2
0
mirror of https://github.com/xcat2/confluent.git synced 2024-11-23 01:53:28 +00:00
confluent/confluent_client/bin/stats
Jarrod Johnson 0434f38ea1 Add iterm and kitty image support to stats
This delivers improved graphics
speed and quality for selected terminals.
2023-10-13 15:25:08 -04:00

201 lines
6.6 KiB
Python
Executable File

#!/usr/bin/python2
# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright 2019 Lenovo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import base64
import csv
import io
import numpy as np
import sys
try:
import sixel
class DumbWriter(sixel.SixelWriter):
def restore_position(self, output):
return
except ImportError:
pass
def iterm_draw(data):
databuf = data.getbuffer()
datalen = len(databuf)
data = base64.b64encode(databuf).decode('utf8')
sys.stdout.write(
'\x1b]1337;File=inline=1;size={}:'.format(datalen))
sys.stdout.write(data)
sys.stdout.write('\a')
sys.stdout.write('\n')
sys.stdout.flush()
def kitty_draw(data):
data = base64.b64encode(data.getbuffer())
while data:
chunk, data = data[:4096], data[4096:]
m = 1 if data else 0
sys.stdout.write('\x1b_Ga=T,f=100,m={};'.format(m))
sys.stdout.write(chunk.decode('utf8'))
sys.stdout.write('\x1b\\')
sys.stdout.flush()
sys.stdout.write('\n')
def plot(gui, output, plotdata, bins, fmt):
import matplotlib as mpl
if gui and mpl.get_backend() == 'agg':
sys.stderr.write('Error: No GUI backend available and -g specified!\n')
if not gui:
mpl.use('Agg')
import matplotlib.pyplot as plt
n, bins, patches = plt.hist(plotdata, bins)
plt.show()
if not gui:
if output:
tdata = output
else:
tdata = io.BytesIO()
plt.savefig(tdata)
if not gui and not output:
if fmt == 'sixel':
writer = DumbWriter()
writer.draw(tdata)
elif fmt == 'kitty':
kitty_draw(tdata)
elif fmt == 'iterm':
iterm_draw(tdata)
return n, bins
def textplot(plotdata, bins):
n, bins = np.histogram(plotdata, bins)
labels = []
for bin in bins:
labels.append('{0:0.1f}'.format(bin))
width = 80
# Since this will be primarily piped into, hard to get
# terminal width
labelwidth = 0
for lab in labels:
if len(lab) > labelwidth:
labelwidth = len(lab)
width -= (labelwidth) + 1
labelfmt = '{{0:>{0}s}}|'.format(labelwidth)
maxn = 0.0
for lgth in n:
if lgth > maxn:
maxn = float(lgth)
for i in range(len(n)):
print(labelfmt.format(labels[i]) + '=' * int(np.round((n[i]/maxn) * width)))
return n, bins
histogram = False
aparser = argparse.ArgumentParser(description='Quick access to common statistics')
aparser.add_argument('-c', type=int, default=0, help='Column number to analyze (default is last column)')
aparser.add_argument('-d', default=None, help='Value used to separate columns')
aparser.add_argument('-x', default=False, action='store_true', help='Output histogram in graphical format')
aparser.add_argument('-f', default='sixel', help='Format for histogram output (sixel/iterm/kitty)')
aparser.add_argument('-s', default=0, help='Number of header lines to skip before processing')
aparser.add_argument('-g', default=False, action='store_true', help='Open histogram in separate graphical window')
aparser.add_argument('-o', default=None, help='Output histogram to the specified filename in PNG format')
aparser.add_argument('-t', default=False, action='store_true', help='Output a histogram in text format')
aparser.add_argument('-v', default=False, action='store_true', help='Attempt to list nodes relevant to each histogram bar (requires -s, -o, or -t)')
aparser.add_argument('-b', type=int, default=10, help='Number of bins to use in histogram (default is 10)')
args = aparser.parse_args(sys.argv[1:])
plotdata = []
headlines = int(args.s)
while headlines >= 0:
data = sys.stdin.readline()
headlines -= 1
if args.d:
delimiter = args.d
else:
if '\t' in data:
delimiter = '\t'
elif ' ' in data:
delimiter = ' '
elif ',' in data:
delimiter = ','
else:
delimiter = ' ' # handle single column
data = list(csv.reader([data], delimiter=delimiter))[0]
nodebydatum = {}
idx = args.c - 1
autoidx = False
while data:
node = None
if ':' in data[0]:
node, data[0] = data[0].split(':', 1)
else:
node = data[0]
if idx == -1 and not autoidx:
while not autoidx:
try:
datum = float(data[idx])
except ValueError:
idx -= 1
continue
except IndexError:
sys.stderr.write('Unable to identify a numerical column\n')
sys.exit(1)
autoidx = True
else:
datum = float(data[idx])
if node:
if datum in nodebydatum:
nodebydatum[datum].add(node)
else:
nodebydatum[datum] = set([node])
plotdata.append(datum)
data = sys.stdin.readline()
data = list(csv.reader([data], delimiter=delimiter))[0]
n = None
if args.g or args.o or args.x:
n, bins = plot(args.g, args.o, plotdata, bins=args.b, fmt=args.f)
if args.t:
n, bins = textplot(plotdata, bins=args.b)
print('Samples: {5} Min: {3} Median: {0} Mean: {1} Max: {4} StandardDeviation: {2} Sum: {6}'.format(np.median(plotdata), np.mean(plotdata), np.std(plotdata), np.min(plotdata), np.max(plotdata), len(plotdata), np.sum(plotdata)))
if args.v and n is not None and nodebydatum:
print('')
currbin = bins[0]
bins = bins[1:]
currbinmembers = []
for datum in sorted(nodebydatum):
if datum > bins[0]:
nextbin = None
endbin = bins[0]
while len(bins) and bins[0] < datum:
nextbin = bins[0]
bins = bins[1:]
if not nextbin:
nextbin = np.max(plotdata)
print('Entries between {0} and {1}'.format(currbin, endbin))
currbin = nextbin
print('-' * 80)
print(','.join(sorted(currbinmembers)))
print('')
print('')
currbinmembers = []
for node in nodebydatum[datum]:
currbinmembers.append(node)
if currbinmembers:
print('Entries between {0} and {1}'.format(currbin, np.max(plotdata)))
print('-' * 80)
print(','.join(sorted(currbinmembers)))
print('')
print('')