#!/usr/bin/env python # This represents the low layer message framing portion of IPMI import select import Crypto import socket import ipmi_constants as ic from random import random initialtimeout = 0.5 #minimum timeout for first packet to retry in any given session. This will be randomized to stagger out retries in case of congestion class IPMISession: poller=select.poll() bmc_handlers={} sessions_waiting={} peeraddr_to_nodes={} def _createsocket(self): IPMISession.socket = socket.socket(socket.AF_INET6) #INET6 can do IPv4 if you are nice to it try: #we will try to fixup our receive buffer size if we are smaller than allowed. maxmf = open("/proc/sys/net/core/rmem_max") rmemmax = int(maxmf.read()) rmemmax = rmemmax/2 curmax=IPMISession.socket.getsockopt(socket.SOL_SOCKET,socket.SO_RCVBUF) curmax = curmax/2 if (rmemmax > curmax): IPMISession.socket.setsockopt(socket.SOL_SOCKET,socket.SO_RCVBUF,rmemmax) except: pass curmax=IPMISession.socket.getsockopt(socket.SOL_SOCKET,socket.SO_RCVBUF) curmax = curmax/2 #we throttle such that we never have no more outstanding packets than our receive buffer should be able to handle IPMISession.maxpending=curmax/1000 #pessimistically assume 1 kilobyte messages, way larger than almost all ipmi datagrams #for faster performance, sysadmins may want to examine and tune /proc/sys/net/core/rmem_max up. This allows the module to request more, #but does not increase buffers for applications that do less creative things #TODO: perhaps spread sessions across a socket pool when rmem_max is small, still get ~65/socket, but avoid long queues that might happen with #low rmem_max and putting thousands of nodes in line def __init__(self,bmc,userid,password,port=623): self.bmc=bmc self.userid=userid self.password=password self.port=port if not hasattr(IPMISession,'socket'): self._createsocket() self.login() def _initsession(self): self.sessioncontext=0 self.sequencenumber=0 self.sessionid=0 self.authtype=0 self.ipmiversion=1.5 self.timeout=initialtimeout+(0.5*random()) self.seqlun=0 self.rqaddr=0x81 #per IPMI table 5-4, software ids in the ipmi spec may be 0x81 through 0x8d. We'll stick with 0x81 for now, do not forsee a reason to adjust self.logged=0 self.tabooseq={} #this tracks netfn,command,seqlun combinations that were retried so that #we don't loop around and reuse the same request data and cause potential ambiguity in return self.ipmi15only=0 #default to supporting ipmi 2.0. Strictly by spec, this should gracefully be backwards compat, but some 1.5 implementations checked reserved bits def _preppayload(self,netfn,command,data=[]): self.expectedcmd=command self.expectednetfn=netfn seqincrement=7 while self.tabooseq[(netfn,command,seqlun)] and $seqincrement: self.seqlun += 4 #the last two bits are lun, so add 4 to add 1 self.seqlun &= 0xff #we only have one byte, wrap when exceeded seqincrement-- #IPMI spec forbids gaps bigger than 7, avoid that gap def _get_channel_auth_cap(self): self.callback=self._got_channel_auth_cap if (self.ipmi15only): self._preppayload(netfn=0x6,command=0x38,data=[0x0e,0x04]) else: self._preppayload(netfn=0x6,command=0x38,data=[0x0e,0x04]) def login(self): self._initsession() self._get_channel_auth_cap() for res in socket.getaddrinfo(self.bmc,self.port,0,socket.SOCK_DGRAM): sockaddr = res[4] if (res[0] == socket.AF_INET): #convert the sockaddr to AF_INET6 newhost='::ffff:'+sockaddr[0] sockaddr = (newhost,sockaddr[1]) if __name__ == "__main__": ipmis = IPMISession(bmc="10.240.181.1",userid="USERID",password="Passw0rd")