/* rhine.c:Fast Ethernet driver for Linux. */ /* Adapted 09-jan-2000 by Paolo Marini (paolom@prisma-eng.it) originally written by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License (GPL), incorporated herein by reference. Drivers derived from this code also fall under the GPL and must retain this authorship and copyright notice. Under no circumstances are the authors responsible for the proper functioning of this software, nor do the authors assume any responsibility for damages incurred with its use. This driver is designed for the VIA VT86C100A Rhine-II PCI Fast Ethernet controller. */ static const char *version = "rhine.c v1.0.2 2004-10-29\n"; /* A few user-configurable values. */ // max time out delay time #define W_MAX_TIMEOUT 0x0FFFU /* Size of the in-memory receive ring. */ #define RX_BUF_LEN_IDX 3 /* 0==8K, 1==16K, 2==32K, 3==64K */ #define RX_BUF_LEN (8192 << RX_BUF_LEN_IDX) /* Size of the Tx bounce buffers -- must be at least (dev->mtu+14+4). */ #define TX_BUF_SIZE 1536 #define RX_BUF_SIZE 1536 /* PCI Tuning Parameters Threshold is bytes transferred to chip before transmission starts. */ #define TX_FIFO_THRESH 256 /* In bytes, rounded down to 32 byte units. */ /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024. */ #define RX_FIFO_THRESH 4 /* Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 bytes */ #define TX_DMA_BURST 4 /* Operational parameters that usually are not changed. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT ((2000*HZ)/1000) #include "etherboot.h" #include "nic.h" #include #include "timer.h" /* define all ioaddr */ #define byPAR0 ioaddr #define byRCR ioaddr + 6 #define byTCR ioaddr + 7 #define byCR0 ioaddr + 8 #define byCR1 ioaddr + 9 #define byISR0 ioaddr + 0x0c #define byISR1 ioaddr + 0x0d #define byIMR0 ioaddr + 0x0e #define byIMR1 ioaddr + 0x0f #define byMAR0 ioaddr + 0x10 #define byMAR1 ioaddr + 0x11 #define byMAR2 ioaddr + 0x12 #define byMAR3 ioaddr + 0x13 #define byMAR4 ioaddr + 0x14 #define byMAR5 ioaddr + 0x15 #define byMAR6 ioaddr + 0x16 #define byMAR7 ioaddr + 0x17 #define dwCurrentRxDescAddr ioaddr + 0x18 #define dwCurrentTxDescAddr ioaddr + 0x1c #define dwCurrentRDSE0 ioaddr + 0x20 #define dwCurrentRDSE1 ioaddr + 0x24 #define dwCurrentRDSE2 ioaddr + 0x28 #define dwCurrentRDSE3 ioaddr + 0x2c #define dwNextRDSE0 ioaddr + 0x30 #define dwNextRDSE1 ioaddr + 0x34 #define dwNextRDSE2 ioaddr + 0x38 #define dwNextRDSE3 ioaddr + 0x3c #define dwCurrentTDSE0 ioaddr + 0x40 #define dwCurrentTDSE1 ioaddr + 0x44 #define dwCurrentTDSE2 ioaddr + 0x48 #define dwCurrentTDSE3 ioaddr + 0x4c #define dwNextTDSE0 ioaddr + 0x50 #define dwNextTDSE1 ioaddr + 0x54 #define dwNextTDSE2 ioaddr + 0x58 #define dwNextTDSE3 ioaddr + 0x5c #define dwCurrRxDMAPtr ioaddr + 0x60 #define dwCurrTxDMAPtr ioaddr + 0x64 #define byMPHY ioaddr + 0x6c #define byMIISR ioaddr + 0x6d #define byBCR0 ioaddr + 0x6e #define byBCR1 ioaddr + 0x6f #define byMIICR ioaddr + 0x70 #define byMIIAD ioaddr + 0x71 #define wMIIDATA ioaddr + 0x72 #define byEECSR ioaddr + 0x74 #define byTEST ioaddr + 0x75 #define byGPIO ioaddr + 0x76 #define byCFGA ioaddr + 0x78 #define byCFGB ioaddr + 0x79 #define byCFGC ioaddr + 0x7a #define byCFGD ioaddr + 0x7b #define wTallyCntMPA ioaddr + 0x7c #define wTallyCntCRC ioaddr + 0x7d #define bySTICKHW ioaddr + 0x83 #define byWOLcrClr ioaddr + 0xA4 #define byWOLcgClr ioaddr + 0xA7 #define byPwrcsrClr ioaddr + 0xAC /*--------------------- Exioaddr Definitions -------------------------*/ /* * Bits in the RCR register */ #define RCR_RRFT2 0x80 #define RCR_RRFT1 0x40 #define RCR_RRFT0 0x20 #define RCR_PROM 0x10 #define RCR_AB 0x08 #define RCR_AM 0x04 #define RCR_AR 0x02 #define RCR_SEP 0x01 /* * Bits in the TCR register */ #define TCR_RTSF 0x80 #define TCR_RTFT1 0x40 #define TCR_RTFT0 0x20 #define TCR_OFSET 0x08 #define TCR_LB1 0x04 /* loopback[1] */ #define TCR_LB0 0x02 /* loopback[0] */ /* * Bits in the CR0 register */ #define CR0_RDMD 0x40 /* rx descriptor polling demand */ #define CR0_TDMD 0x20 /* tx descriptor polling demand */ #define CR0_TXON 0x10 #define CR0_RXON 0x08 #define CR0_STOP 0x04 /* stop NIC, default = 1 */ #define CR0_STRT 0x02 /* start NIC */ #define CR0_INIT 0x01 /* start init process */ /* * Bits in the CR1 register */ #define CR1_SFRST 0x80 /* software reset */ #define CR1_RDMD1 0x40 /* RDMD1 */ #define CR1_TDMD1 0x20 /* TDMD1 */ #define CR1_KEYPAG 0x10 /* turn on par/key */ #define CR1_DPOLL 0x08 /* disable rx/tx auto polling */ #define CR1_FDX 0x04 /* full duplex mode */ #define CR1_ETEN 0x02 /* early tx mode */ #define CR1_EREN 0x01 /* early rx mode */ /* * Bits in the CR register */ #define CR_RDMD 0x0040 /* rx descriptor polling demand */ #define CR_TDMD 0x0020 /* tx descriptor polling demand */ #define CR_TXON 0x0010 #define CR_RXON 0x0008 #define CR_STOP 0x0004 /* stop NIC, default = 1 */ #define CR_STRT 0x0002 /* start NIC */ #define CR_INIT 0x0001 /* start init process */ #define CR_SFRST 0x8000 /* software reset */ #define CR_RDMD1 0x4000 /* RDMD1 */ #define CR_TDMD1 0x2000 /* TDMD1 */ #define CR_KEYPAG 0x1000 /* turn on par/key */ #define CR_DPOLL 0x0800 /* disable rx/tx auto polling */ #define CR_FDX 0x0400 /* full duplex mode */ #define CR_ETEN 0x0200 /* early tx mode */ #define CR_EREN 0x0100 /* early rx mode */ /* * Bits in the IMR0 register */ #define IMR0_CNTM 0x80 #define IMR0_BEM 0x40 #define IMR0_RUM 0x20 #define IMR0_TUM 0x10 #define IMR0_TXEM 0x08 #define IMR0_RXEM 0x04 #define IMR0_PTXM 0x02 #define IMR0_PRXM 0x01 /* define imrshadow */ #define IMRShadow 0x5AFF /* * Bits in the IMR1 register */ #define IMR1_INITM 0x80 #define IMR1_SRCM 0x40 #define IMR1_NBFM 0x10 #define IMR1_PRAIM 0x08 #define IMR1_RES0M 0x04 #define IMR1_ETM 0x02 #define IMR1_ERM 0x01 /* * Bits in the ISR register */ #define ISR_INITI 0x8000 #define ISR_SRCI 0x4000 #define ISR_ABTI 0x2000 #define ISR_NORBF 0x1000 #define ISR_PKTRA 0x0800 #define ISR_RES0 0x0400 #define ISR_ETI 0x0200 #define ISR_ERI 0x0100 #define ISR_CNT 0x0080 #define ISR_BE 0x0040 #define ISR_RU 0x0020 #define ISR_TU 0x0010 #define ISR_TXE 0x0008 #define ISR_RXE 0x0004 #define ISR_PTX 0x0002 #define ISR_PRX 0x0001 /* * Bits in the ISR0 register */ #define ISR0_CNT 0x80 #define ISR0_BE 0x40 #define ISR0_RU 0x20 #define ISR0_TU 0x10 #define ISR0_TXE 0x08 #define ISR0_RXE 0x04 #define ISR0_PTX 0x02 #define ISR0_PRX 0x01 /* * Bits in the ISR1 register */ #define ISR1_INITI 0x80 #define ISR1_SRCI 0x40 #define ISR1_NORBF 0x10 #define ISR1_PKTRA 0x08 #define ISR1_ETI 0x02 #define ISR1_ERI 0x01 /* ISR ABNORMAL CONDITION */ #define ISR_ABNORMAL ISR_BE+ISR_RU+ISR_TU+ISR_CNT+ISR_NORBF+ISR_PKTRA /* * Bits in the MIISR register */ #define MIISR_MIIERR 0x08 #define MIISR_MRERR 0x04 #define MIISR_LNKFL 0x02 #define MIISR_SPEED 0x01 /* * Bits in the MIICR register */ #define MIICR_MAUTO 0x80 #define MIICR_RCMD 0x40 #define MIICR_WCMD 0x20 #define MIICR_MDPM 0x10 #define MIICR_MOUT 0x08 #define MIICR_MDO 0x04 #define MIICR_MDI 0x02 #define MIICR_MDC 0x01 /* * Bits in the EECSR register */ #define EECSR_EEPR 0x80 /* eeprom programed status, 73h means programed */ #define EECSR_EMBP 0x40 /* eeprom embeded programming */ #define EECSR_AUTOLD 0x20 /* eeprom content reload */ #define EECSR_DPM 0x10 /* eeprom direct programming */ #define EECSR_CS 0x08 /* eeprom CS pin */ #define EECSR_SK 0x04 /* eeprom SK pin */ #define EECSR_DI 0x02 /* eeprom DI pin */ #define EECSR_DO 0x01 /* eeprom DO pin */ /* * Bits in the BCR0 register */ #define BCR0_CRFT2 0x20 #define BCR0_CRFT1 0x10 #define BCR0_CRFT0 0x08 #define BCR0_DMAL2 0x04 #define BCR0_DMAL1 0x02 #define BCR0_DMAL0 0x01 /* * Bits in the BCR1 register */ #define BCR1_CTSF 0x20 #define BCR1_CTFT1 0x10 #define BCR1_CTFT0 0x08 #define BCR1_POT2 0x04 #define BCR1_POT1 0x02 #define BCR1_POT0 0x01 /* * Bits in the CFGA register */ #define CFGA_EELOAD 0x80 /* enable eeprom embeded and direct programming */ #define CFGA_JUMPER 0x40 #define CFGA_MTGPIO 0x08 #define CFGA_T10EN 0x02 #define CFGA_AUTO 0x01 /* * Bits in the CFGB register */ #define CFGB_PD 0x80 #define CFGB_POLEN 0x02 #define CFGB_LNKEN 0x01 /* * Bits in the CFGC register */ #define CFGC_M10TIO 0x80 #define CFGC_M10POL 0x40 #define CFGC_PHY1 0x20 #define CFGC_PHY0 0x10 #define CFGC_BTSEL 0x08 #define CFGC_BPS2 0x04 /* bootrom select[2] */ #define CFGC_BPS1 0x02 /* bootrom select[1] */ #define CFGC_BPS0 0x01 /* bootrom select[0] */ /* * Bits in the CFGD register */ #define CFGD_GPIOEN 0x80 #define CFGD_DIAG 0x40 #define CFGD_MAGIC 0x10 #define CFGD_RANDOM 0x08 #define CFGD_CFDX 0x04 #define CFGD_CEREN 0x02 #define CFGD_CETEN 0x01 /* Bits in RSR */ #define RSR_RERR 0x00000001 #define RSR_CRC 0x00000002 #define RSR_FAE 0x00000004 #define RSR_FOV 0x00000008 #define RSR_LONG 0x00000010 #define RSR_RUNT 0x00000020 #define RSR_SERR 0x00000040 #define RSR_BUFF 0x00000080 #define RSR_EDP 0x00000100 #define RSR_STP 0x00000200 #define RSR_CHN 0x00000400 #define RSR_PHY 0x00000800 #define RSR_BAR 0x00001000 #define RSR_MAR 0x00002000 #define RSR_RXOK 0x00008000 #define RSR_ABNORMAL RSR_RERR+RSR_LONG+RSR_RUNT /* Bits in TSR */ #define TSR_NCR0 0x00000001 #define TSR_NCR1 0x00000002 #define TSR_NCR2 0x00000004 #define TSR_NCR3 0x00000008 #define TSR_COLS 0x00000010 #define TSR_CDH 0x00000080 #define TSR_ABT 0x00000100 #define TSR_OWC 0x00000200 #define TSR_CRS 0x00000400 #define TSR_UDF 0x00000800 #define TSR_TBUFF 0x00001000 #define TSR_SERR 0x00002000 #define TSR_JAB 0x00004000 #define TSR_TERR 0x00008000 #define TSR_ABNORMAL TSR_TERR+TSR_OWC+TSR_ABT+TSR_JAB+TSR_CRS #define TSR_OWN_BIT 0x80000000 #define CB_DELAY_LOOP_WAIT 10 /* 10ms */ /* enabled mask value of irq */ #define W_IMR_MASK_VALUE 0x1BFF /* initial value of IMR */ /* Ethernet address filter type */ #define PKT_TYPE_DIRECTED 0x0001 /* obsolete, directed address is always accepted */ #define PKT_TYPE_MULTICAST 0x0002 #define PKT_TYPE_ALL_MULTICAST 0x0004 #define PKT_TYPE_BROADCAST 0x0008 #define PKT_TYPE_PROMISCUOUS 0x0020 #define PKT_TYPE_LONG 0x2000 #define PKT_TYPE_RUNT 0x4000 #define PKT_TYPE_ERROR 0x8000 /* accept error packets, e.g. CRC error */ /* Loopback mode */ #define NIC_LB_NONE 0x00 #define NIC_LB_INTERNAL 0x01 #define NIC_LB_PHY 0x02 /* MII or Internal-10BaseT loopback */ #define TX_RING_SIZE 2 #define RX_RING_SIZE 2 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ #define PCI_REG_MODE3 0x53 #define MODE3_MIION 0x04 /* in PCI_REG_MOD3 OF PCI space */ enum rhine_revs { VT86C100A = 0x00, VTunknown0 = 0x20, VT6102 = 0x40, VT8231 = 0x50, /* Integrated MAC */ VT8233 = 0x60, /* Integrated MAC */ VT8235 = 0x74, /* Integrated MAC */ VT8237 = 0x78, /* Integrated MAC */ VTunknown1 = 0x7C, VT6105 = 0x80, VT6105_B0 = 0x83, VT6105L = 0x8A, VT6107 = 0x8C, VTunknown2 = 0x8E, VT6105M = 0x90, }; /* Transmit and receive descriptors definition */ struct rhine_tx_desc { union VTC_tx_status_tag { struct { unsigned long ncro:1; unsigned long ncr1:1; unsigned long ncr2:1; unsigned long ncr3:1; unsigned long cols:1; unsigned long reserve_1:2; unsigned long cdh:1; unsigned long abt:1; unsigned long owc:1; unsigned long crs:1; unsigned long udf:1; unsigned long tbuff:1; unsigned long serr:1; unsigned long jab:1; unsigned long terr:1; unsigned long reserve_2:15; unsigned long own_bit:1; } bits; unsigned long lw; } tx_status; union VTC_tx_ctrl_tag { struct { unsigned long tx_buf_size:11; unsigned long extend_tx_buf_size:4; unsigned long chn:1; unsigned long crc:1; unsigned long reserve_1:4; unsigned long stp:1; unsigned long edp:1; unsigned long ic:1; unsigned long reserve_2:8; } bits; unsigned long lw; } tx_ctrl; unsigned long buf_addr_1:32; unsigned long buf_addr_2:32; }; struct rhine_rx_desc { union VTC_rx_status_tag { struct { unsigned long rerr:1; unsigned long crc_error:1; unsigned long fae:1; unsigned long fov:1; unsigned long toolong:1; unsigned long runt:1; unsigned long serr:1; unsigned long buff:1; unsigned long edp:1; unsigned long stp:1; unsigned long chn:1; unsigned long phy:1; unsigned long bar:1; unsigned long mar:1; unsigned long reserve_1:1; unsigned long rxok:1; unsigned long frame_length:11; unsigned long reverve_2:4; unsigned long own_bit:1; } bits; unsigned long lw; } rx_status; union VTC_rx_ctrl_tag { struct { unsigned long rx_buf_size:11; unsigned long extend_rx_buf_size:4; unsigned long reserved_1:17; } bits; unsigned long lw; } rx_ctrl; unsigned long buf_addr_1:32; unsigned long buf_addr_2:32; }; struct { char txbuf[TX_RING_SIZE * PKT_BUF_SZ + 32]; char rxbuf[RX_RING_SIZE * PKT_BUF_SZ + 32]; char txdesc[TX_RING_SIZE * sizeof (struct rhine_tx_desc) + 32]; char rxdesc[RX_RING_SIZE * sizeof (struct rhine_rx_desc) + 32]; } rhine_buffers __shared; /* The I/O extent. */ #define rhine_TOTAL_SIZE 0x80 #ifdef HAVE_DEVLIST struct netdev_entry rhine_drv = { "rhine", rhine_probe, rhine_TOTAL_SIZE, NULL }; #endif static int rhine_debug = 1; /* Theory of Operation I. Board Compatibility This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet controller. II. Board-specific settings Boards with this chip are functional only in a bus-master PCI slot. Many operational settings are loaded from the EEPROM to the Config word at offset 0x78. This driver assumes that they are correct. If this driver is compiled to use PCI memory space operations the EEPROM must be configured to enable memory ops. III. Driver operation IIIa. Ring buffers This driver uses two statically allocated fixed-size descriptor lists formed into rings by a branch from the final descriptor to the beginning of the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. IIIb/c. Transmit/Receive Structure This driver attempts to use a zero-copy receive and transmit scheme. Alas, all data buffers are required to start on a 32 bit boundary, so the driver must often copy transmit packets into bounce buffers. The driver allocates full frame size skbuffs for the Rx ring buffers at open() time and passes the skb->data field to the chip as receive data buffers. When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff is allocated and the frame is copied to the new skbuff. When the incoming frame is larger, the skbuff is passed directly up the protocol stack. Buffers consumed this way are replaced by newly allocated skbuffs in the last phase of netdev_rx(). The RX_COPYBREAK value is chosen to trade-off the memory wasted by using a full-sized skbuff for small frames vs. the copying costs of larger frames. New boards are typically used in generously configured machines and the underfilled buffers have negligible impact compared to the benefit of a single allocation size, so the default value of zero results in never copying packets. When copying is done, the cost is usually mitigated by using a combined copy/checksum routine. Copying also preloads the cache, which is most useful with small frames. Since the VIA chips are only able to transfer data to buffers on 32 bit boundaries, the the IP header at offset 14 in an ethernet frame isn't longword aligned for further processing. Copying these unaligned buffers has the beneficial effect of 16-byte aligning the IP header. IIId. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and interrupt handling software. The send packet thread has partial control over the Tx ring and 'dev->tbusy' flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next queue slot is empty, it clears the tbusy flag when finished otherwise it sets the 'lp->tx_full' flag. The interrupt handler has exclusive control over the Rx ring and records stats from the Tx ring. After reaping the stats, it marks the Tx queue entry as empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it clears both the tx_full and tbusy flags. IV. Notes IVb. References Preliminary VT86C100A manual from http://www.via.com.tw/ http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html IVc. Errata The VT86C100A manual is not reliable information. The chip does not handle unaligned transmit or receive buffers, resulting in significant performance degradation for bounce buffer copies on transmit and unaligned IP headers on receive. The chip does not pad to minimum transmit length. */ /* The rest of these values should never change. */ #define NUM_TX_DESC 2 /* Number of Tx descriptor registers. */ static struct rhine_private { char devname[8]; /* Used only for kernel debugging. */ const char *product_name; struct rhine_rx_desc *rx_ring; struct rhine_tx_desc *tx_ring; char *rx_buffs[RX_RING_SIZE]; char *tx_buffs[TX_RING_SIZE]; /* temporary Rx buffers. */ int chip_id; int chip_revision; unsigned short ioaddr; unsigned int cur_rx, cur_tx; /* The next free and used entries */ unsigned int dirty_rx, dirty_tx; /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff *tx_skbuff[TX_RING_SIZE]; unsigned char mc_filter[8]; /* Current multicast filter. */ char phys[4]; /* MII device addresses. */ unsigned int tx_full:1; /* The Tx queue is full. */ unsigned int full_duplex:1; /* Full-duplex operation requested. */ unsigned int default_port:4; /* Last dev->if_port value. */ unsigned int media2:4; /* Secondary monitored media port. */ unsigned int medialock:1; /* Don't sense media type. */ unsigned int mediasense:1; /* Media sensing in progress. */ } rhine; static void rhine_probe1 (struct nic *nic, struct pci_device *pci, int ioaddr, int chip_id, int options); static int QueryAuto (int); static int ReadMII (int byMIIIndex, int); static void WriteMII (char, char, char, int); static void MIIDelay (void); static void rhine_init_ring (struct nic *dev); static void rhine_disable (struct nic *nic, struct pci_device *pci); static void rhine_reset (struct nic *nic); static int rhine_poll (struct nic *nic, int retreive); static void rhine_transmit (struct nic *nic, const char *d, unsigned int t, unsigned int s, const char *p); static void reload_eeprom(int ioaddr); static void reload_eeprom(int ioaddr) { int i; outb(0x20, byEECSR); /* Typically 2 cycles to reload. */ for (i = 0; i < 150; i++) if (! (inb(byEECSR) & 0x20)) break; } /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ static void rhine_init_ring (struct nic *nic) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; int i; tp->tx_full = 0; tp->cur_rx = tp->cur_tx = 0; tp->dirty_rx = tp->dirty_tx = 0; for (i = 0; i < RX_RING_SIZE; i++) { tp->rx_ring[i].rx_status.bits.own_bit = 1; tp->rx_ring[i].rx_ctrl.bits.rx_buf_size = 1536; tp->rx_ring[i].buf_addr_1 = virt_to_bus (tp->rx_buffs[i]); tp->rx_ring[i].buf_addr_2 = virt_to_bus (&tp->rx_ring[i + 1]); /* printf("[%d]buf1=%hX,buf2=%hX",i,tp->rx_ring[i].buf_addr_1,tp->rx_ring[i].buf_addr_2); */ } /* Mark the last entry as wrapping the ring. */ /* tp->rx_ring[i-1].rx_ctrl.bits.rx_buf_size =1518; */ tp->rx_ring[i - 1].buf_addr_2 = virt_to_bus (&tp->rx_ring[0]); /*printf("[%d]buf1=%hX,buf2=%hX",i-1,tp->rx_ring[i-1].buf_addr_1,tp->rx_ring[i-1].buf_addr_2); */ /* The Tx buffer descriptor is filled in as needed, but we do need to clear the ownership bit. */ for (i = 0; i < TX_RING_SIZE; i++) { tp->tx_ring[i].tx_status.lw = 0; tp->tx_ring[i].tx_ctrl.lw = 0x00e08000; tp->tx_ring[i].buf_addr_1 = virt_to_bus (tp->tx_buffs[i]); tp->tx_ring[i].buf_addr_2 = virt_to_bus (&tp->tx_ring[i + 1]); /* printf("[%d]buf1=%hX,buf2=%hX",i,tp->tx_ring[i].buf_addr_1,tp->tx_ring[i].buf_addr_2); */ } tp->tx_ring[i - 1].buf_addr_2 = virt_to_bus (&tp->tx_ring[0]); /* printf("[%d]buf1=%hX,buf2=%hX",i,tp->tx_ring[i-1].buf_addr_1,tp->tx_ring[i-1].buf_addr_2); */ } int QueryAuto (int ioaddr) { int byMIIIndex; int MIIReturn; int advertising,mii_reg5; int negociated; byMIIIndex = 0x04; MIIReturn = ReadMII (byMIIIndex, ioaddr); advertising=MIIReturn; byMIIIndex = 0x05; MIIReturn = ReadMII (byMIIIndex, ioaddr); mii_reg5=MIIReturn; negociated=mii_reg5 & advertising; if ( (negociated & 0x100) || (negociated & 0x1C0) == 0x40 ) return 1; else return 0; } int ReadMII (int byMIIIndex, int ioaddr) { int ReturnMII; char byMIIAdrbak; char byMIICRbak; char byMIItemp; byMIIAdrbak = inb (byMIIAD); byMIICRbak = inb (byMIICR); outb (byMIICRbak & 0x7f, byMIICR); MIIDelay (); outb (byMIIIndex, byMIIAD); MIIDelay (); outb (inb (byMIICR) | 0x40, byMIICR); byMIItemp = inb (byMIICR); byMIItemp = byMIItemp & 0x40; load_timer2(2*TICKS_PER_MS); while (byMIItemp != 0 && timer2_running()) { byMIItemp = inb (byMIICR); byMIItemp = byMIItemp & 0x40; } MIIDelay (); ReturnMII = inw (wMIIDATA); outb (byMIIAdrbak, byMIIAD); outb (byMIICRbak, byMIICR); MIIDelay (); return (ReturnMII); } void WriteMII (char byMIISetByte, char byMIISetBit, char byMIIOP, int ioaddr) { int ReadMIItmp; int MIIMask; char byMIIAdrbak; char byMIICRbak; char byMIItemp; byMIIAdrbak = inb (byMIIAD); byMIICRbak = inb (byMIICR); outb (byMIICRbak & 0x7f, byMIICR); MIIDelay (); outb (byMIISetByte, byMIIAD); MIIDelay (); outb (inb (byMIICR) | 0x40, byMIICR); byMIItemp = inb (byMIICR); byMIItemp = byMIItemp & 0x40; load_timer2(2*TICKS_PER_MS); while (byMIItemp != 0 && timer2_running()) { byMIItemp = inb (byMIICR); byMIItemp = byMIItemp & 0x40; } MIIDelay (); ReadMIItmp = inw (wMIIDATA); MIIMask = 0x0001; MIIMask = MIIMask << byMIISetBit; if (byMIIOP == 0) { MIIMask = ~MIIMask; ReadMIItmp = ReadMIItmp & MIIMask; } else { ReadMIItmp = ReadMIItmp | MIIMask; } outw (ReadMIItmp, wMIIDATA); MIIDelay (); outb (inb (byMIICR) | 0x20, byMIICR); byMIItemp = inb (byMIICR); byMIItemp = byMIItemp & 0x20; load_timer2(2*TICKS_PER_MS); while (byMIItemp != 0 && timer2_running()) { byMIItemp = inb (byMIICR); byMIItemp = byMIItemp & 0x20; } MIIDelay (); outb (byMIIAdrbak & 0x7f, byMIIAD); outb (byMIICRbak, byMIICR); MIIDelay (); } void MIIDelay (void) { int i; for (i = 0; i < 0x7fff; i++) { inb (0x61); inb (0x61); inb (0x61); inb (0x61); } } /* Offsets to the device registers. */ enum register_offsets { StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, IntrStatus=0x0C, IntrEnable=0x0E, MulticastFilter0=0x10, MulticastFilter1=0x14, RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, StickyHW=0x83, IntrStatus2=0x84, WOLcrClr=0xA4, WOLcgClr=0xA7, PwrcsrClr=0xAC, }; /* Bits in the interrupt status/mask registers. */ enum intr_status_bits { IntrRxDone=0x0001, IntrRxErr=0x0004, IntrRxEmpty=0x0020, IntrTxDone=0x0002, IntrTxError=0x0008, IntrTxUnderrun=0x0210, IntrPCIErr=0x0040, IntrStatsMax=0x0080, IntrRxEarly=0x0100, IntrRxOverflow=0x0400, IntrRxDropped=0x0800, IntrRxNoBuf=0x1000, IntrTxAborted=0x2000, IntrLinkChange=0x4000, IntrRxWakeUp=0x8000, IntrNormalSummary=0x0003, IntrAbnormalSummary=0xC260, IntrTxDescRace=0x080000, /* mapped from IntrStatus2 */ IntrTxErrSummary=0x082218, }; #define DEFAULT_INTR (IntrRxDone | IntrRxErr | IntrRxEmpty| IntrRxOverflow | \ IntrRxDropped | IntrRxNoBuf) /*************************************************************************** IRQ - PXE IRQ Handler ***************************************************************************/ void rhine_irq ( struct nic *nic, irq_action_t action ) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; /* Enable interrupts by setting the interrupt mask. */ unsigned int intr_status; switch ( action ) { case DISABLE : case ENABLE : intr_status = inw(nic->ioaddr + IntrStatus); /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ /* added comment by guard */ /* For supporting VT6107, please use revision id to recognize different chips in driver */ // if (tp->chip_id == 0x3065) if( tp->chip_revision < 0x80 && tp->chip_revision >=0x40 ) intr_status |= inb(nic->ioaddr + IntrStatus2) << 16; intr_status = (intr_status & ~DEFAULT_INTR); if ( action == ENABLE ) intr_status = intr_status | DEFAULT_INTR; outw(intr_status, nic->ioaddr + IntrEnable); break; case FORCE : outw(0x0010, nic->ioaddr + 0x84); break; } } static struct nic_operations rhine_operations; static struct pci_driver rhine_driver; static int rhine_probe ( struct nic *nic, struct pci_device *pci ) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; if (!pci->ioaddr) return 0; rhine_probe1 (nic, pci, pci->ioaddr, pci->device, -1); adjust_pci_device ( pci ); rhine_reset (nic); nic->nic_op = &rhine_operations; pci_fill_nic ( nic, pci ); nic->irqno = pci->irq; nic->ioaddr = tp->ioaddr; return 1; } static void set_rx_mode(struct nic *nic __unused) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; unsigned char rx_mode; int ioaddr = tp->ioaddr; /* ! IFF_PROMISC */ outl(0xffffffff, byMAR0); outl(0xffffffff, byMAR4); rx_mode = 0x0C; outb(0x60 /* thresh */ | rx_mode, byRCR ); } static void rhine_probe1 (struct nic *nic, struct pci_device *pci, int ioaddr, int chip_id, int options) { struct rhine_private *tp; static int did_version = 0; /* Already printed version info. */ unsigned int i, ww; unsigned int timeout; int FDXFlag; int byMIIvalue, LineSpeed, MIICRbak; uint8_t revision_id; unsigned char mode3_reg; if (rhine_debug > 0 && did_version++ == 0) printf (version); // get revision id. pci_read_config_byte(pci, PCI_REVISION, &revision_id); /* D-Link provided reset code (with comment additions) */ if (revision_id >= 0x40) { unsigned char byOrgValue; if(rhine_debug > 0) printf("Enabling Sticky Bit Workaround for Chip_id: 0x%hX\n" , chip_id); /* clear sticky bit before reset & read ethernet address */ byOrgValue = inb(bySTICKHW); byOrgValue = byOrgValue & 0xFC; outb(byOrgValue, bySTICKHW); /* (bits written are cleared?) */ /* disable force PME-enable */ outb(0x80, byWOLcgClr); /* disable power-event config bit */ outb(0xFF, byWOLcrClr); /* clear power status (undocumented in vt6102 docs?) */ outb(0xFF, byPwrcsrClr); } /* Reset the chip to erase previous misconfiguration. */ outw(CR_SFRST, byCR0); // if vt3043 delay after reset if (revision_id <0x40) { udelay(10000); } // polling till software reset complete // W_MAX_TIMEOUT is the timeout period for(ww = 0; ww < W_MAX_TIMEOUT; ww++) { if ((inw(byCR0) & CR_SFRST) == 0) break; } // issue AUTOLoad in EECSR to reload eeprom outb(0x20, byEECSR ); // if vt3065 delay after reset if (revision_id >=0x40) { // delay 8ms to let MAC stable mdelay(8); /* * for 3065D, EEPROM reloaded will cause bit 0 in MAC_REG_CFGA * turned on. it makes MAC receive magic packet * automatically. So, we turn it off. (D-Link) */ outb(inb(byCFGA) & 0xFE, byCFGA); } /* turn on bit2 in PCI configuration register 0x53 , only for 3065*/ if (revision_id >= 0x40) { pci_read_config_byte(pci, PCI_REG_MODE3, &mode3_reg); pci_write_config_byte(pci, PCI_REG_MODE3, mode3_reg|MODE3_MIION); } /* back off algorithm ,disable the right-most 4-bit off CFGD*/ outb(inb(byCFGD) & (~(CFGD_RANDOM | CFGD_CFDX | CFGD_CEREN | CFGD_CETEN)), byCFGD); /* reload eeprom */ reload_eeprom(ioaddr); /* Perhaps this should be read from the EEPROM? */ for (i = 0; i < ETH_ALEN; i++) nic->node_addr[i] = inb (byPAR0 + i); printf ("IO address %hX Ethernet Address: %!\n", ioaddr, nic->node_addr); /* restart MII auto-negotiation */ WriteMII (0, 9, 1, ioaddr); printf ("Analyzing Media type,this will take several seconds........"); for (i = 0; i < 5; i++) { /* need to wait 1 millisecond - we will round it up to 50-100ms */ timeout = currticks() + 2; for (timeout = currticks() + 2; currticks() < timeout;) /* nothing */; if (ReadMII (1, ioaddr) & 0x0020) break; } printf ("OK\n"); #if 0 /* JJM : for Debug */ printf("MII : Address %hhX ",inb(ioaddr+0x6c)); { unsigned char st1,st2,adv1,adv2,l1,l2; st1=ReadMII(1,ioaddr)>>8; st2=ReadMII(1,ioaddr)&0xFF; adv1=ReadMII(4,ioaddr)>>8; adv2=ReadMII(4,ioaddr)&0xFF; l1=ReadMII(5,ioaddr)>>8; l2=ReadMII(5,ioaddr)&0xFF; printf(" status 0x%hhX%hhX, advertising 0x%hhX%hhX, link 0x%hhX%hhX\n", st1,st2,adv1,adv2,l1,l2); } #endif /* query MII to know LineSpeed,duplex mode */ byMIIvalue = inb (ioaddr + 0x6d); LineSpeed = byMIIvalue & MIISR_SPEED; if (LineSpeed != 0) //JJM { printf ("Linespeed=10Mbs"); } else { printf ("Linespeed=100Mbs"); } FDXFlag = QueryAuto (ioaddr); if (FDXFlag == 1) { printf (" Fullduplex\n"); outw (CR_FDX, byCR0); } else { printf (" Halfduplex\n"); } /* set MII 10 FULL ON, only apply in vt3043 */ if(chip_id == 0x3043) WriteMII (0x17, 1, 1, ioaddr); /* turn on MII link change */ MIICRbak = inb (byMIICR); outb (MIICRbak & 0x7F, byMIICR); MIIDelay (); outb (0x41, byMIIAD); MIIDelay (); /* while((inb(byMIIAD)&0x20)==0) ; */ outb (MIICRbak | 0x80, byMIICR); nic->priv_data = &rhine; tp = &rhine; tp->chip_id = chip_id; tp->ioaddr = ioaddr; tp->phys[0] = -1; tp->chip_revision = revision_id; /* The lower four bits are the media type. */ if (options > 0) { tp->full_duplex = (options & 16) ? 1 : 0; tp->default_port = options & 15; if (tp->default_port) tp->medialock = 1; } return; } static void rhine_disable ( struct nic *nic, struct pci_device *pci __unused ) { nic_disable ( nic ); struct rhine_private *tp = (struct rhine_private *) nic->priv_data; int ioaddr = tp->ioaddr; /* merge reset and disable */ rhine_reset(nic); printf ("rhine disable\n"); /* Switch to loopback mode to avoid hardware races. */ writeb(0x60 | 0x01, byTCR); /* Stop the chip's Tx and Rx processes. */ writew(CR_STOP, byCR0); } /************************************************************************** ETH_RESET - Reset adapter ***************************************************************************/ static void rhine_reset (struct nic *nic) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; int ioaddr = tp->ioaddr; int i, j; int FDXFlag, CRbak; int rx_ring_tmp, rx_ring_tmp1; int tx_ring_tmp, tx_ring_tmp1; int rx_bufs_tmp, rx_bufs_tmp1; int tx_bufs_tmp, tx_bufs_tmp1; /* printf ("rhine_reset\n"); */ /* Soft reset the chip. */ /*outb(CmdReset, ioaddr + ChipCmd); */ tx_bufs_tmp = (int) rhine_buffers.txbuf; tx_ring_tmp = (int) rhine_buffers.txdesc; rx_bufs_tmp = (int) rhine_buffers.rxbuf; rx_ring_tmp = (int) rhine_buffers.rxdesc; /* tune RD TD 32 byte alignment */ rx_ring_tmp1 = (int) virt_to_bus ((char *) rx_ring_tmp); j = (rx_ring_tmp1 + 32) & (~0x1f); /* printf ("txring[%d]", j); */ tp->rx_ring = (struct rhine_rx_desc *) bus_to_virt (j); tx_ring_tmp1 = (int) virt_to_bus ((char *) tx_ring_tmp); j = (tx_ring_tmp1 + 32) & (~0x1f); tp->tx_ring = (struct rhine_tx_desc *) bus_to_virt (j); /* printf ("rxring[%X]", j); */ tx_bufs_tmp1 = (int) virt_to_bus ((char *) tx_bufs_tmp); j = (int) (tx_bufs_tmp1 + 32) & (~0x1f); tx_bufs_tmp = (int) bus_to_virt (j); /* printf ("txb[%X]", j); */ rx_bufs_tmp1 = (int) virt_to_bus ((char *) rx_bufs_tmp); j = (int) (rx_bufs_tmp1 + 32) & (~0x1f); rx_bufs_tmp = (int) bus_to_virt (j); /* printf ("rxb[%X][%X]", rx_bufs_tmp1, j); */ for (i = 0; i < RX_RING_SIZE; i++) { tp->rx_buffs[i] = (char *) rx_bufs_tmp; /* printf("r[%X]",tp->rx_buffs[i]); */ rx_bufs_tmp += 1536; } for (i = 0; i < TX_RING_SIZE; i++) { tp->tx_buffs[i] = (char *) tx_bufs_tmp; /* printf("t[%X]",tp->tx_buffs[i]); */ tx_bufs_tmp += 1536; } /* software reset */ outb (CR1_SFRST, byCR1); MIIDelay (); /* printf ("init ring"); */ rhine_init_ring (nic); /*write TD RD Descriptor to MAC */ outl (virt_to_bus (tp->rx_ring), dwCurrentRxDescAddr); outl (virt_to_bus (tp->tx_ring), dwCurrentTxDescAddr); /* Setup Multicast */ set_rx_mode(nic); /* set TCR RCR threshold to store and forward*/ outb (0x3e, byBCR0); outb (0x38, byBCR1); outb (0x2c, byRCR); outb (0x60, byTCR); /* Set Fulldupex */ FDXFlag = QueryAuto (ioaddr); if (FDXFlag == 1) { outb (CFGD_CFDX, byCFGD); outw (CR_FDX, byCR0); } /* KICK NIC to WORK */ CRbak = inw (byCR0); CRbak = CRbak & 0xFFFB; /* not CR_STOP */ outw ((CRbak | CR_STRT | CR_TXON | CR_RXON | CR_DPOLL), byCR0); /* disable all known interrupt */ outw (0, byIMR0); } /* Beware of PCI posted writes */ #define IOSYNC do { readb(nic->ioaddr + StationAddr); } while (0) static int rhine_poll (struct nic *nic, int retreive) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; int rxstatus, good = 0;; if (tp->rx_ring[tp->cur_rx].rx_status.bits.own_bit == 0) { unsigned int intr_status; /* There is a packet ready */ if(!retreive) return 1; intr_status = inw(nic->ioaddr + IntrStatus); /* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ #if 0 if (tp->chip_id == 0x3065) intr_status |= inb(nic->ioaddr + IntrStatus2) << 16; #endif /* Acknowledge all of the current interrupt sources ASAP. */ if (intr_status & IntrTxDescRace) outb(0x08, nic->ioaddr + IntrStatus2); outw(intr_status & 0xffff, nic->ioaddr + IntrStatus); IOSYNC; rxstatus = tp->rx_ring[tp->cur_rx].rx_status.lw; if ((rxstatus & 0x0300) != 0x0300) { printf("rhine_poll: bad status\n"); } else if (rxstatus & (RSR_ABNORMAL)) { printf ("rxerr[%X]\n", rxstatus); } else good = 1; if (good) { nic->packetlen = tp->rx_ring[tp->cur_rx].rx_status.bits.frame_length; memcpy (nic->packet, tp->rx_buffs[tp->cur_rx], nic->packetlen); /* printf ("Packet RXed\n"); */ } tp->rx_ring[tp->cur_rx].rx_status.bits.own_bit = 1; tp->cur_rx++; tp->cur_rx = tp->cur_rx % RX_RING_SIZE; } /* Acknowledge all of the current interrupt sources ASAP. */ outw(DEFAULT_INTR & ~IntrRxDone, nic->ioaddr + IntrStatus); IOSYNC; return good; } static void rhine_transmit (struct nic *nic, const char *d, unsigned int t, unsigned int s, const char *p) { struct rhine_private *tp = (struct rhine_private *) nic->priv_data; int ioaddr = tp->ioaddr; int entry; unsigned char CR1bak; unsigned char CR0bak; unsigned int nstype; /*printf ("rhine_transmit\n"); */ /* setup ethernet header */ /* Calculate the next Tx descriptor entry. */ entry = tp->cur_tx % TX_RING_SIZE; memcpy (tp->tx_buffs[entry], d, ETH_ALEN); /* dst */ memcpy (tp->tx_buffs[entry] + ETH_ALEN, nic->node_addr, ETH_ALEN); /* src */ nstype=htons(t); memcpy(tp->tx_buffs[entry] + 2 * ETH_ALEN, (char*)&nstype, 2); memcpy (tp->tx_buffs[entry] + ETH_HLEN, p, s); s += ETH_HLEN; while (s < ETH_ZLEN) *((char *) tp->tx_buffs[entry] + (s++)) = 0; tp->tx_ring[entry].tx_ctrl.bits.tx_buf_size = s; tp->tx_ring[entry].tx_status.bits.own_bit = 1; CR1bak = inb (byCR1); CR1bak = CR1bak | CR1_TDMD1; /*printf("tdsw=[%X]",tp->tx_ring[entry].tx_status.lw); */ /*printf("tdcw=[%X]",tp->tx_ring[entry].tx_ctrl.lw); */ /*printf("tdbuf1=[%X]",tp->tx_ring[entry].buf_addr_1); */ /*printf("tdbuf2=[%X]",tp->tx_ring[entry].buf_addr_2); */ /*printf("td1=[%X]",inl(dwCurrentTDSE0)); */ /*printf("td2=[%X]",inl(dwCurrentTDSE1)); */ /*printf("td3=[%X]",inl(dwCurrentTDSE2)); */ /*printf("td4=[%X]",inl(dwCurrentTDSE3)); */ outb (CR1bak, byCR1); do { load_timer2(10*TICKS_PER_MS); /* Wait until transmit is finished or timeout*/ while((tp->tx_ring[entry].tx_status.bits.own_bit !=0) && timer2_running()) ; if(tp->tx_ring[entry].tx_status.bits.terr == 0) break; if(tp->tx_ring[entry].tx_status.bits.abt == 1) { // turn on TX CR0bak = inb(byCR0); CR0bak = CR0bak|CR_TXON; outb(CR0bak,byCR0); } }while(0); tp->cur_tx++; /*outw(IMRShadow,byIMR0); */ /*dev_kfree_skb(tp->tx_skbuff[entry], FREE_WRITE); */ /*tp->tx_skbuff[entry] = 0; */ } static struct nic_operations rhine_operations = { .connect = dummy_connect, .poll = rhine_poll, .transmit = rhine_transmit, .irq = rhine_irq, }; static struct pci_device_id rhine_nics[] = { PCI_ROM(0x1106, 0x3065, "dlink-530tx", "VIA 6102"), PCI_ROM(0x1106, 0x3106, "via-rhine-6105", "VIA 6105"), PCI_ROM(0x1106, 0x3043, "dlink-530tx-old", "VIA 3043"), /* Rhine-I 86c100a */ PCI_ROM(0x1106, 0x3053, "via6105m", "VIA 6105M"), PCI_ROM(0x1106, 0x6100, "via-rhine-old", "VIA 86C100A"), /* Rhine-II */ }; PCI_DRIVER ( rhine_driver, rhine_nics, PCI_NO_CLASS ); DRIVER ( "VIA 86C100", nic_driver, pci_driver, rhine_driver, rhine_probe, rhine_disable ); /* EOF via-rhine.c */