN_IP_DAT_BUF_SIZE_4K 0 #define FCN_BUF_ADR_FBUF_LBN 14 #define FCN_BUF_ADR_FBUF_WIDTH 34 #define FCN_BUF_OWNER_ID_FBUF_LBN 0 #define FCN_BUF_OWNER_ID_FBUF_WIDTH 14 /* MAC registers */ #define FALCON_MAC_REGBANK 0xe00 #define FALCON_MAC_REGBANK_SIZE 0x200 #define FALCON_MAC_REG_SIZE 0x10 /** Offset of a MAC register within Falcon */ #define FALCON_MAC_REG( efab, mac_reg ) \ ( FALCON_MAC_REGBANK + \ ( (efab)->port * FALCON_MAC_REGBANK_SIZE ) + \ ( (mac_reg) * FALCON_MAC_REG_SIZE ) ) #define FCN_MAC_DATA_LBN 0 #define FCN_MAC_DATA_WIDTH 32 /* Transmit descriptor */ #define FCN_TX_KER_PORT_LBN 63 #define FCN_TX_KER_PORT_WIDTH 1 #define FCN_TX_KER_BYTE_CNT_LBN 48 #define FCN_TX_KER_BYTE_CNT_WIDTH 14 #define FCN_TX_KER_BUF_ADR_LBN 0 #define FCN_TX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 ) /* Receive descriptor */ #define FCN_RX_KER_BUF_SIZE_LBN 48 #define FCN_RX_KER_BUF_SIZE_WIDTH 14 #define FCN_RX_KER_BUF_ADR_LBN 0 #define FCN_RX_KER_BUF_ADR_WIDTH EFAB_DMA_TYPE_WIDTH ( 46 ) /* Event queue entries */ #define FCN_EV_CODE_LBN 60 #define FCN_EV_CODE_WIDTH 4 #define FCN_RX_IP_EV_DECODE 0 #define FCN_TX_IP_EV_DECODE 2 #define FCN_DRIVER_EV_DECODE 5 /* Receive events */ #define FCN_RX_PORT_LBN 30 #define FCN_RX_PORT_WIDTH 1 #define FCN_RX_EV_BYTE_CNT_LBN 16 #define FCN_RX_EV_BYTE_CNT_WIDTH 14 #define FCN_RX_EV_DESC_PTR_LBN 0 #define FCN_RX_EV_DESC_PTR_WIDTH 12 /* Transmit events */ #define FCN_TX_EV_DESC_PTR_LBN 0 #define FCN_TX_EV_DESC_PTR_WIDTH 12 /* Fixed special buffer numbers to use */ #define FALCON_EVQ_ID 0 #define FALCON_TXD_ID 1 #define FALCON_RXD_ID 2 #if FALCON_USE_IO_BAR /* Write dword via the I/O BAR */ static inline void _falcon_writel ( struct efab_nic *efab, uint32_t value, unsigned int reg ) { outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG ); outl ( value, efab->iobase + FCN_IOM_IND_DAT_REG ); } /* Read dword via the I/O BAR */ static inline uint32_t _falcon_readl ( struct efab_nic *efab, unsigned int reg ) { outl ( reg, efab->iobase + FCN_IOM_IND_ADR_REG ); return inl ( efab->iobase + FCN_IOM_IND_DAT_REG ); } #else /* FALCON_USE_IO_BAR */ #define _falcon_writel( efab, value, reg ) \ writel ( (value), (efab)->membase + (reg) ) #define _falcon_readl( efab, reg ) readl ( (efab)->membase + (reg) ) #endif /* FALCON_USE_IO_BAR */ /** * Write to a Falcon register * */ static inline void falcon_write ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg ) { EFAB_REGDUMP ( "Writing register %x with " EFAB_OWORD_FMT "\n", reg, EFAB_OWORD_VAL ( *value ) ); _falcon_writel ( efab, value->u32[0], reg + 0 ); _falcon_writel ( efab, value->u32[1], reg + 4 ); _falcon_writel ( efab, value->u32[2], reg + 8 ); _falcon_writel ( efab, value->u32[3], reg + 12 ); wmb(); } /** * Write to Falcon SRAM * */ static inline void falcon_write_sram ( struct efab_nic *efab, efab_qword_t *value, unsigned int index ) { unsigned int reg = ( FCN_BUF_FULL_TBL_KER + ( index * sizeof ( *value ) ) ); EFAB_REGDUMP ( "Writing SRAM register %x with " EFAB_QWORD_FMT "\n", reg, EFAB_QWORD_VAL ( *value ) ); _falcon_writel ( efab, value->u32[0], reg + 0 ); _falcon_writel ( efab, value->u32[1], reg + 4 ); wmb(); } /** * Write dword to Falcon register that allows partial writes * */ static inline void falcon_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { EFAB_REGDUMP ( "Writing partial register %x with " EFAB_DWORD_FMT "\n", reg, EFAB_DWORD_VAL ( *value ) ); _falcon_writel ( efab, value->u32[0], reg ); } /** * Read from a Falcon register * */ static inline void falcon_read ( struct efab_nic *efab, efab_oword_t *value, unsigned int reg ) { value->u32[0] = _falcon_readl ( efab, reg + 0 ); value->u32[1] = _falcon_readl ( efab, reg + 4 ); value->u32[2] = _falcon_readl ( efab, reg + 8 ); value->u32[3] = _falcon_readl ( efab, reg + 12 ); EFAB_REGDUMP ( "Read from register %x, got " EFAB_OWORD_FMT "\n", reg, EFAB_OWORD_VAL ( *value ) ); } /** * Read from Falcon SRAM * */ static inline void falcon_read_sram ( struct efab_nic *efab, efab_qword_t *value, unsigned int index ) { unsigned int reg = ( FCN_BUF_FULL_TBL_KER + ( index * sizeof ( *value ) ) ); value->u32[0] = _falcon_readl ( efab, reg + 0 ); value->u32[1] = _falcon_readl ( efab, reg + 4 ); EFAB_REGDUMP ( "Read from SRAM register %x, got " EFAB_QWORD_FMT "\n", reg, EFAB_QWORD_VAL ( *value ) ); } /** * Read dword from a portion of a Falcon register * */ static inline void falcon_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int reg ) { value->u32[0] = _falcon_readl ( efab, reg ); EFAB_REGDUMP ( "Read from register %x, got " EFAB_DWORD_FMT "\n", reg, EFAB_DWORD_VAL ( *value ) ); } /** * Verified write to Falcon SRAM * */ static inline void falcon_write_sram_verify ( struct efab_nic *efab, efab_qword_t *value, unsigned int index ) { efab_qword_t verify; falcon_write_sram ( efab, value, index ); udelay ( 1000 ); falcon_read_sram ( efab, &verify, index ); if ( memcmp ( &verify, value, sizeof ( verify ) ) != 0 ) { printf ( "SRAM index %x failure: wrote " EFAB_QWORD_FMT " got " EFAB_QWORD_FMT "\n", index, EFAB_QWORD_VAL ( *value ), EFAB_QWORD_VAL ( verify ) ); } } /** * Get memory base * */ static void falcon_get_membase ( struct efab_nic *efab ) { unsigned long membase_phys; membase_phys = pci_bar_start ( efab->pci, PCI_BASE_ADDRESS_2 ); efab->membase = ioremap ( membase_phys, 0x20000 ); } #define FCN_DUMP_REG( efab, _reg ) do { \ efab_oword_t reg; \ falcon_read ( efab, ®, _reg ); \ printf ( #_reg " = " EFAB_OWORD_FMT "\n", \ EFAB_OWORD_VAL ( reg ) ); \ } while ( 0 ); #define FCN_DUMP_MAC_REG( efab, _mac_reg ) do { \ efab_dword_t reg; \ efab->op->mac_readl ( efab, ®, _mac_reg ); \ printf ( #_mac_reg " = " EFAB_DWORD_FMT "\n", \ EFAB_DWORD_VAL ( reg ) ); \ } while ( 0 ); /** * Dump register contents (for debugging) * * Marked as static inline so that it will not be compiled in if not * used. */ static inline void falcon_dump_regs ( struct efab_nic *efab ) { FCN_DUMP_REG ( efab, FCN_INT_EN_REG_KER ); FCN_DUMP_REG ( efab, FCN_INT_ADR_REG_KER ); FCN_DUMP_REG ( efab, FCN_GLB_CTL_REG_KER ); FCN_DUMP_REG ( efab, FCN_TIMER_CMD_REG_KER ); FCN_DUMP_REG ( efab, FCN_SRM_RX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_SRM_TX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_RX_FILTER_CTL_REG_KER ); FCN_DUMP_REG ( efab, FCN_RX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_TX_DC_CFG_REG_KER ); FCN_DUMP_REG ( efab, FCN_MAC0_CTRL_REG_KER ); FCN_DUMP_REG ( efab, FCN_MAC1_CTRL_REG_KER ); FCN_DUMP_REG ( efab, FCN_XM_GLB_CFG_REG_P0_KER ); FCN_DUMP_REG ( efab, FCN_XM_TX_CFG_REG_P0_KER ); FCN_DUMP_REG ( efab, FCN_XM_RX_CFG_REG_P0_KER ); FCN_DUMP_REG ( efab, FCN_RX_DESC_PTR_TBL_KER ); FCN_DUMP_REG ( efab, FCN_TX_DESC_PTR_TBL_KER ); FCN_DUMP_REG ( efab, FCN_EVQ_PTR_TBL_KER ); FCN_DUMP_MAC_REG ( efab, GM_CFG1_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_CFG2_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_MAX_FLEN_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_MII_MGMT_CFG_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_ADR1_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GM_ADR2_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG0_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG1_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG2_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG3_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG4_REG_MAC ); FCN_DUMP_MAC_REG ( efab, GMF_CFG5_REG_MAC ); } /** * Create special buffer * */ static void falcon_create_special_buffer ( struct efab_nic *efab, void *addr, unsigned int index ) { efab_qword_t buf_desc; unsigned long dma_addr; memset ( addr, 0, 4096 ); dma_addr = virt_to_bus ( addr ); EFAB_ASSERT ( ( dma_addr & ( EFAB_BUF_ALIGN - 1 ) ) == 0 ); EFAB_POPULATE_QWORD_3 ( buf_desc, FCN_IP_DAT_BUF_SIZE, FCN_IP_DAT_BUF_SIZE_4K, FCN_BUF_ADR_FBUF, ( dma_addr >> 12 ), FCN_BUF_OWNER_ID_FBUF, 0 ); falcon_write_sram_verify ( efab, &buf_desc, index ); } /** * Update event queue read pointer * */ static void falcon_eventq_read_ack ( struct efab_nic *efab ) { efab_dword_t reg; EFAB_ASSERT ( efab->eventq_read_ptr < EFAB_EVQ_SIZE ); EFAB_POPULATE_DWORD_1 ( reg, FCN_EVQ_RPTR_DWORD, efab->eventq_read_ptr ); falcon_writel ( efab, ®, FCN_EVQ_RPTR_REG_KER_DWORD ); } /** * Reset device * */ static int falcon_reset ( struct efab_nic *efab ) { efab_oword_t glb_ctl_reg_ker; /* Initiate software reset */ EFAB_POPULATE_OWORD_5 ( glb_ctl_reg_ker, FCN_EXT_PHY_RST_CTL, FCN_EXCLUDE_FROM_RESET, FCN_PCIE_SD_RST_CTL, FCN_EXCLUDE_FROM_RESET, FCN_PCIX_RST_CTL, FCN_EXCLUDE_FROM_RESET, FCN_INT_RST_DUR, 0x7 /* datasheet */, FCN_SWRST, 1 ); falcon_write ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER ); /* Allow 20ms for reset */ mdelay ( 20 ); /* Check for device reset complete */ falcon_read ( efab, &glb_ctl_reg_ker, FCN_GLB_CTL_REG_KER ); if ( EFAB_OWORD_FIELD ( glb_ctl_reg_ker, FCN_SWRST ) != 0 ) { printf ( "Reset failed\n" ); return 0; } return 1; } /** * Initialise NIC * */ static int falcon_init_nic ( struct efab_nic *efab ) { efab_oword_t reg; efab_dword_t timer_cmd; /* Set up TX and RX descriptor caches in SRAM */ EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_TX_DC_BASE_ADR, 0x130000 /* recommended in datasheet */ ); falcon_write ( efab, ®, FCN_SRM_TX_DC_CFG_REG_KER ); EFAB_POPULATE_OWORD_1 ( reg, FCN_TX_DC_SIZE, 2 /* 32 descriptors */ ); falcon_write ( efab, ®, FCN_TX_DC_CFG_REG_KER ); EFAB_POPULATE_OWORD_1 ( reg, FCN_SRM_RX_DC_BASE_ADR, 0x100000 /* recommended in datasheet */ ); falcon_write ( efab, ®, FCN_SRM_RX_DC_CFG_REG_KER ); EFAB_POPULATE_OWORD_1 ( reg, FCN_RX_DC_SIZE, 2 /* 32 descriptors */ ); falcon_write ( efab, ®, FCN_RX_DC_CFG_REG_KER ); /* Set number of RSS CPUs */ EFAB_POPULATE_OWORD_1 ( reg, FCN_NUM_KER, 0 ); falcon_write ( efab, ®, FCN_RX_FILTER_CTL_REG_KER ); udelay ( 1000 ); /* Reset the MAC */ mentormac_reset ( efab, 1 ); /* Take MAC out of reset */ mentormac_reset ( efab, 0 ); /* Set up event queue */ falcon_create_special_buffer ( efab, efab->eventq, FALCON_EVQ_ID ); EFAB_POPULATE_OWORD_3 ( reg, FCN_EVQ_EN, 1, FCN_EVQ_SIZE, FCN_EVQ_SIZE_512, FCN_EVQ_BUF_BASE_ID, FALCON_EVQ_ID ); falcon_write ( efab, ®, FCN_EVQ_PTR_TBL_KER ); udelay ( 1000 ); /* Set timer register */ EFAB_POPULATE_DWORD_2 ( timer_cmd, FCN_TIMER_MODE, FCN_TIMER_MODE_DIS, FCN_TIMER_VAL, 0 ); falcon_writel ( efab, &timer_cmd, FCN_TIMER_CMD_REG_KER ); udelay ( 1000 ); /* Initialise event queue read pointer */ falcon_eventq_read_ack ( efab ); /* Set up TX descriptor ring */ falcon_create_special_buffer ( efab, efab->txd, FALCON_TXD_ID ); EFAB_POPULATE_OWORD_5 ( reg, FCN_TX_DESCQ_EN, 1, FCN_TX_DESCQ_BUF_BASE_ID, FALCON_TXD_ID, FCN_TX_DESCQ_EVQ_ID, 0, FCN_TX_DESCQ_SIZE, FCN_TX_DESCQ_SIZE_512, FCN_TX_DESCQ_TYPE, 0 /* kernel queue */ ); falcon_write ( efab, ®, FCN_TX_DESC_PTR_TBL_KER ); /* Set up RX descriptor ring */ falcon_create_special_buffer ( efab, efab->rxd, FALCON_RXD_ID ); EFAB_POPULATE_OWORD_6 ( reg, FCN_RX_DESCQ_BUF_BASE_ID, FALCON_RXD_ID, FCN_RX_DESCQ_EVQ_ID, 0, FCN_RX_DESCQ_SIZE, FCN_RX_DESCQ_SIZE_512, FCN_RX_DESCQ_TYPE, 0 /* kernel queue */, FCN_RX_DESCQ_JUMBO, 1, FCN_RX_DESCQ_EN, 1 ); falcon_write ( efab, ®, FCN_RX_DESC_PTR_TBL_KER ); /* Program INT_ADR_REG_KER */ EFAB_POPULATE_OWORD_1 ( reg, FCN_INT_ADR_KER, virt_to_bus ( &efab->int_ker ) ); falcon_write ( efab, ®, FCN_INT_ADR_REG_KER ); udelay ( 1000 ); return 1; } /** SPI device */ struct efab_spi_device { /** Device ID */ unsigned int device_id; /** Address length (in bytes) */ unsigned int addr_len; /** Read command */ unsigned int read_command; }; /** * Wait for SPI command completion * */ static int falcon_spi_wait ( struct efab_nic *efab ) { efab_oword_t reg; int count; count = 0; do { udelay ( 100 ); falcon_read ( efab, ®, FCN_EE_SPI_HCMD_REG_KER ); if ( EFAB_OWORD_FIELD ( reg, FCN_EE_SPI_HCMD_CMD_EN ) == 0 ) return 1; } while ( ++count < 1000 ); printf ( "Timed out waiting for SPI\n" ); return 0; } /** * Perform SPI read * */ static int falcon_spi_read ( struct efab_nic *efab, struct efab_spi_device *spi, int address, void *data, unsigned int len ) { efab_oword_t reg; /* Program address register */ EFAB_POPULATE_OWORD_1 ( reg, FCN_EE_SPI_HADR_ADR, address ); falcon_write ( efab, ®, FCN_EE_SPI_HADR_REG_KER ); /* Issue read command */ EFAB_POPULATE_OWORD_7 ( reg, FCN_EE_SPI_HCMD_CMD_EN, 1, FCN_EE_SPI_HCMD_SF_SEL, spi->device_id, FCN_EE_SPI_HCMD_DABCNT, len, FCN_EE_SPI_HCMD_READ, FCN_EE_SPI_READ, FCN_EE_SPI_HCMD_DUBCNT, 0, FCN_EE_SPI_HCMD_ADBCNT, spi->addr_len, FCN_EE_SPI_HCMD_ENC, spi->read_command ); falcon_write ( efab, ®, FCN_EE_SPI_HCMD_REG_KER ); /* Wait for read to complete */ if ( ! falcon_spi_wait ( efab ) ) return 0; /* Read data */ falcon_read ( efab, ®, FCN_EE_SPI_HDATA_REG_KER ); memcpy ( data, ®, len ); return 1; } #define SPI_READ_CMD 0x03 #define AT25F1024_ADDR_LEN 3 #define AT25F1024_READ_CMD SPI_READ_CMD #define MC25XX640_ADDR_LEN 2 #define MC25XX640_READ_CMD SPI_READ_CMD /** Falcon Flash SPI device */ static struct efab_spi_device falcon_spi_flash = { .device_id = FCN_EE_SPI_FLASH, .addr_len = AT25F1024_ADDR_LEN, .read_command = AT25F1024_READ_CMD, }; /** Falcon EEPROM SPI device */ static struct efab_spi_device falcon_spi_large_eeprom = { .device_id = FCN_EE_SPI_EEPROM, .addr_len = MC25XX640_ADDR_LEN, .read_command = MC25XX640_READ_CMD, }; /** Offset of MAC address within EEPROM or Flash */ #define FALCON_MAC_ADDRESS_OFFSET(port) ( 0x310 + 0x08 * (port) ) /** * Read MAC address from EEPROM * */ static int falcon_read_eeprom ( struct efab_nic *efab ) { efab_oword_t reg; int has_flash; struct efab_spi_device *spi; /* Determine the SPI device containing the MAC address */ falcon_read ( efab, ®, FCN_GPIO_CTL_REG_KER ); has_flash = EFAB_OWORD_FIELD ( reg, FCN_FLASH_PRESENT ); spi = has_flash ? &falcon_spi_flash : &falcon_spi_large_eeprom; return falcon_spi_read ( efab, spi, FALCON_MAC_ADDRESS_OFFSET ( efab->port ), efab->mac_addr, sizeof ( efab->mac_addr ) ); } /** RX descriptor */ typedef efab_qword_t falcon_rx_desc_t; /** * Build RX descriptor * */ static void falcon_build_rx_desc ( struct efab_nic *efab, struct efab_rx_buf *rx_buf ) { falcon_rx_desc_t *rxd; rxd = ( ( falcon_rx_desc_t * ) efab->rxd ) + rx_buf->id; EFAB_POPULATE_QWORD_2 ( *rxd, FCN_RX_KER_BUF_SIZE, EFAB_DATA_BUF_SIZE, FCN_RX_KER_BUF_ADR, virt_to_bus ( rx_buf->addr ) ); } /** * Update RX descriptor write pointer * */ static void falcon_notify_rx_desc ( struct efab_nic *efab ) { efab_dword_t reg; EFAB_POPULATE_DWORD_1 ( reg, FCN_RX_DESC_WPTR_DWORD, efab->rx_write_ptr ); falcon_writel ( efab, ®, FCN_RX_DESC_UPD_REG_KER_DWORD ); } /** TX descriptor */ typedef efab_qword_t falcon_tx_desc_t; /** * Build TX descriptor * */ static void falcon_build_tx_desc ( struct efab_nic *efab, struct efab_tx_buf *tx_buf ) { falcon_rx_desc_t *txd; txd = ( ( falcon_rx_desc_t * ) efab->txd ) + tx_buf->id; EFAB_POPULATE_QWORD_3 ( *txd, FCN_TX_KER_PORT, efab->port, FCN_TX_KER_BYTE_CNT, tx_buf->len, FCN_TX_KER_BUF_ADR, virt_to_bus ( tx_buf->addr ) ); } /** * Update TX descriptor write pointer * */ static void falcon_notify_tx_desc ( struct efab_nic *efab ) { efab_dword_t reg; EFAB_POPULATE_DWORD_1 ( reg, FCN_TX_DESC_WPTR_DWORD, efab->tx_write_ptr ); falcon_writel ( efab, ®, FCN_TX_DESC_UPD_REG_KER_DWORD ); } /** An event */ typedef efab_qword_t falcon_event_t; /** * Retrieve event from event queue * */ static int falcon_fetch_event ( struct efab_nic *efab, struct efab_event *event ) { falcon_event_t *evt; int ev_code; int rx_port; /* Check for event */ evt = ( ( falcon_event_t * ) efab->eventq ) + efab->eventq_read_ptr; if ( EFAB_QWORD_IS_ZERO ( *evt ) ) { /* No event */ return 0; } DBG ( "Event is " EFAB_QWORD_FMT "\n", EFAB_QWORD_VAL ( *evt ) ); /* Decode event */ ev_code = EFAB_QWORD_FIELD ( *evt, FCN_EV_CODE ); switch ( ev_code ) { case FCN_TX_IP_EV_DECODE: event->type = EFAB_EV_TX; break; case FCN_RX_IP_EV_DECODE: event->type = EFAB_EV_RX; event->rx_id = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_DESC_PTR ); event->rx_len = EFAB_QWORD_FIELD ( *evt, FCN_RX_EV_BYTE_CNT ); rx_port = EFAB_QWORD_FIELD ( *evt, FCN_RX_PORT ); if ( rx_port != efab->port ) { /* Ignore packets on the wrong port. We can't * just set event->type = EFAB_EV_NONE, * because then the descriptor ring won't get * refilled. */ event->rx_len = 0; } break; case FCN_DRIVER_EV_DECODE: /* Ignore start-of-day events */ event->type = EFAB_EV_NONE; break; default: printf ( "Unknown event type %d\n", ev_code ); event->type = EFAB_EV_NONE; } /* Clear event and any pending interrupts */ EFAB_ZERO_QWORD ( *evt ); falcon_writel ( efab, 0, FCN_INT_ACK_KER_REG ); udelay ( 10 ); /* Increment and update event queue read pointer */ efab->eventq_read_ptr = ( ( efab->eventq_read_ptr + 1 ) % EFAB_EVQ_SIZE ); falcon_eventq_read_ack ( efab ); return 1; } /** * Enable/disable/generate interrupt * */ static inline void falcon_interrupts ( struct efab_nic *efab, int enabled, int force ) { efab_oword_t int_en_reg_ker; EFAB_POPULATE_OWORD_2 ( int_en_reg_ker, FCN_KER_INT_KER, force, FCN_DRV_INT_EN_KER, enabled ); falcon_write ( efab, &int_en_reg_ker, FCN_INT_EN_REG_KER ); } /** * Enable/disable interrupts * */ static void falcon_mask_irq ( struct efab_nic *efab, int enabled ) { falcon_interrupts ( efab, enabled, 0 ); if ( enabled ) { /* Events won't trigger interrupts until we do this */ falcon_eventq_read_ack ( efab ); } } /** * Generate interrupt * */ static void falcon_generate_irq ( struct efab_nic *efab ) { falcon_interrupts ( efab, 1, 1 ); } /** * Write dword to a Falcon MAC register * */ static void falcon_mac_writel ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { efab_oword_t temp; EFAB_POPULATE_OWORD_1 ( temp, FCN_MAC_DATA, EFAB_DWORD_FIELD ( *value, FCN_MAC_DATA ) ); falcon_write ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) ); } /** * Read dword from a Falcon MAC register * */ static void falcon_mac_readl ( struct efab_nic *efab, efab_dword_t *value, unsigned int mac_reg ) { efab_oword_t temp; falcon_read ( efab, &temp, FALCON_MAC_REG ( efab, mac_reg ) ); EFAB_POPULATE_DWORD_1 ( *value, FCN_MAC_DATA, EFAB_OWORD_FIELD ( temp, FCN_MAC_DATA ) ); } /** * Initialise MAC * */ static int falcon_init_mac ( struct efab_nic *efab ) { static struct efab_mentormac_parameters falcon_mentormac_params = { .gmf_cfgfrth = 0x12, .gmf_cfgftth = 0x08, .gmf_cfghwmft = 0x1c, .gmf_cfghwm = 0x3f, .gmf_cfglwm = 0xa, }; efab_oword_t reg; int link_speed; /* Initialise PHY */ alaska_init ( efab ); /* Initialise MAC */ mentormac_init ( efab, &falcon_mentormac_params ); /* Configure the Falcon MAC wrapper */ EFAB_POPULATE_OWORD_4 ( reg, FCN_XM_RX_JUMBO_MODE, 0, FCN_XM_CUT_THRU_MODE, 0, FCN_XM_TX_STAT_EN, 1, FCN_XM_RX_STAT_EN, 1); falcon_write ( efab, ®, FCN_XM_GLB_CFG_REG_P0_KER ); EFAB_POPULATE_OWORD_6 ( reg, FCN_XM_TXEN, 1, FCN_XM_TX_PRMBL, 1, FCN_XM_AUTO_PAD, 1, FCN_XM_TXCRC, 1, FCN_XM_WTF_DOES_THIS_DO, 1, FCN_XM_IPG, 0x3 ); falcon_write ( efab, ®, FCN_XM_TX_CFG_REG_P0_KER ); EFAB_POPULATE_OWORD_3 ( reg, FCN_XM_RXEN, 1, FCN_XM_AUTO_DEPAD, 1, FCN_XM_PASS_CRC_ERR, 1 ); falcon_write ( efab, ®, FCN_XM_RX_CFG_REG_P0_KER ); #warning "10G support not yet present" #define LPA_10000 0 if ( efab->link_options & LPA_10000 ) { link_speed = 0x3; } else if ( efab->link_options & LPA_1000 ) { link_speed = 0x2; } else if ( efab->link_options & LPA_100 ) { link_speed = 0x1; } else { link_speed = 0x0; } EFAB_POPULATE_OWORD_5 ( reg, FCN_MAC_XOFF_VAL, 0xffff /* datasheet */, FCN_MAC_BCAD_ACPT, 1, FCN_MAC_UC_PROM, 0, FCN_MAC_LINK_STATUS, 1, FCN_MAC_SPEED, link_speed ); falcon_write ( efab, ®, ( efab->port == 0 ? FCN_MAC0_CTRL_REG_KER : FCN_MAC1_CTRL_REG_KER ) ); return 1; } /** * Wait for GMII access to complete * */ static int falcon_gmii_wait ( struct efab_nic *efab ) { efab_oword_t md_stat; int count; for ( count = 0 ; count < 1000 ; count++ ) { udelay ( 10 ); falcon_read ( efab, &md_stat, FCN_MD_STAT_REG_KER ); if ( EFAB_OWORD_FIELD ( md_stat, FCN_MD_BSY ) == 0 ) return 1; } printf ( "Timed out waiting for GMII\n" ); return 0; } /** MDIO write */ static void falcon_mdio_write ( struct efab_nic *efab, int location, int value ) { int phy_id = efab->port + 2; efab_oword_t reg; #warning "10G PHY access not yet in place" EFAB_TRACE ( "Writing GMII %d register %02x with %04x\n", phy_id, location, value ); /* Check MII not currently being accessed */ if ( ! falcon_gmii_wait ( efab ) ) return; /* Write the address registers */ EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ ); falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER ); udelay ( 10 ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_PRT_ADR, phy_id, FCN_MD_DEV_ADR, location ); falcon_write ( efab, ®, FCN_MD_ID_REG_KER ); udelay ( 10 ); /* Write data */ EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_TXD, value ); falcon_write ( efab, ®, FCN_MD_TXD_REG_KER ); udelay ( 10 ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_WRC, 1, FCN_MD_GC, 1 ); falcon_write ( efab, ®, FCN_MD_CS_REG_KER ); udelay ( 10 ); /* Wait for data to be written */ falcon_gmii_wait ( efab ); } /** MDIO read */ static int falcon_mdio_read ( struct efab_nic *efab, int location ) { int phy_id = efab->port + 2; efab_oword_t reg; int value; /* Check MII not currently being accessed */ if ( ! falcon_gmii_wait ( efab ) ) return 0xffff; /* Write the address registers */ EFAB_POPULATE_OWORD_1 ( reg, FCN_MD_PHY_ADR, 0 /* phy_id ? */ ); falcon_write ( efab, ®, FCN_MD_PHY_ADR_REG_KER ); udelay ( 10 ); EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_PRT_ADR, phy_id, FCN_MD_DEV_ADR, location ); falcon_write ( efab, ®, FCN_MD_ID_REG_KER ); udelay ( 10 ); /* Request data to be read */ EFAB_POPULATE_OWORD_2 ( reg, FCN_MD_RIC, 1, FCN_MD_GC, 1 ); falcon_write ( efab, ®, FCN_MD_CS_REG_KER ); udelay ( 10 ); /* Wait for data to become available */ falcon_gmii_wait ( efab ); /* Read the data */ falcon_read ( efab, ®, FCN_MD_RXD_REG_KER ); value = EFAB_OWORD_FIELD ( reg, FCN_MD_RXD ); EFAB_TRACE ( "Read from GMII %d register %02x, got %04x\n", phy_id, location, value ); return value; } static struct efab_operations falcon_operations = { .get_membase = falcon_get_membase, .reset = falcon_reset, .init_nic = falcon_init_nic, .read_eeprom = falcon_read_eeprom, .build_rx_desc = falcon_build_rx_desc, .notify_rx_desc = falcon_notify_rx_desc, .build_tx_desc = falcon_build_tx_desc, .notify_tx_desc = falcon_notify_tx_desc, .fetch_event = falcon_fetch_event, .mask_irq = falcon_mask_irq, .generate_irq = falcon_generate_irq, .mac_writel = falcon_mac_writel, .mac_readl = falcon_mac_readl, .init_mac = falcon_init_mac, .mdio_write = falcon_mdio_write, .mdio_read = falcon_mdio_read, }; /************************************************************************** * * Etherfabric abstraction layer * ************************************************************************** */ /** * Push RX buffer to RXD ring * */ static inline void efab_push_rx_buffer ( struct efab_nic *efab, struct efab_rx_buf *rx_buf ) { /* Create RX descriptor */ rx_buf->id = efab->rx_write_ptr; efab->op->build_rx_desc ( efab, rx_buf ); /* Update RX write pointer */ efab->rx_write_ptr = ( efab->rx_write_ptr + 1 ) % EFAB_RXD_SIZE; efab->op->notify_rx_desc ( efab ); DBG ( "Added RX id %x\n", rx_buf->id ); } /** * Push TX buffer to TXD ring * */ static inline void efab_push_tx_buffer ( struct efab_nic *efab, struct efab_tx_buf *tx_buf ) { /* Create TX descriptor */ tx_buf->id = efab->tx_write_ptr; efab->op->build_tx_desc ( efab, tx_buf ); /* Update TX write pointer */ efab->tx_write_ptr = ( efab->tx_write_ptr + 1 ) % EFAB_TXD_SIZE; efab->op->notify_tx_desc ( efab ); DBG ( "Added TX id %x\n", tx_buf->id ); } /** * Initialise MAC and wait for link up * */ static int efab_init_mac ( struct efab_nic *efab ) { int count; /* This can take several seconds */ printf ( "Waiting for link.." ); count = 0; do { putchar ( '.' ); if ( ! efab->op->init_mac ( efab ) ) { printf ( "failed\n" ); return 0; } if ( efab->link_up ) { /* PHY init printed the message for us */ return 1; } sleep ( 1 ); } while ( ++count < 5 ); printf ( "timed out\n" ); return 0; } /** * Initialise NIC * */ static int efab_init_nic ( struct efab_nic *efab ) { int i; /* Reset NIC */ if ( ! efab->op->reset ( efab ) ) return 0; /* Initialise NIC */ if ( ! efab->op->init_nic ( efab ) ) return 0; /* Push RX descriptors */ for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) { efab_push_rx_buffer ( efab, &efab->rx_bufs[i] ); } /* Read MAC address from EEPROM */ if ( ! efab->op->read_eeprom ( efab ) ) return 0; efab->mac_addr[ETH_ALEN-1] += efab->port; /* Initialise MAC and wait for link up */ if ( ! efab_init_mac ( efab ) ) return 0; return 1; } /************************************************************************** * * Etherboot interface * ************************************************************************** */ /************************************************************************** POLL - Wait for a frame ***************************************************************************/ static int etherfabric_poll ( struct nic *nic, int retrieve ) { struct efab_nic *efab = nic->priv_data; struct efab_event event; static struct efab_rx_buf *rx_buf = NULL; int i; /* Process the event queue until we hit either a packet * received event or an empty event slot. */ while ( ( rx_buf == NULL ) && efab->op->fetch_event ( efab, &event ) ) { if ( event.type == EFAB_EV_TX ) { /* TX completed - mark as done */ DBG ( "TX id %x complete\n", efab->tx_buf.id ); efab->tx_in_progress = 0; } else if ( event.type == EFAB_EV_RX ) { /* RX - find corresponding buffer */ for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) { if ( efab->rx_bufs[i].id == event.rx_id ) { rx_buf = &efab->rx_bufs[i]; rx_buf->len = event.rx_len; DBG ( "RX id %x (len %x) received\n", rx_buf->id, rx_buf->len ); break; } } if ( ! rx_buf ) { printf ( "Invalid RX ID %x\n", event.rx_id ); } } else if ( event.type == EFAB_EV_NONE ) { DBG ( "Ignorable event\n" ); } else { DBG ( "Unknown event\n" ); } } /* If there is no packet, return 0 */ if ( ! rx_buf ) return 0; /* If we don't want to retrieve it just yet, return 1 */ if ( ! retrieve ) return 1; /* Copy packet contents */ nic->packetlen = rx_buf->len; memcpy ( nic->packet, rx_buf->addr, nic->packetlen ); /* Give this buffer back to the NIC */ efab_push_rx_buffer ( efab, rx_buf ); /* Prepare to receive next packet */ rx_buf = NULL; return 1; } /************************************************************************** TRANSMIT - Transmit a frame ***************************************************************************/ static void etherfabric_transmit ( struct nic *nic, const char *dest, unsigned int type, unsigned int size, const char *data ) { struct efab_nic *efab = nic->priv_data; unsigned int nstype = htons ( type ); /* We can only transmit one packet at a time; a TX completion * event must be received before we can transmit the next * packet. Since there is only one static TX buffer, we don't * worry unduly about overflow, but we report it anyway. */ if ( efab->tx_in_progress ) { printf ( "TX overflow!\n" ); } /* Fill TX buffer, pad to ETH_ZLEN */ memcpy ( efab->tx_buf.addr, dest, ETH_ALEN ); memcpy ( efab->tx_buf.addr + ETH_ALEN, nic->node_addr, ETH_ALEN ); memcpy ( efab->tx_buf.addr + 2 * ETH_ALEN, &nstype, 2 ); memcpy ( efab->tx_buf.addr + ETH_HLEN, data, size ); size += ETH_HLEN; while ( size < ETH_ZLEN ) { efab->tx_buf.addr[size++] = '\0'; } efab->tx_buf.len = size; /* Push TX descriptor */ efab_push_tx_buffer ( efab, &efab->tx_buf ); /* There is no way to wait for TX complete (i.e. TX buffer * available to re-use for the next transmit) without reading * from the event queue. We therefore simply leave the TX * buffer marked as "in use" until a TX completion event * happens to be picked up by a call to etherfabric_poll(). */ efab->tx_in_progress = 1; return; } /************************************************************************** DISABLE - Turn off ethernet interface ***************************************************************************/ static void etherfabric_disable ( struct nic *nic ) { struct efab_nic *efab = nic->priv_data; efab->op->reset ( efab ); if ( efab->membase ) iounmap ( efab->membase ); } /************************************************************************** IRQ - handle interrupts ***************************************************************************/ static void etherfabric_irq ( struct nic *nic, irq_action_t action ) { struct efab_nic *efab = nic->priv_data; switch ( action ) { case DISABLE : efab->op->mask_irq ( efab, 1 ); break; case ENABLE : efab->op->mask_irq ( efab, 0 ); break; case FORCE : /* Force NIC to generate a receive interrupt */ efab->op->generate_irq ( efab ); break; } return; } static struct nic_operations etherfabric_operations = { .connect = dummy_connect, .poll = etherfabric_poll, .transmit = etherfabric_transmit, .irq = etherfabric_irq, }; /************************************************************************** PROBE - Look for an adapter, this routine's visible to the outside ***************************************************************************/ static int etherfabric_probe ( struct nic *nic, struct pci_device *pci ) { static struct efab_nic efab; static int nic_port = 1; struct efab_buffers *buffers; int i; /* Set up our private data structure */ nic->priv_data = &efab; memset ( &efab, 0, sizeof ( efab ) ); memset ( &efab_buffers, 0, sizeof ( efab_buffers ) ); /* Hook in appropriate operations table. Do this early. */ if ( pci->device == EF1002_DEVID ) { efab.op = &ef1002_operations; } else { efab.op = &falcon_operations; } /* Initialise efab data structure */ efab.pci = pci; buffers = ( ( struct efab_buffers * ) ( ( ( void * ) &efab_buffers ) + ( - virt_to_bus ( &efab_buffers ) ) % EFAB_BUF_ALIGN ) ); efab.eventq = buffers->eventq; efab.txd = buffers->txd; efab.rxd = buffers->rxd; efab.tx_buf.addr = buffers->tx_buf; for ( i = 0 ; i < EFAB_RX_BUFS ; i++ ) { efab.rx_bufs[i].addr = buffers->rx_buf[i]; } /* Enable the PCI device */ adjust_pci_device ( pci ); nic->ioaddr = pci->ioaddr & ~3; nic->irqno = pci->irq; /* Get iobase/membase */ efab.iobase = nic->ioaddr; efab.op->get_membase ( &efab ); /* Switch NIC ports (i.e. try different ports on each probe) */ nic_port = 1 - nic_port; efab.port = nic_port; /* Initialise hardware */ if ( ! efab_init_nic ( &efab ) ) return 0; memcpy ( nic->node_addr, efab.mac_addr, ETH_ALEN ); /* hello world */ printf ( "Found EtherFabric %s NIC %!\n", pci->name, nic->node_addr ); /* point to NIC specific routines */ nic->nic_op = ðerfabric_operations; return 1; } static struct pci_device_id etherfabric_nics[] = { PCI_ROM(0x1924, 0xC101, "ef1002", "EtherFabric EF1002"), PCI_ROM(0x1924, 0x0703, "falcon", "EtherFabric Falcon"), }; PCI_DRIVER ( etherfabric_driver, etherfabric_nics, PCI_NO_CLASS ); DRIVER ( "EFAB", nic_driver, pci_driver, etherfabric_driver, etherfabric_probe, etherfabric_disable ); /* * Local variables: * c-basic-offset: 8 * c-indent-level: 8 * tab-width: 8 * End: */