mirror of
https://github.com/xcat2/confluent.git
synced 2025-01-26 19:10:30 +00:00
0abe978bd9
For routed deployment, we have to preshare some information. Additionally, the API arm mechanism gets too open ended. Add support for using a shared secret over another channel to do HMAC of a key to authenticate peer, which has an alternate api arming mechanism that is hardened.
257 lines
8.5 KiB
C
257 lines
8.5 KiB
C
#include "sha-256.h"
|
|
#include <stdlib.h>
|
|
|
|
#define TOTAL_LEN_LEN 8
|
|
|
|
void hmac_sha256(uint8_t* hmac, char* msg, int msglen, char* key, int keylen) {
|
|
uint8_t *scratch;
|
|
uint8_t keyprime[SIZE_OF_SHA_256_CHUNK];
|
|
uint8_t keymod[SIZE_OF_SHA_256_CHUNK];
|
|
int padneeded;
|
|
if (keylen > SIZE_OF_SHA_256_CHUNK) {
|
|
calc_sha_256(keyprime, key, keylen);
|
|
keylen = SIZE_OF_SHA_256_HASH;
|
|
} else {
|
|
memcpy(keyprime, key, keylen);
|
|
}
|
|
padneeded = SIZE_OF_SHA_256_CHUNK - keylen;
|
|
if (padneeded) {
|
|
memset(keyprime + keylen, 0, padneeded);
|
|
}
|
|
for (padneeded=0; padneeded < SIZE_OF_SHA_256_CHUNK; padneeded++) {
|
|
keymod[padneeded] = keyprime[padneeded] ^ 0x36;
|
|
}
|
|
scratch = malloc(SIZE_OF_SHA_256_CHUNK + msglen);
|
|
memcpy(scratch, keymod, SIZE_OF_SHA_256_CHUNK);
|
|
memcpy(scratch + SIZE_OF_SHA_256_CHUNK, msg, msglen);
|
|
calc_sha_256(hmac, scratch, SIZE_OF_SHA_256_CHUNK + msglen);
|
|
for (padneeded=0; padneeded < SIZE_OF_SHA_256_CHUNK; padneeded++) {
|
|
keymod[padneeded] = keyprime[padneeded] ^ 0x5c;
|
|
}
|
|
free(scratch);
|
|
scratch = malloc(SIZE_OF_SHA_256_CHUNK + SIZE_OF_SHA_256_HASH);
|
|
memcpy(scratch, keymod, SIZE_OF_SHA_256_CHUNK);
|
|
memcpy(scratch + SIZE_OF_SHA_256_CHUNK, hmac, SIZE_OF_SHA_256_HASH);
|
|
calc_sha_256(hmac, scratch, SIZE_OF_SHA_256_CHUNK + SIZE_OF_SHA_256_HASH);
|
|
free(scratch);
|
|
}
|
|
|
|
/*
|
|
* Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
|
|
* When useful for clarification, portions of the pseudo-code are reproduced here too.
|
|
*/
|
|
|
|
/*
|
|
* @brief Rotate a 32-bit value by a number of bits to the right.
|
|
* @param value The value to be rotated.
|
|
* @param count The number of bits to rotate by.
|
|
* @return The rotated value.
|
|
*/
|
|
static inline uint32_t right_rot(uint32_t value, unsigned int count)
|
|
{
|
|
/*
|
|
* Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
|
|
*/
|
|
return value >> count | value << (32 - count);
|
|
}
|
|
|
|
/*
|
|
* @brief Update a hash value under calculation with a new chunk of data.
|
|
* @param h Pointer to the first hash item, of a total of eight.
|
|
* @param p Pointer to the chunk data, which has a standard length.
|
|
*
|
|
* @note This is the SHA-256 work horse.
|
|
*/
|
|
static inline void consume_chunk(uint32_t *h, const uint8_t *p)
|
|
{
|
|
unsigned i, j;
|
|
uint32_t ah[8];
|
|
|
|
/* Initialize working variables to current hash value: */
|
|
for (i = 0; i < 8; i++)
|
|
ah[i] = h[i];
|
|
|
|
/*
|
|
* The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
|
|
* calculating 16 at a time.
|
|
*
|
|
* This optimization was not there initially and the rest of the comments about w[64] are kept in their
|
|
* initial state.
|
|
*/
|
|
|
|
/*
|
|
* create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
|
|
* don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
|
|
* message schedule array
|
|
*/
|
|
uint32_t w[16];
|
|
|
|
/* Compression function main loop: */
|
|
for (i = 0; i < 4; i++) {
|
|
for (j = 0; j < 16; j++) {
|
|
if (i == 0) {
|
|
w[j] =
|
|
(uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
|
|
p += 4;
|
|
} else {
|
|
/* Extend the first 16 words into the remaining 48 words w[16..63] of the
|
|
* message schedule array: */
|
|
const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
|
|
(w[(j + 1) & 0xf] >> 3);
|
|
const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
|
|
right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
|
|
w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
|
|
}
|
|
const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
|
|
const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
|
|
|
|
/*
|
|
* Initialize array of round constants:
|
|
* (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
|
|
*/
|
|
static const uint32_t k[] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
|
|
0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
|
|
0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
|
|
0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
|
|
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
|
|
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
|
|
0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
|
|
0xc67178f2};
|
|
|
|
const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
|
|
const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
|
|
const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
|
|
const uint32_t temp2 = s0 + maj;
|
|
|
|
ah[7] = ah[6];
|
|
ah[6] = ah[5];
|
|
ah[5] = ah[4];
|
|
ah[4] = ah[3] + temp1;
|
|
ah[3] = ah[2];
|
|
ah[2] = ah[1];
|
|
ah[1] = ah[0];
|
|
ah[0] = temp1 + temp2;
|
|
}
|
|
}
|
|
|
|
/* Add the compressed chunk to the current hash value: */
|
|
for (i = 0; i < 8; i++)
|
|
h[i] += ah[i];
|
|
}
|
|
|
|
/*
|
|
* Public functions. See header file for documentation.
|
|
*/
|
|
|
|
void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
|
|
{
|
|
sha_256->hash = hash;
|
|
sha_256->chunk_pos = sha_256->chunk;
|
|
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
|
|
sha_256->total_len = 0;
|
|
/*
|
|
* Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
|
|
* 2..19):
|
|
*/
|
|
sha_256->h[0] = 0x6a09e667;
|
|
sha_256->h[1] = 0xbb67ae85;
|
|
sha_256->h[2] = 0x3c6ef372;
|
|
sha_256->h[3] = 0xa54ff53a;
|
|
sha_256->h[4] = 0x510e527f;
|
|
sha_256->h[5] = 0x9b05688c;
|
|
sha_256->h[6] = 0x1f83d9ab;
|
|
sha_256->h[7] = 0x5be0cd19;
|
|
}
|
|
|
|
void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len)
|
|
{
|
|
sha_256->total_len += len;
|
|
|
|
const uint8_t *p = data;
|
|
|
|
while (len > 0) {
|
|
/*
|
|
* If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
|
|
* necessary. We operate directly on the input data instead.
|
|
*/
|
|
if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
|
|
consume_chunk(sha_256->h, p);
|
|
len -= SIZE_OF_SHA_256_CHUNK;
|
|
p += SIZE_OF_SHA_256_CHUNK;
|
|
continue;
|
|
}
|
|
/* General case, no particular optimization. */
|
|
const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
|
|
memcpy(sha_256->chunk_pos, p, consumed_len);
|
|
sha_256->space_left -= consumed_len;
|
|
len -= consumed_len;
|
|
p += consumed_len;
|
|
if (sha_256->space_left == 0) {
|
|
consume_chunk(sha_256->h, sha_256->chunk);
|
|
sha_256->chunk_pos = sha_256->chunk;
|
|
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
|
|
} else {
|
|
sha_256->chunk_pos += consumed_len;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint8_t *sha_256_close(struct Sha_256 *sha_256)
|
|
{
|
|
uint8_t *pos = sha_256->chunk_pos;
|
|
size_t space_left = sha_256->space_left;
|
|
uint32_t *const h = sha_256->h;
|
|
|
|
/*
|
|
* The current chunk cannot be full. Otherwise, it would already have be consumed. I.e. there is space left for
|
|
* at least one byte. The next step in the calculation is to add a single one-bit to the data.
|
|
*/
|
|
*pos++ = 0x80;
|
|
--space_left;
|
|
|
|
/*
|
|
* Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
|
|
* that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
|
|
* an extra chunk at the end.
|
|
*/
|
|
if (space_left < TOTAL_LEN_LEN) {
|
|
memset(pos, 0x00, space_left);
|
|
consume_chunk(h, sha_256->chunk);
|
|
pos = sha_256->chunk;
|
|
space_left = SIZE_OF_SHA_256_CHUNK;
|
|
}
|
|
const size_t left = space_left - TOTAL_LEN_LEN;
|
|
memset(pos, 0x00, left);
|
|
pos += left;
|
|
size_t len = sha_256->total_len;
|
|
pos[7] = (uint8_t)(len << 3);
|
|
len >>= 5;
|
|
int i;
|
|
for (i = 6; i >= 0; --i) {
|
|
pos[i] = (uint8_t)len;
|
|
len >>= 8;
|
|
}
|
|
consume_chunk(h, sha_256->chunk);
|
|
/* Produce the final hash value (big-endian): */
|
|
int j;
|
|
uint8_t *const hash = sha_256->hash;
|
|
for (i = 0, j = 0; i < 8; i++) {
|
|
hash[j++] = (uint8_t)(h[i] >> 24);
|
|
hash[j++] = (uint8_t)(h[i] >> 16);
|
|
hash[j++] = (uint8_t)(h[i] >> 8);
|
|
hash[j++] = (uint8_t)h[i];
|
|
}
|
|
return sha_256->hash;
|
|
}
|
|
|
|
void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len)
|
|
{
|
|
struct Sha_256 sha_256;
|
|
sha_256_init(&sha_256, hash);
|
|
sha_256_write(&sha_256, input, len);
|
|
(void)sha_256_close(&sha_256);
|
|
}
|