2
0
mirror of https://opendev.org/x/pyghmi synced 2025-04-18 19:19:02 +00:00
pyghmi/pyghmi/ipmi/private/session.py
Jarrod Johnson b43988cac5 Fix synchronous logon premature exit
When logging in, the caller is released to submit a new command before
the session is actually logged in.  Fix this by waiting for the appropriate
flag to go False.

Change-Id: I884b7da1b64c6786f673a18ee4c7d2ca69ec0bff
2016-03-13 09:52:14 -04:00

1555 lines
66 KiB
Python

# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright 2013 IBM Corporation
# Copyright 2015-2016 Lenovo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This represents the low layer message framing portion of IPMI
import collections
import ctypes
import hashlib
import hmac
import operator
import os
import random
import select
import socket
import struct
import threading
import traceback
from Crypto.Cipher import AES
import pyghmi.exceptions as exc
from pyghmi.ipmi.private import constants
initialtimeout = 0.5 # minimum timeout for first packet to retry in any given
# session. This will be randomized to stagger out retries
# in case of congestion
iothread = None # the thread in which all IO will be performed
# While the model as-is works fine for it's own coroutine
# structure, when combined with threading or something like
# eventlet, it becomes difficult for the calling code to cope
# This thread will tuck away the threading situation such that
# calling code doesn't have to do any gymnastics to cope with
# the nature of things.
iothreadready = False # whether io thread is yet ready to work
iothreadwaiters = [] # threads waiting for iothreadready
ioqueue = collections.deque([])
selectdeadline = 0
running = True
iosockets = [] # set of iosockets that will be shared amongst Session objects
MAX_BMCS_PER_SOCKET = 64 # no more than this many BMCs will share a socket
# this could be adjusted based on rmem_max
# value, leading to fewer filehandles
def define_worker():
class _IOWorker(threading.Thread):
def join(self):
Session._cleanup()
self.running = False
iosockets[0].sendto('\x01', ('::1', iosockets[0].getsockname()[1]))
super(_IOWorker, self).join()
def run(self):
self.running = True
global iothreadready
global selectdeadline
iowaiters = []
timeout = 300
iothreadready = True
while iothreadwaiters:
waiter = iothreadwaiters.pop()
waiter.set()
while self.running:
if timeout < 0:
timeout = 0
selectdeadline = _monotonic_time() + timeout
tmplist, _, _ = select.select(iosockets, (), (), timeout)
# pessimistically move out the deadline
# doing it this early (before ioqueue is evaluated)
# this avoids other threads making a bad assumption
# about not having to break into the select
selectdeadline = _monotonic_time() + 300
_io_graball(iosockets)
for w in iowaiters:
w[3].set()
iowaiters = []
timeout = 300
while ioqueue:
workitem = ioqueue.popleft()
# order: function, args, list to append to , event to set
if isinstance(workitem[1], tuple): # positional arguments
try:
workitem[2].append(workitem[0](*workitem[1]))
except Exception:
traceback.print_exc()
workitem[3].set()
elif isinstance(workitem[1], dict):
try:
workitem[2].append(workitem[0](**workitem[1]))
except Exception:
traceback.print_exc()
workitem[3].set()
elif workitem[0] == 'wait':
if pktqueue:
workitem[3].set()
else:
ltimeout = workitem[1] - _monotonic_time()
if ltimeout < timeout:
timeout = ltimeout
iowaiters.append(workitem)
return _IOWorker
pktqueue = collections.deque([])
def _io_wait(timeout):
evt = threading.Event()
result = []
deadline = timeout + _monotonic_time()
ioqueue.append(('wait', deadline, result, evt))
# Unfortunately, at least with eventlet patched threading, the wait()
# is a somewhat busy wait if given a deadline. Workaround by having
# it piggy back on the select() in the io thread, which is a truly
# lazy wait even with eventlet involvement
if deadline < selectdeadline:
iosockets[0].sendto('\x01', ('::1', iosockets[0].getsockname()[1]))
evt.wait()
def _io_sendto(mysocket, packet, sockaddr):
#Want sendto to act reasonably sane..
mysocket.setblocking(1)
try:
mysocket.sendto(packet, sockaddr)
except Exception:
pass
def _io_graball(mysockets):
for mysocket in mysockets:
while True:
rdata = _io_recvfrom(mysocket, 3000)
if rdata is None:
break
# If the payload is shorter than 4 bytes, it cannot
# be a useful packet. Skip it entirely.
# This applies to the packet sent to self to break
# into the select
if len(rdata[0]) < 4:
continue
rdata = rdata + (mysocket,)
pktqueue.append(rdata)
def _io_recvfrom(mysocket, size):
mysocket.setblocking(0)
try:
return mysocket.recvfrom(size)
except socket.error:
return None
wintime = None
try:
wintime = ctypes.windll.kernel32.GetTickCount64
except AttributeError:
pass
try:
IPPROTO_IPV6 = socket.IPPROTO_IPV6
except AttributeError:
IPPROTO_IPV6 = 41 # This is the Win32 version of IPPROTO_IPV6, the only
# platform where python *doesn't* have this in socket that pyghmi is
# targetting.
def _monotonic_time():
"""Provides a monotonic timer
This code is concerned with relative, not absolute time.
This function facilitates that prior to python 3.3
"""
# Python does not provide one until 3.3, so we make do
# for most OSes, os.times()[4] works well.
# for microsoft, GetTickCount64
if wintime:
return wintime() / 1000.0
return os.times()[4]
def _poller(timeout=0):
if pktqueue:
return True
_io_wait(timeout)
return pktqueue
def _aespad(data):
"""ipmi demands a certain pad scheme,
per table 13-20 AES-CBC encrypted payload fields.
"""
newdata = list(data)
currlen = len(data) + 1 # need to count the pad length field as well
neededpad = currlen % 16
if neededpad: # if it happens to be zero, hurray, but otherwise invert the
# sense of the padding
neededpad = 16 - neededpad
padval = 1
while padval <= neededpad:
newdata.append(padval)
padval += 1
newdata.append(neededpad)
return newdata
def get_ipmi_error(response, suffix=""):
if 'error' in response:
return response['error'] + suffix
code = response['code']
if code == 0:
return False
command = response['command']
netfn = response['netfn']
if ((netfn, command) in constants.command_completion_codes
and code in constants.command_completion_codes[(netfn, command)]):
res = constants.command_completion_codes[(netfn, command)][code]
res += suffix
elif code in constants.ipmi_completion_codes:
res = constants.ipmi_completion_codes[code] + suffix
else:
res = "Unknown code 0x%2x encountered" % code
return res
def _checksum(*data): # Two's complement over the data
csum = sum(data)
csum ^= 0xff
csum += 1
csum &= 0xff
return csum
class Session(object):
"""A class to manage common IPMI session logistics
Almost all developers should not worry about this class and instead be
looking toward ipmi.Command and ipmi.Console.
For those that do have to worry, the main interesting thing is that the
event loop can go one of two ways. Either a larger manager can query using
class methods
the soonest timeout deadline and the filehandles to poll and assume
responsibility for the polling, or it can register filehandles to be
watched. This is primarily of interest to Console class, which may have an
input filehandle to watch and can pass it to Session.
:param bmc: hostname or ip address of the BMC
:param userid: username to use to connect
:param password: password to connect to the BMC
:param kg: optional parameter if BMC requires Kg be set
:param port: UDP port to communicate with, pretty much always 623
:param onlogon: callback to receive notification of login completion
"""
bmc_handlers = {}
waiting_sessions = {}
keepalive_sessions = {}
peeraddr_to_nodes = {}
iterwaiters = []
#NOTE(jbjohnso):
#socketpool is a mapping of sockets to usage count
socketpool = {}
#this will be a lock. Delay the assignment so that a calling framework
#can do something like reassign our threading and select modules
socketchecking = None
@classmethod
def _cleanup(cls):
for session in cls.bmc_handlers.itervalues():
session.cleaningup = True
session.logout()
@classmethod
def _assignsocket(cls, server=None):
global iothread
global iothreadready
global iosockets
# seek for the least used socket. As sessions close, they may free
# up slots in seemingly 'full' sockets. This scheme allows those
# slots to be recycled
sorted_candidates = None
if server is None:
sorted_candidates = sorted(cls.socketpool.iteritems(),
key=operator.itemgetter(1))
if sorted_candidates and sorted_candidates[0][1] < MAX_BMCS_PER_SOCKET:
cls.socketpool[sorted_candidates[0][0]] += 1
return sorted_candidates[0][0]
# we need a new socket
tmpsocket = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM) # INET6
# can do IPv4 if you are nice to it
tmpsocket.setsockopt(IPPROTO_IPV6, socket.IPV6_V6ONLY, 0)
if server is None:
# Rather than wait until send() to bind, bind now so that we have
# a port number allocated no matter what
tmpsocket.bind(('', 0))
cls.socketpool[tmpsocket] = 1
else:
tmpsocket.bind(server)
iosockets.append(tmpsocket)
if iothread is None:
initevt = threading.Event()
iothreadwaiters.append(initevt)
_IOWorker = define_worker()
iothread = _IOWorker()
iothread.start()
initevt.wait()
elif not iothreadready:
initevt = threading.Event()
iothreadwaiters.append(initevt)
initevt.wait()
return tmpsocket
def _sync_login(self, response):
"""Handle synchronous callers in liue of
a client-provided callback.
"""
if 'error' in response:
raise exc.IpmiException(response['error'])
def __new__(cls,
bmc,
userid,
password,
port=623,
kg=None,
onlogon=None):
trueself = None
for res in socket.getaddrinfo(bmc, port, 0, socket.SOCK_DGRAM):
sockaddr = res[4]
if res[0] == socket.AF_INET: # convert the sockaddr to AF_INET6
newhost = '::ffff:' + sockaddr[0]
sockaddr = (newhost, sockaddr[1], 0, 0)
if sockaddr in cls.bmc_handlers:
self = cls.bmc_handlers[sockaddr]
if (self.bmc == bmc and self.userid == userid and
self.password == password and self.kgo == kg and
(self.logged or self.logging)):
trueself = self
else:
del cls.bmc_handlers[sockaddr]
if trueself:
return trueself
return object.__new__(cls)
def __init__(self,
bmc,
userid,
password,
port=623,
kg=None,
onlogon=None):
if hasattr(self, 'initialized'):
# new found an existing session, do not corrupt it
if onlogon is None:
while self.logging:
Session.wait_for_rsp()
else:
if self.logging:
self.logonwaiters.append(onlogon)
else:
self.iterwaiters.append(onlogon)
return
self.privlevel = 4
self.maxtimeout = 3 # be aggressive about giving up on initial packet
self.incommand = False
self.nameonly = 16 # default to name only lookups in RAKP exchange
self.servermode = False
self.initialized = True
self.cleaningup = False
self.lastpayload = None
self._customkeepalives = None
self.bmc = bmc
self.broken = False
try:
self.userid = userid.encode('utf-8')
self.password = password.encode('utf-8')
except AttributeError:
self.userid = userid
self.password = password
self.nowait = False
self.pendingpayloads = collections.deque([])
self.request_entry = []
self.kgo = kg
if kg is not None:
try:
kg = kg.encode('utf-8')
except AttributeError:
pass
self.kg = kg
else:
self.kg = self.password
self.port = port
if onlogon is None:
self.async = False
self.logonwaiters = [self._sync_login]
else:
self.async = True
self.logonwaiters = [onlogon]
if self.__class__.socketchecking is None:
self.__class__.socketchecking = threading.Lock()
with self.socketchecking:
self.socket = self._assignsocket()
self.login()
if not self.async:
while self.logging:
Session.wait_for_rsp()
def _mark_broken(self):
# since our connection has failed retries
# deregister our keepalive facility
Session.keepalive_sessions.pop(self, None)
Session.waiting_sessions.pop(self, None)
self.logging = False
if self.logged:
self.logged = 0 # mark session as busted
self.logging = False
self._customkeepalives = None
if not self.broken:
self.socketpool[self.socket] -= 1
self.broken = True
# since this session is broken, remove it from the handler list
# This allows constructor to create a new, functional object to
# replace this one
for sockaddr in self.allsockaddrs:
if sockaddr in Session.bmc_handlers:
del Session.bmc_handlers[sockaddr]
if self.sol_handler:
self.sol_handler({'error': 'Session Disconnected'})
elif not self.broken:
self.broken = True
self.socketpool[self.socket] -= 1
def onlogon(self, parameter):
if 'error' in parameter:
self._mark_broken()
while self.logonwaiters:
waiter = self.logonwaiters.pop()
waiter(parameter)
def _initsession(self):
# NOTE(jbjohnso): this number can be whatever we want.
# I picked 'xCAT' minus 1 so that a hexdump of packet
# would show xCAT
self.localsid = 2017673555
self.confalgo = 0
self.aeskey = None
self.integrityalgo = 0
self.k1 = None
self.rmcptag = 1
self.lastpayload = None
self.ipmicallback = None
self.sessioncontext = None
self.sequencenumber = 0
self.sessionid = 0
self.authtype = 0
self.ipmiversion = 1.5
self.timeout = initialtimeout + (0.5 * random.random())
self.seqlun = 0
# NOTE(jbjohnso): per IPMI table 5-4, software ids in the ipmi spec may
# be 0x81 through 0x8d. We'll stick with 0x81 for now,
# do not forsee a reason to adjust
self.rqaddr = 0x81
self.logging = True
self.logged = 0
# NOTE(jbjohnso): when we confirm a working sockaddr, put it here to
# skip getaddrinfo
self.sockaddr = None
# NOTE(jbjohnso): this tracks netfn,command,seqlun combinations that
# were retried so that we don't loop around and reuse
# the same request data and cause potential ambiguity
# in return
self.tabooseq = {}
# NOTE(jbjohnso): default to supporting ipmi 2.0. Strictly by spec,
# this should gracefully be backwards compat, but some
# 1.5 implementations checked reserved bits
self.ipmi15only = 0
self.sol_handler = None
# NOTE(jbjohnso): This is the callback handler for any SOL payload
def _make_bridge_request_msg(self, channel, netfn, command):
"""This function generate message for bridge request. It is a
part of ipmi payload.
"""
head = [constants.IPMI_BMC_ADDRESS,
constants.netfn_codes['application'] << 2]
check_sum = _checksum(*head)
#NOTE(fengqian): according IPMI Figure 14-11, rqSWID is set to 81h
boday = [0x81, self.seqlun, constants.IPMI_SEND_MESSAGE_CMD,
0x40 | channel]
#NOTE(fengqian): Track request
self._add_request_entry((constants.netfn_codes['application'] + 1,
self.seqlun, constants.IPMI_SEND_MESSAGE_CMD))
return head + [check_sum] + boday
def _add_request_entry(self, entry=()):
"""This function record the request with netfn, sequence number and
command, which will be used in parse_ipmi_payload.
:param entry: a set of netfn, sequence number and command.
"""
if not self._lookup_request_entry(entry):
self.request_entry.append(entry)
def _lookup_request_entry(self, entry=()):
return entry in self.request_entry
def _remove_request_entry(self, entry=()):
if self._lookup_request_entry(entry):
self.request_entry.remove(entry)
def _make_ipmi_payload(self, netfn, command, bridge_request=None, data=()):
"""This function generates the core ipmi payload that would be
applicable for any channel (including KCS)
"""
bridge_msg = []
self.expectedcmd = command
self.expectednetfn = netfn + \
1 # in ipmi, the response netfn is always one
# higher than the request payload, we assume
# we are always the requestor for now
seqincrement = 7 # IPMI spec forbids gaps bigger then 7 in seq number.
# Risk the taboo rather than violate the rules
while (not self.servermode and
(netfn, command, self.seqlun) in self.tabooseq and
self.tabooseq[(netfn, command, self.seqlun)] and seqincrement):
self.tabooseq[(self.expectednetfn, command, self.seqlun)] -= 1
# Allow taboo to eventually expire after a few rounds
self.seqlun += 4 # the last two bits are lun, so add 4 to add 1
self.seqlun &= 0xff # we only have one byte, wrap when exceeded
seqincrement -= 1
if bridge_request:
addr = bridge_request.get('addr', 0x0)
channel = bridge_request.get('channel', 0x0)
bridge_msg = self._make_bridge_request_msg(channel, netfn, command)
#NOTE(fengqian): For bridge request, rsaddr is specified and
# rqaddr is BMC address.
rqaddr = constants.IPMI_BMC_ADDRESS
rsaddr = addr
else:
rqaddr = self.rqaddr
rsaddr = constants.IPMI_BMC_ADDRESS
if self.servermode:
rsaddr = self.clientaddr
#figure 13-4, first two bytes are rsaddr and
# netfn, for non-bridge request, rsaddr is always 0x20 since we are
# addressing BMC while rsaddr is specified forbridge request
header = [rsaddr, netfn << 2]
reqbody = [rqaddr, self.seqlun, command] + list(data)
headsum = _checksum(*header)
bodysum = _checksum(*reqbody)
payload = header + [headsum] + reqbody + [bodysum]
if bridge_request:
payload = bridge_msg + payload
#NOTE(fengqian): For bridge request, another check sum is needed.
tail_csum = _checksum(*payload[3:])
payload.append(tail_csum)
if not self.servermode:
self._add_request_entry((self.expectednetfn, self.seqlun, command))
return payload
def _generic_callback(self, response):
errorstr = get_ipmi_error(response)
if errorstr:
response['error'] = errorstr
self.lastresponse = response
def _isincommand(self):
if self.incommand:
stillin = self.incommand - _monotonic_time()
if stillin > 0:
return stillin
return 0
def _getmaxtimeout(self):
cumulativetime = 0
incrementtime = self.timeout
while incrementtime < self.maxtimeout:
cumulativetime += incrementtime
incrementtime += 1
return cumulativetime + 1
def raw_command(self,
netfn,
command,
bridge_request=None,
data=(),
retry=True,
delay_xmit=None,
timeout=None):
if not self.logged:
raise exc.IpmiException('Session no longer connected')
while self._isincommand():
Session.wait_for_rsp(self._isincommand())
if not self.logged:
raise exc.IpmiException('Session no longer connected')
self.incommand = _monotonic_time() + self._getmaxtimeout()
self.lastresponse = None
self.ipmicallback = self._generic_callback
self._send_ipmi_net_payload(netfn, command, data,
bridge_request=bridge_request,
retry=retry, delay_xmit=delay_xmit,
timeout=timeout)
if retry: # in retry case, let the retry timers indicate wait time
timeout = None
else: # if not retry, give it a second before surrending
timeout = 1
#The event loop is shared amongst pyghmi session instances
#within a process. In this way, synchronous usage of the interface
#plays well with asynchronous use. In fact, this produces the behavior
#of only the constructor needing a callback. From then on,
#synchronous usage of the class acts in a greenthread style governed by
#order of data on the network
while retry and self.lastresponse is None and self.logged:
Session.wait_for_rsp(timeout=timeout)
lastresponse = self.lastresponse
self.incommand = False
if retry and lastresponse is None:
raise exc.IpmiException('Session no longer connected')
return lastresponse
def _send_ipmi_net_payload(self, netfn=None, command=None, data=[], code=0,
bridge_request=None,
retry=None, delay_xmit=None, timeout=None):
if retry is None:
retry = not self.servermode
if self.servermode:
data = [code] + data
if netfn is None:
netfn = self.clientnetfn
if command is None:
command = self.clientcommand
ipmipayload = self._make_ipmi_payload(netfn, command, bridge_request,
data)
payload_type = constants.payload_types['ipmi']
self.send_payload(payload=ipmipayload, payload_type=payload_type,
retry=retry, delay_xmit=delay_xmit, timeout=timeout)
def send_payload(self, payload=(), payload_type=None, retry=True,
delay_xmit=None, needskeepalive=False, timeout=None):
"""Send payload over the IPMI Session
:param needskeepalive: If the payload is expected not to count as
'active' by the BMC, set this to True
to avoid Session considering the
job done because of this payload.
Notably, 0-length SOL packets
are prone to confusion.
:param timeout: Specify a custom timeout for long-running request
"""
if payload and self.lastpayload:
# we already have a packet outgoing, make this
# a pending payload
# this way a simplistic BMC won't get confused
# and we also avoid having to do more complicated
# retry mechanism where each payload is
# retried separately
self.pendingpayloads.append((payload, payload_type, retry))
return
if payload_type is None:
payload_type = self.last_payload_type
if not payload:
payload = self.lastpayload
message = [0x6, 0, 0xff, 0x07] # constant RMCP header for IPMI
if retry:
self.lastpayload = payload
self.last_payload_type = payload_type
message.append(self.authtype)
baretype = payload_type
if self.integrityalgo:
payload_type |= 0b01000000
if self.confalgo:
payload_type |= 0b10000000
if self.ipmiversion == 2.0:
message.append(payload_type)
if baretype == 2:
#TODO(jbjohnso): OEM payload types
raise NotImplementedError("OEM Payloads")
elif baretype not in constants.payload_types.values():
raise NotImplementedError(
"Unrecognized payload type %d" % baretype)
message += struct.unpack("!4B", struct.pack("<I", self.sessionid))
message += struct.unpack("!4B", struct.pack("<I", self.sequencenumber))
if self.ipmiversion == 1.5:
message += struct.unpack("!4B", struct.pack("<I", self.sessionid))
if not self.authtype == 0:
message += self._ipmi15authcode(payload)
message.append(len(payload))
message += payload
totlen = 34 + \
len(message) # Guessing the ipmi spec means the whole
# packet and assume no tag in old 1.5 world
if totlen in (56, 84, 112, 128, 156):
message.append(0) # Legacy pad as mandated by ipmi spec
elif self.ipmiversion == 2.0:
psize = len(payload)
if self.confalgo:
pad = (
psize + 1) % 16 # pad has to cope with one byte field like
# the _aespad function
if pad: # if no pad needed, then we take no more action
pad = 16 - pad
newpsize = psize + pad + \
17 # new payload size grew according to pad
# size, plus pad length, plus 16 byte IV
#(Table 13-20)
message.append(newpsize & 0xff)
message.append(newpsize >> 8)
iv = os.urandom(16)
message += list(struct.unpack("16B", iv))
payloadtocrypt = _aespad(payload)
crypter = AES.new(self.aeskey, AES.MODE_CBC, iv)
crypted = crypter.encrypt(struct.pack("%dB" %
len(payloadtocrypt),
*payloadtocrypt))
crypted = list(struct.unpack("%dB" % len(crypted), crypted))
message += crypted
else: # no confidetiality algorithm
message.append(psize & 0xff)
message.append(psize >> 8)
message += list(payload)
if self.integrityalgo: # see table 13-8,
# RMCP+ packet format
# TODO(jbjohnso): SHA256 which is now
# allowed
neededpad = (len(message) - 2) % 4
if neededpad:
neededpad = 4 - neededpad
message += [0xff] * neededpad
message.append(neededpad)
message.append(7) # reserved, 7 is the required value for the
# specification followed
integdata = message[4:]
authcode = hmac.new(self.k1,
struct.pack("%dB" % len(integdata),
*integdata),
hashlib.sha1).digest()[:12] # SHA1-96
# per RFC2404 truncates to 96 bits
message += struct.unpack("12B", authcode)
self.netpacket = struct.pack("!%dB" % len(message), *message)
#advance idle timer since we don't need keepalive while sending packets
#out naturally
if (self in Session.keepalive_sessions and not needskeepalive and
not self._customkeepalives):
Session.keepalive_sessions[self]['timeout'] = _monotonic_time() + \
25 + (random.random() * 4.9)
self._xmit_packet(retry, delay_xmit=delay_xmit, timeout=timeout)
def _ipmi15authcode(self, payload, checkremotecode=False):
#checkremotecode is used to verify remote code,
#otherwise this function is used to general authcode for local
if self.authtype == 0: # Only for things before auth in ipmi 1.5, not
# like 2.0 cipher suite 0
return ()
password = self.password
padneeded = 16 - len(password)
if padneeded < 0:
raise exc.IpmiException("Password is too long for ipmi 1.5")
password += '\x00' * padneeded
passdata = struct.unpack("16B", password)
if checkremotecode:
seqbytes = struct.unpack("!4B",
struct.pack("<I", self.remsequencenumber))
else:
seqbytes = struct.unpack("!4B",
struct.pack("<I", self.sequencenumber))
sessdata = struct.unpack("!4B", struct.pack("<I", self.sessionid))
bodydata = passdata + sessdata + tuple(payload) + seqbytes + passdata
dgst = hashlib.md5(
struct.pack("%dB" % len(bodydata), *bodydata)).digest()
hashdata = struct.unpack("!%dB" % len(dgst), dgst)
return hashdata
def _got_channel_auth_cap(self, response):
if 'error' in response:
self.onlogon(response)
return
self.maxtimeout = 6 # we have a confirmed bmc, be more tenacious
if response['code'] == 0xcc and self.ipmi15only is not None:
# tried ipmi 2.0 against a 1.5 which should work, but some bmcs
# thought 'reserved' meant 'must be zero'
self.ipmi15only = 1
return self._get_channel_auth_cap()
mysuffix = " while trying to get channel authentication capabalities"
errstr = get_ipmi_error(response, suffix=mysuffix)
if errstr:
self.onlogon({'error': errstr})
return
data = response['data']
self.currentchannel = data[0]
if data[1] & 0b10000000 and data[3] & 0b10: # ipmi 2.0 support
self.ipmiversion = 2.0
if self.ipmiversion == 1.5:
if not (data[1] & 0b100):
self.onlogon(
{'error':
"MD5 required but not enabled/available on target BMC"})
return
self._get_session_challenge()
elif self.ipmiversion == 2.0:
self._open_rmcpplus_request()
def _got_session_challenge(self, response):
errstr = get_ipmi_error(response,
suffix=" while getting session challenge")
if errstr:
self.onlogon({'error': errstr})
return
data = response['data']
self.sessionid = struct.unpack("<I", struct.pack("4B", *data[0:4]))[0]
self.authtype = 2
self._activate_session(data[4:])
# NOTE(jbjohnso):
# This sends the activate session payload. We pick '1' as the requested
# sequence number without perturbing our real sequence number
def _activate_session(self, data):
rqdata = [2, 4] + list(data) + [1, 0, 0, 0]
# TODO(jbjohnso): this always requests admin level (1.5)
self.ipmicallback = self._activated_session
self._send_ipmi_net_payload(netfn=0x6, command=0x3a, data=rqdata)
def _activated_session(self, response):
errstr = get_ipmi_error(response)
if errstr:
self.onlogon({'error': errstr})
return
data = response['data']
self.sessionid = struct.unpack("<I", struct.pack("4B", *data[1:5]))[0]
self.sequencenumber = struct.unpack("<I",
struct.pack("4B", *data[5:9]))[0]
self._req_priv_level()
def _req_priv_level(self):
self.logged = 1
response = self.raw_command(netfn=0x6, command=0x3b,
data=[self.privlevel])
if response['code']:
if response['code'] in (0x80, 0x81) and self.privlevel == 4:
# some implementations will let us get this far,
# but suddenly get skiddish. Try again in such a case
self.privlevel = 3
response = self.raw_command(netfn=0x6, command=0x3b,
data=[self.privlevel])
if response['code']:
self.logged = 0
self.logging = False
mysuffix = " while requesting privelege level %d for %s" % (
self.privlevel, self.userid)
errstr = get_ipmi_error(response, suffix=mysuffix)
if errstr:
self.onlogon({'error': errstr})
return
self.logging = False
Session.keepalive_sessions[self] = {}
Session.keepalive_sessions[self]['ipmisession'] = self
Session.keepalive_sessions[self]['timeout'] = _monotonic_time() + \
25 + (random.random() * 4.9)
self.onlogon({'success': True})
def _get_session_challenge(self):
reqdata = [2]
if len(self.userid) > 16:
raise exc.IpmiException(
"Username too long for IPMI, must not exceed 16")
padneeded = 16 - len(self.userid)
userid = self.userid + ('\x00' * padneeded)
reqdata += struct.unpack("!16B", userid)
self.ipmicallback = self._got_session_challenge
self._send_ipmi_net_payload(netfn=0x6, command=0x39, data=reqdata)
def _open_rmcpplus_request(self):
self.authtype = 6
self.localsid += 1 # have unique local session ids to ignore aborted
# login attempts from the past
self.rmcptag += 1
data = [
self.rmcptag,
0, # request as much privilege as the channel will give us
0, 0, # reserved
]
data += list(struct.unpack("4B", struct.pack("<I", self.localsid)))
data += [
0, 0, 0, 8, 1, 0, 0, 0, # table 13-17, SHA-1
1, 0, 0, 8, 1, 0, 0, 0, # SHA-1 integrity
2, 0, 0, 8, 1, 0, 0, 0, # AES privacy
#2,0,0,8,0,0,0,0, #no privacy confalgo
]
self.sessioncontext = 'OPENSESSION'
self.send_payload(
payload=data,
payload_type=constants.payload_types['rmcpplusopenreq'])
def _get_channel_auth_cap(self):
self.ipmicallback = self._got_channel_auth_cap
if self.ipmi15only:
self._send_ipmi_net_payload(netfn=0x6,
command=0x38,
data=[0x0e, self.privlevel])
else:
self._send_ipmi_net_payload(netfn=0x6,
command=0x38,
data=[0x8e, self.privlevel])
def login(self):
self.logontries = 5
self._initsession()
self._get_channel_auth_cap()
@classmethod
def wait_for_rsp(cls, timeout=None, callout=True):
"""IPMI Session Event loop iteration
This watches for any activity on IPMI handles and handles registered
by register_handle_callback. Callers are satisfied in the order that
packets return from nework, not in the order of calling.
:param timeout: Maximum time to wait for data to come across. If
unspecified, will autodetect based on earliest timeout
"""
global iosockets
#Assume:
#Instance A sends request to packet B
#Then Instance C sends request to BMC D
#BMC D was faster, so data comes back before BMC B
#Instance C gets to go ahead of Instance A, because
#Instance C can get work done, but instance A cannot
curtime = _monotonic_time()
# There ar a number of parties that each has their own timeout
# The caller can specify a deadline in timeout argument
# each session with active outbound payload has callback to
# handle retry/timout error
# each session that is 'alive' wants to send a keepalive ever so often.
# We want to make sure the most strict request is honored and block for
# no more time than that, so that whatever part(ies) need to service in
# a deadline, will be honored
if timeout != 0:
for session, parms in cls.waiting_sessions.iteritems():
if parms['timeout'] <= curtime:
timeout = 0 # exit after one guaranteed pass
break
if (timeout is not None and
timeout < parms['timeout'] - curtime):
continue # timeout smaller than the current session needs
timeout = parms['timeout'] - curtime # set new timeout value
for session, parms in cls.keepalive_sessions.iteritems():
if parms['timeout'] <= curtime:
timeout = 0
break
if (timeout is not None and
timeout < parms['timeout'] - curtime):
continue
timeout = parms['timeout'] - curtime
# If the loop above found no sessions wanting *and* the caller had no
# timeout, exit function. In this case there is no way a session
# could be waiting so we can always return 0
while cls.iterwaiters:
waiter = cls.iterwaiters.pop()
waiter({'success': True})
# cause a quick exit from the event loop iteration for calling code
# to be able to reasonably set up for the next iteration before
# a long select comes along
if timeout is not None:
timeout = 0
if timeout is None:
return 0
if _poller(timeout=timeout):
while pktqueue:
(data, sockaddr, mysocket) = pktqueue.popleft()
cls._route_ipmiresponse(sockaddr, data, mysocket)
sessionstodel = []
sessionstokeepalive = []
for session, parms in cls.keepalive_sessions.iteritems():
# if the session is busy inside a command, defer invoking keepalive
# until incommand is no longer the case
if parms['timeout'] < curtime and not session._isincommand():
cls.keepalive_sessions[session]['timeout'] = \
_monotonic_time() + 25 + (random.random() * 4.9)
sessionstokeepalive.append(session)
for session in sessionstokeepalive:
session._keepalive()
for session, parms in cls.waiting_sessions.iteritems():
if parms['timeout'] < curtime: # timeout has expired, time to
# give up on it and trigger timeout
# response in the respective
# session
sessionstodel.append(
session) # defer deletion until after loop
# to avoid confusing the for loop
for session in sessionstodel:
cls.waiting_sessions.pop(session, None)
# one loop iteration to make sure recursion doesn't induce redundant
# timeouts
for session in sessionstodel:
session._timedout()
return len(cls.waiting_sessions)
def register_keepalive(self, cmd, callback):
'''Register custom keepalive IPMI command
This is mostly intended for use by the console code.
calling code would have an easier time just scheduling in their
own threading scheme. Such a behavior would naturally cause
the default keepalive to not occur anyway if the calling code
is at least as aggressive about timing as pyghmi
:param cmd: A dict of arguments to be passed into raw_command
:param callback: A function to be called with results of the keepalive
:returns: value to identify registration for unregister_keepalive
'''
regid = random.random()
if self._customkeepalives is None:
self._customkeepalives = {regid: (cmd, callback)}
else:
while regid in self._customkeepalives:
regid = random.random()
self._customkeepalives[regid] = (cmd, callback)
return regid
def unregister_keepalive(self, regid):
if self._customkeepalives is None:
return
try:
del self._customkeepalives[regid]
except KeyError:
pass
def _keepalive(self):
"""Performs a keepalive to avoid idle disconnect
"""
try:
if not self._customkeepalives:
if self.incommand:
# if currently in command, no cause to keepalive
return
self.raw_command(netfn=6, command=1)
else:
kaids = list(self._customkeepalives.keys())
for keepalive in kaids:
try:
cmd, callback = self._customkeepalives[keepalive]
except TypeError:
# raw_command made customkeepalives None
break
except KeyError:
# raw command ultimately caused a keepalive to
# deregister
continue
callback(self.raw_command(**cmd))
except exc.IpmiException:
self._mark_broken()
@classmethod
def _route_ipmiresponse(cls, sockaddr, data, mysocket):
if not (data[0] == '\x06' and data[2:4] == '\xff\x07'): # not ipmi
return
try:
cls.bmc_handlers[sockaddr]._handle_ipmi_packet(data,
sockaddr=sockaddr)
except KeyError:
# check if we have a server attached to the target socket
if mysocket in cls.bmc_handlers:
cls.bmc_handlers[mysocket].sessionless_data(data, sockaddr)
def _handle_ipmi_packet(self, data, sockaddr=None):
if self.sockaddr is None and sockaddr is not None:
self.sockaddr = sockaddr
elif (self.sockaddr is not None and
sockaddr is not None and
self.sockaddr != sockaddr):
return # here, we might have sent an ipv4 and ipv6 packet to kick
# things off ignore the second reply since we have one
# satisfactory answer
if data[4] in ('\x00', '\x02'): # This is an ipmi 1.5 paylod
remsequencenumber = struct.unpack('<I', data[5:9])[0]
if (hasattr(self, 'remsequencenumber') and
remsequencenumber < self.remsequencenumber):
return -5 # remote sequence number is too low, reject it
self.remsequencenumber = remsequencenumber
if ord(data[4]) != self.authtype:
return -2 # BMC responded with mismatch authtype, for
# mutual authentication reject it. If this causes
# legitimate issues, it's the vendor's fault
remsessid = struct.unpack("<I", data[9:13])[0]
if remsessid != self.sessionid:
return -1 # does not match our session id, drop it
# now we need a mutable representation of the packet, rather than
# copying pieces of the packet over and over
rsp = list(struct.unpack("!%dB" % len(data), data))
authcode = False
if data[4] == '\x02': # we have authcode in this ipmi 1.5 packet
authcode = data[13:29]
del rsp[13:29]
# this is why we needed a mutable representation
payload = list(rsp[14:14 + rsp[13]])
if authcode:
expectedauthcode = self._ipmi15authcode(payload,
checkremotecode=True)
expectedauthcode = struct.pack("%dB" % len(expectedauthcode),
*expectedauthcode)
if expectedauthcode != authcode:
return
self._parse_ipmi_payload(payload)
elif data[4] == '\x06':
self._handle_ipmi2_packet(data)
else:
return # unrecognized data, assume evil
def _got_rakp1(self, data):
# stub, client sessions ignore rakp2
pass
def _got_rakp3(self, data):
#stub, client sessions ignore rakp3
pass
def _got_rmcp_openrequest(self, data):
pass
def _handle_ipmi2_packet(self, rawdata):
data = list(struct.unpack("%dB" % len(rawdata), rawdata))
#now need mutable array
ptype = data[5] & 0b00111111
# the first 16 bytes are header information as can be seen in 13-8 that
# we will toss out
if ptype == 0x10:
return self._got_rmcp_openrequest(data[16:])
elif ptype == 0x11: # rmcp+ response
return self._got_rmcp_response(data[16:])
elif ptype == 0x12:
return self._got_rakp1(data[16:])
elif ptype == 0x13:
return self._got_rakp2(data[16:])
elif ptype == 0x14:
return self._got_rakp3(data[16:])
elif ptype == 0x15:
return self._got_rakp4(data[16:])
elif ptype == 0 or ptype == 1: # good old ipmi payload or sol
# If endorsing a shared secret scheme, then at the very least it
# needs to do mutual assurance
if not (data[5] & 0b01000000): # This would be the line that might
# trip up some insecure BMC
# implementation
return
encrypted = 0
if data[5] & 0b10000000:
encrypted = 1
authcode = rawdata[-12:]
if self.k1 is None: # we are in no shape to process a packet now
return
expectedauthcode = hmac.new(
self.k1, rawdata[4:-12], hashlib.sha1).digest()[:12]
if authcode != expectedauthcode:
return # BMC failed to assure integrity to us, drop it
sid = struct.unpack("<I", rawdata[6:10])[0]
if sid != self.localsid: # session id mismatch, drop it
return
remseqnumber = struct.unpack("<I", rawdata[10:14])[0]
if (hasattr(self, 'remseqnumber') and
(remseqnumber < self.remseqnumber) and
(self.remseqnumber != 0xffffffff)):
return
self.remseqnumber = remseqnumber
psize = data[14] + (data[15] << 8)
payload = data[16:16 + psize]
if encrypted:
iv = rawdata[16:32]
decrypter = AES.new(self.aeskey, AES.MODE_CBC, iv)
decrypted = decrypter.decrypt(
struct.pack("%dB" % len(payload[16:]),
*payload[16:]))
payload = struct.unpack("%dB" % len(decrypted), decrypted)
padsize = payload[-1] + 1
payload = list(payload[:-padsize])
if ptype == 0:
self._parse_ipmi_payload(payload)
elif ptype == 1: # There should be no other option
if (payload[1] & 0b1111) and self.last_payload_type == 1:
# for ptype 1, the 4 least significant bits of 2nd byte
# is the ACK number.
# if it isn't an ACK at all, we'll keep retrying, however
# if it's a subtle SOL situation (partial ACK, wrong ACK)
# then sol_handler will have to resubmit and we will
# stop the generic retry behavior here
self.lastpayload = None
self.last_payload_type = None
Session.waiting_sessions.pop(self, None)
if len(self.pendingpayloads) > 0:
(nextpayload, nextpayloadtype, retry) = \
self.pendingpayloads.popleft()
self.send_payload(payload=nextpayload,
payload_type=nextpayloadtype,
retry=retry)
if self.sol_handler:
self.sol_handler(payload)
def _got_rmcp_response(self, data):
# see RMCP+ open session response table
if not (self.sessioncontext and self.sessioncontext != "Established"):
return -9
# ignore payload as we are not in a state valid it
if data[0] != self.rmcptag:
return -9 # use rmcp tag to track and reject stale responses
if data[1] != 0: # response code...
if data[1] in constants.rmcp_codes:
errstr = constants.rmcp_codes[data[1]]
else:
errstr = "Unrecognized RMCP code %d" % data[1]
self.onlogon({'error': errstr})
return -9
self.allowedpriv = data[2]
# NOTE(jbjohnso): At this point, the BMC has no idea about what user
# shall be used. As such, the allowedpriv field is actually
# not particularly useful. got_rakp2 is a good place to
# gracefully detect and downgrade privilege for retry
localsid = struct.unpack("<I", struct.pack("4B", *data[4:8]))[0]
if self.localsid != localsid:
return -9
self.pendingsessionid = struct.unpack(
"<I", struct.pack("4B", *data[8:12]))[0]
# TODO(jbjohnso): currently, we take it for granted that the responder
# accepted our integrity/auth/confidentiality proposal
self.lastpayload = None
self._send_rakp1()
def _send_rakp1(self):
self.rmcptag += 1
self.randombytes = os.urandom(16)
userlen = len(self.userid)
payload = [self.rmcptag, 0, 0, 0] + \
list(struct.unpack("4B",
struct.pack("<I", self.pendingsessionid))) +\
list(struct.unpack("16B", self.randombytes)) +\
[self.nameonly | self.privlevel, 0, 0] +\
[userlen] +\
list(struct.unpack("%dB" % userlen, self.userid))
self.sessioncontext = "EXPECTINGRAKP2"
self.send_payload(
payload=payload, payload_type=constants.payload_types['rakp1'])
def _got_rakp2(self, data):
if not (self.sessioncontext in ('EXPECTINGRAKP2', 'EXPECTINGRAKP4')):
return -9 # if we are not expecting rakp2, ignore. In a retry
# scenario, replying from stale RAKP2 after sending
# RAKP3 seems to be best
if data[0] != self.rmcptag: # ignore mismatched tags for retry logic
return -9
if data[1] != 0: # if not successful, consider next move
if data[1] in (9, 0xd) and self.privlevel == 4:
# Here the situation is likely that the peer didn't want
# us to use Operator. Degrade to operator and try again
self.privlevel = 3
self.login()
return
if data[1] == 2: # invalid sessionid 99% of the time means a retry
# scenario invalidated an in-flight transaction
return
if data[1] in constants.rmcp_codes:
errstr = constants.rmcp_codes[data[1]]
else:
errstr = "Unrecognized RMCP code %d" % data[1]
self.onlogon({'error': errstr + " in RAKP2"})
return -9
localsid = struct.unpack("<I", struct.pack("4B", *data[4:8]))[0]
if localsid != self.localsid:
return -9 # discard mismatch in the session identifier
self.remoterandombytes = struct.pack("16B", *data[8:24])
self.remoteguid = struct.pack("16B", *data[24:40])
userlen = len(self.userid)
hmacdata = struct.pack("<II", localsid, self.pendingsessionid) +\
self.randombytes + self.remoterandombytes + self.remoteguid +\
struct.pack("2B", self.nameonly | self.privlevel, userlen) +\
self.userid
expectedhash = hmac.new(self.password, hmacdata, hashlib.sha1).digest()
hashlen = len(expectedhash)
givenhash = struct.pack("%dB" % hashlen, *data[40:hashlen + 40])
if givenhash != expectedhash:
self.sessioncontext = "FAILED"
self.onlogon({'error': "Incorrect password provided"})
return -9
# We have now validated that the BMC and client agree on password, time
# to store the keys
self.sik = hmac.new(self.kg,
self.randombytes + self.remoterandombytes +
struct.pack("2B", self.nameonly | self.privlevel,
userlen) +
self.userid, hashlib.sha1).digest()
self.k1 = hmac.new(self.sik, '\x01' * 20, hashlib.sha1).digest()
self.k2 = hmac.new(self.sik, '\x02' * 20, hashlib.sha1).digest()
self.aeskey = self.k2[0:16]
self.sessioncontext = "EXPECTINGRAKP4"
self.lastpayload = None
self._send_rakp3()
def _send_rakp3(self): # rakp message 3
self.rmcptag += 1
# rmcptag, then status 0, then two reserved 0s
payload = [self.rmcptag, 0, 0, 0] +\
list(struct.unpack("4B", struct.pack("<I", self.pendingsessionid)))
hmacdata = self.remoterandombytes +\
struct.pack("<I", self.localsid) +\
struct.pack("2B", self.nameonly | self.privlevel,
len(self.userid)) +\
self.userid
authcode = hmac.new(self.password, hmacdata, hashlib.sha1).digest()
payload += list(struct.unpack("%dB" % len(authcode), authcode))
self.send_payload(
payload=payload, payload_type=constants.payload_types['rakp3'])
def _relog(self):
self._initsession()
self.logontries -= 1
return self._get_channel_auth_cap()
def _got_rakp4(self, data):
if self.sessioncontext != "EXPECTINGRAKP4" or data[0] != self.rmcptag:
return -9
if data[1] != 0:
if data[1] == 2 and self.logontries: # if we retried RAKP3 because
# RAKP4 got dropped, BMC can consider it done and we must
# restart
self._relog()
if data[1] == 15 and self.logontries: # ignore 15 value if we are
# retrying. xCAT did but I can't recall why exactly
# TODO(jbjohnso) jog my memory to update the comment
return
if data[1] in constants.rmcp_codes:
errstr = constants.rmcp_codes[data[1]]
else:
errstr = "Unrecognized RMCP code %d" % data[1]
self.onlogon({'error': errstr + " reported in RAKP4"})
return -9
localsid = struct.unpack("<I", struct.pack("4B", *data[4:8]))[0]
if localsid != self.localsid: # ignore if wrong session id indicated
return -9
hmacdata = self.randombytes +\
struct.pack("<I", self.pendingsessionid) +\
self.remoteguid
expectedauthcode = hmac.new(self.sik, hmacdata,
hashlib.sha1).digest()[:12]
aclen = len(expectedauthcode)
authcode = struct.pack("%dB" % aclen, *data[8:aclen + 8])
if authcode != expectedauthcode:
self.onlogon({'error': "Invalid RAKP4 integrity code (wrong Kg?)"})
return
self.sessionid = self.pendingsessionid
self.integrityalgo = 'sha1'
self.confalgo = 'aes'
self.sequencenumber = 1
self.sessioncontext = 'ESTABLISHED'
self.lastpayload = None
self._req_priv_level()
# Internal function to parse IPMI nugget once extracted from its framing
def _parse_ipmi_payload(self, payload):
# For now, skip the checksums since we are in LAN only,
# TODO(jbjohnso): if implementing other channels, add checksum checks
# here
if self.servermode:
self.seqlun = payload[4]
self.clientaddr = payload[3]
self.clientnetfn = (payload[1] >> 2) + 1
self.clientcommand = payload[5]
self._parse_payload(payload)
return
entry = (payload[1] >> 2, payload[4], payload[5])
if self._lookup_request_entry(entry):
self._remove_request_entry(entry)
#NOTE(fengqian): for bridge request, we need to handle the response
#twice. First response shows if message send correctly, second
#response is the real response.
#If the message is send crrectly, we will discard the first
#response or else error message will be parsed and return.
if ((entry[0] in [0x06, 0x07]) and (entry[2] == 0x34)
and (payload[-2] == 0x0)):
return -1
else:
self._parse_payload(payload)
#NOTE(fengqian): recheck if the certain entry is removed in
#case that bridge request failed.
if self.request_entry:
self._remove_request_entry((self.expectednetfn,
self.seqlun, self.expectedcmd))
else:
# payload is not a match for our last packet
# it is also not a bridge request.
return -1
def _parse_payload(self, payload):
if hasattr(self, 'hasretried') and self.hasretried:
self.hasretried = 0
self.tabooseq[
(self.expectednetfn, self.expectedcmd, self.seqlun)] = 16
# try to skip it for at most 16 cycles of overflow
# We want to now remember that we do not have an expected packet
self.expectednetfn = 0x1ff # bigger than one byte means it can never
# match the one byte value by mistake
self.expectedcmd = 0x1ff
if not self.servermode:
self.seqlun += 4 # prepare seqlun for next transmit
self.seqlun &= 0xff # when overflowing, wrap around
Session.waiting_sessions.pop(self, None)
self.lastpayload = None # render retry mechanism utterly incapable of
# doing anything, though it shouldn't matter
self.last_payload_type = None
response = {}
response['netfn'] = payload[1] >> 2
del payload[0:5]
# ^^ remove header of rsaddr/netfn/lun/checksum/rq/seq/lun
del payload[-1] # remove the trailing checksum
response['command'] = payload[0]
if self.servermode:
del payload[0:1]
response['data'] = payload
else:
response['code'] = payload[1]
del payload[0:2]
response['data'] = payload
self.timeout = initialtimeout + (0.5 * random.random())
if not self.servermode and len(self.pendingpayloads) > 0:
(nextpayload, nextpayloadtype, retry) = \
self.pendingpayloads.popleft()
self.send_payload(payload=nextpayload,
payload_type=nextpayloadtype,
retry=retry)
self.ipmicallback(response)
def _timedout(self):
if not self.lastpayload:
return
self.nowait = True
self.timeout += 1
if self.timeout > self.maxtimeout:
response = {'error': 'timeout', 'code': 0xffff}
self.ipmicallback(response)
self.nowait = False
self._mark_broken()
return
elif self.sessioncontext == 'FAILED':
self.nowait = False
return
if self.sessioncontext == 'OPENSESSION':
# In this case, we want to craft a new session request to have
# unambiguous session id regardless of how packet was dropped or
# delayed in this case, it's safe to just redo the request
self.lastpayload = None
self._open_rmcpplus_request()
elif (self.sessioncontext == 'EXPECTINGRAKP2' or
self.sessioncontext == 'EXPECTINGRAKP4'):
# If we can't be sure which RAKP was dropped or if RAKP3/4 was just
# delayed, the most reliable thing to do is rewind and start over
# bmcs do not take kindly to receiving RAKP1 or RAKP3 twice
self.lastpayload = None
self._relog()
else: # in IPMI case, the only recourse is to act as if the packet is
# idempotent. SOL has more sophisticated retry handling
# the biggest risks are reset sp which is often fruitless to retry
# and chassis reset, which sometimes will shoot itself
# systematically in the head in a shared port case making replies
# impossible
self.hasretried = 1 # remember so that we can track taboo
# combinations
# of sequence number, netfn, and lun due to
# ambiguity on the wire
self.send_payload()
self.nowait = False
def _xmit_packet(self, retry=True, delay_xmit=None, timeout=None):
if self.sequencenumber: # seq number of zero will be left alone, it is
# special, otherwise increment
self.sequencenumber += 1
if delay_xmit is not None:
Session.waiting_sessions[self] = {}
Session.waiting_sessions[self]['ipmisession'] = self
Session.waiting_sessions[self]['timeout'] = delay_xmit + \
_monotonic_time()
return # skip transmit, let retry timer do it's thing
if self.sockaddr:
_io_sendto(self.socket, self.netpacket, self.sockaddr)
else: # he have not yet picked a working sockaddr for this connection,
# try all the candidates that getaddrinfo provides
self.allsockaddrs = []
try:
for res in socket.getaddrinfo(self.bmc,
self.port,
0,
socket.SOCK_DGRAM):
sockaddr = res[4]
if res[0] == socket.AF_INET: # convert the sockaddr
# to AF_INET6
newhost = '::ffff:' + sockaddr[0]
sockaddr = (newhost, sockaddr[1], 0, 0)
self.allsockaddrs.append(sockaddr)
Session.bmc_handlers[sockaddr] = self
_io_sendto(self.socket, self.netpacket, sockaddr)
except socket.gaierror:
raise exc.IpmiException(
"Unable to transmit to specified address")
if retry:
Session.waiting_sessions[self] = {}
Session.waiting_sessions[self]['ipmisession'] = self
if timeout is not None:
Session.waiting_sessions[self]['timeout'] = timeout + \
_monotonic_time()
else:
Session.waiting_sessions[self]['timeout'] = self.timeout + \
_monotonic_time()
def logout(self):
if not self.logged:
return {'success': True}
if self.cleaningup:
self.nowait = True
self.raw_command(command=0x3c,
netfn=6,
data=struct.unpack("4B",
struct.pack("I", self.sessionid)),
retry=False)
# stop trying for a keepalive,
Session.keepalive_sessions.pop(self, None)
self.logged = 0
self.logging = False
self._customkeepalives = None
self.nowait = False
self.socketpool[self.socket] -= 1
return {'success': True}
if __name__ == "__main__":
import sys
ipmis = Session(bmc=sys.argv[1],
userid=sys.argv[2],
password=os.environ['IPMIPASS'])
print ipmis.raw_command(command=2, data=[1], netfn=0)
print get_ipmi_error({'command': 8, 'code': 128, 'netfn': 1})