
xCAT 2.0 Monitoring Howto

5/28/2008

Table of Contents

1.0 Introduction..1

2.0 Using xCAT Monitoring Plug-in Infrastructure..1

2.1 Define monitoring servers..1

2.2 Enable SNMP monitoring ...3

2.3 Enable node liveness monitoring ..5

2.4 Create your own monitoring plug-in module...5

3.0 Using xCAT Notification Infrastructure..7

1.0 Introduction
 There are two monitoring infrastructures introduced in xCAT 2.0. The xCAT

Monitoring Plug-in Infrastructure allows you to plug-in one or more third party

monitoring software such as Ganglia, RMC, SNMP etc. to monitor the xCAT cluster. The

xCAT Notification Infrastructure allows you to watch for the changes in xCAT

database tables.

2.0Using xCAT Monitoring Plug-in Infrastructure
 With xCAT 2.0, you can integrate 3rd party monitoring software into your xCAT

cluster. The idea is to use monitoring plug-in modules that act as bridges to connect

xCAT and the 3rd party software. Though you can write your own monitoring plug-in

modules (see section 2.3), over the time, xCAT will supply a list of built-in plug-in

modules for the most common monitoring software. They are:

• xCAT (xcatmon.pm) (monitoring node statue using fping. released)

• SNMP (snmpmon.pm) (snmp monitoring. released)

• RMC (rmcmon.pm)

• Ganglia (gangliamon.pm)

• Nagios (nagiosmon.pm)

 You can pick one or more monitoring plug-ins to monitor the xCAT cluster. The

following sections will demonstrate how to use snmpmon and xcatmon plug-ins.

2.1 Define monitoring servers

 You can skip this section if you have a small number of nodes to monitor, or if you

prefer the management node (mn) handles the monitoring loads. For a large cluster, it is

recommended that you dedicate some nodes as monitoring aggregation points. These

nodes are called monitoring servers. You can use the service nodes (sn) as the monitoring

servers. The monitoring servers are defined by the 'monserver' column of the noderes

table. The data in 'monserver' column is a comma separated pairs of host names or ip

addresses. The first host name or ip address represents the network adapter on that

connects to the mn. The second host name or ip address represents the network adapter

that connects to the nodes. If the no data is provided in the 'monserver' column, the values

in the 'servicenode' and the 'xcatmaster' columns in the same table will be used. If none is

defined, the mn will be used as the monitoring server.

 In following example the nodes in group2 have dedicated monitoring server

(monsv02) while the nodes in group1 use their service node as the monitoring server

(sn01).

Figure 1. Monitoring servers for the nodes

The noderes table looks like this for the above cluster.

node monservers servicenode xcatmaster

sv01 9.114.47.227 9.114.47.227

sv02 9.114.47.227 9.114.47.227

monsv02 9.114.47.227 9.114.47.227

group1 sv01 192.152.101.1

group2 monsv02, 192.152.101.3 sv02 192.152.101.2

mn

sn01 sn02 monsv

02

n1 n2 n3 n4 n5 n6

management network

compute network compute network

9.114.47.227

9.114.47.226 9.114.47.228

9.114.47.229

192.152.101.1 192.152.101.2 192.152.101.3

to public network

group1 group2

2.2 Enable SNMP monitoring

1. Down load the corresponding mib files for your system that you wish to receive SNMP

traps from and copy them onto the management node (mn) and the monitoring servers

under the following directory:
 /usr/share/snmp/mibs/

The mib files for IBM blade center management modules (MM) and RSAII are packaged

within the firmware updates. They can be found under IBM support page:
 http://www.ibm.com/support/us/en/

For example,
 Download mibs for MM:

• Go to
http://www-304.ibm.com/systems/support/supportsite.wss/docdisplay

?lndocid=MIGR-5070708&brandind=5000020

• Download file ibm_fw_amm_bpet26k_anyos_noarch.zip

• Unzip the file and you will fine two mib files mmblade.mib and mmalert.mib

 Down load mibs for RSAII
• Go to

http://www-304.ibm.com/systems/support/supportsite.wss/docdisplay

?brandind=5000008&lndocid=MIGR-64575

• Download file ibm_fw_rsa2_ggep30a_anyos_noarch.zip

• Unzip it and you will find the mib files RTRSAAG.MIB and RTALSERT.MIB

2. Make sure net-snmp rpm is installed on mn and all the monitoring servers.
 rpm -qa |grep net-snmp

3. Start the monitoring
 monstart snmpmon

4. Set email recipients

 When traps are received, they will be logged into the syslog and the warning and

critical alerts will be emailed to 'alserts' aliase on the mn mail system. By default, 'alerts'

point to 'root' on mn, but you can have the emails sent to other recipients by modifying it.

On mn
 vi /etc/aliases

Fine the line beginning with the word alerts; it usually is at the bottom of the file.

Change the line so it looks something like this
 alerts root,joe@us.ibm.com,jill@yahoo.com

Now make the new email aliases in effect
 newaliases

5. Set up the filters

 xCAT built-in SNMP trap handler can process any SNMP traps. Here is a sample

email message sent by the trap handler after a Blader Center MM trap is handled.

Subject: Critical: Cluster SNMP Alert!

Message:

 Node: rro123b

 Machine Type/Model: 0284

 Serial Number: 1012ADA

 Room:

 Rack:

 Unit:

 Chassis:

 Slot:

SNMP Critical Alert received from bco41(UDP: [11.16.15.41]:161)

 App ID: "BladeCenter Advanced Management Module"

 App Alert Type: 128

 Message: "Processor 2 (CPU 2 Status) internal error"

 Blade Name: "rro123b"

 Error Source="Blade_11"

 Trap details:

 DISMAN-EVENT-MIB::sysUpTimeInstance=17:17:49:12.08

 SNMPv2-MIB::snmpTrapOID.0=BLADESPPALT-MIB::mmTrapBladeC

 BLADESPPALT-MIB::spTrapDateTime="Date(m/d/y)=05/20/08, Time(h:m:s)=14:30:12"

 BLADESPPALT-MIB::spTrapAppId="BladeCenter Advanced Management Module"

 BLADESPPALT-MIB::spTrapSpTxtId="bco41"

 BLADESPPALT-MIB::spTrapSysUuid="D76ADB0137E2438B9F14DCC6569478BA"

 BLADESPPALT-MIB::spTrapSysSern="100058A"

 BLADESPPALT-MIB::spTrapAppType=128

 BLADESPPALT-MIB::spTrapPriority=0

 BLADESPPALT-MIB::spTrapMsgText="Processor 2 (CPU 2 Status) internal error"

 BLADESPPALT-MIB::spTrapHostContact="No Contact Configured"

 BLADESPPALT-MIB::spTrapHostLocation="No Location Configured"

 BLADESPPALT-MIB::spTrapBladeName="rro123b"

 BLADESPPALT-MIB::spTrapBladeSern="YL113684L129"

 BLADESPPALT-MIB::spTrapBladeUuid="3A77351D00001000B6AA001A640F4972"

 BLADESPPALT-MIB::spTrapEvtName=2154758151

 BLADESPPALT-MIB::spTrapSourceId="Blade_11"

 SNMP-COMMUNITY-MIB::snmpTrapAddress.0=11.16.15.41

 SNMP-COMMUNITY-MIB::snmpTrapCommunity.0="public"

 SNMPv2-MIB::snmpTrapEnterprise.0=BLADESPPALT-MIB::mmRemoteSupTrapMIB

But sometimes you want the trap handler filter out certain type of alerts. For example,

when blades are rebooting you will get a lot of alerts and you do not want to be notified

for these alerts. The filtering can be done by adding a row in the 'monsetting' table with

name equals to snmpmon and key equals to ignore. The value is a comma separated list

that describes the contents in a trap.

 For example, to filter out any blade center mm traps from blade rro123b.
 chtab name=snmpmon,key=ignore monsetting.value=BLADESPPALT-
MIB::spTrapBladeName="rro123b"

(The mib module name BLADESPPALT-MIB is optional in the command. spTrapBladeName

can be found in the mm mib file or from your email notification.)

The following example will filter out all power on/off/reboot alerts for any blades.
 chtab name=snmpmon,key=ignore monsetting.value=spTrapMsgText=”Blade

powered off”,spTrapMsgText=”Blade powered on”,spTrapMsgText=”System

board (Sys Pwr Monitor) power cycle”,spTrapMsgText=”System board (Sys

Pwr Monitor) power off”,spTrapMsgText=”System board (Sys Pwr Monitor)

power on”,spTrapMsgText=”Blade reboot”

There are other keys and values for the monsetting table supported by snmpmon

monitoring plut-in. Use this command to list them all.
 monls snmpon -d

6. Make sure the blade names on Blade Center MM are identical to the node names

defined in the xCAT nodelist table.

 rspconfig group1 textid (This command quesries the blade name)
 n1: textid: SN#YL10338241EA

 n2: textid: SN#YL103382513F

 n3: textid: SN#YK13A084307Y

 rspconfig group1 textid=* (This command sets the blade name)
 n1: textid: n1

 n2: textid: n2

 n3: textid: n3

7. Verify

Make sure snmpmon is activated.
 monls snmpmon
 snmpmon monitored

Make sure snmptrapd is up and running on mn and all monintoring servers. And it has -m

ALL flag.
 ps -ef |grep snmptrapd
 root 31866 1 0 08:44 ? 00:00:00 /usr/sbin/snmptrapd -m ALL
Make sure snmp destination is set to the corresponding monitoring servers.

 rspconfig mm snmpdest (mm is the group name for all the blade center

management mondules)
 mm1: SP SNMP Destination 1: 192.152.101.1

 mm2: SP SNMP Destination 1: 192.152.101.3

Make sure SNMP alert is set to 'enable'
 rspconfig mm alert
 mm1: SP Alerting: enabled

 mm2: SP Alerting: enabled

(Use monstop snmpmon to stop the monitoring if desired.)

2.3 Enable node liveness monitoring

 xcatmon provides node liveness monitoring using fping. This can be used if no other

3rd party software is used for node status monitoring. The status column of the nodelist

table will be updated periodically with the latest node liveness status by this plug-in.

1. To activate, use the monstart command:

monstart xcatmon –n –s [ping-interval=5]

where 2 means that the nodes are pinged for status every 2 minutes.

2. Verify

Make sure xcatmon is activated.
 monls snmpmon
 xcatmon monitored node-status-monitored

Check the setting
 tabdump monsetting
 #name,key,value,comments,disable

 "xcatmon","ping-interval","5",,

Make sure cron jobs are activated on mn and all monitoring server
 crontab -l
 */5 * * * * XCATROOT=/opt/xcat PATH=/bin:/usr/bin:/sbin:/usr/sbin:/opt/xcat/bin:/opt/xcat/sbin /opt/xcat/sbin/xcatnodemon

2.4 Create your own monitoring plug-in module

 As mentioned before, a monitoring plug-in modules acts as a bridge to connect xCAT

and the 3rd party software. The functions of a monitoring plug-in module include

initializing the 3rd party software, informing it with the changes of the xCAT node list,

setting it up to feed node status back to xCAT etc. The following figure depicts the data

flow and the relationship among xcatd, monitoring plug-ins and the third party software.

Figure 2. Data flow among xcatd, plug-in modules and 3rd party monitoring software

 To use this infrastructure to create your own plug-in module, create a Perl module and

put it under /opt/xcat/lib/perl/xCAT_monitoring/ directory. If the file name is

xxx.pm then the package name will be xCAT_monitoring::xxx. The following is a list

of subroutines that a plug-in module must implement:

start

stop

supportNodeStatusMon

startNodeStatusMon

stopNodeStatusMon

addNodes

removeNodes

processSettingChanges

getDiscription

Please refer to /opt/xcat/lib/perl/xCAT_monitoring/samples/tmplatemon.pm for the

detailed description of the functions.

To activate the monitoring with xxx, use the following command:

 monstart xxx [-n|--nodestatmon] [-s|--settings settings]

where

-n or --nodestatmon indicates it can help feeding the node status to xCAT. The node status is stored in

the status column of the nodelist table.

-s or –settings specifies the plug-in specific settings. These setting will be used by the plug-in to

customize certain entities for the plug-in or the third party monitoring software. The format of the

setting string is: [key=value],[key=value]… Please note that the square brackets are needed. e.g.

[mon_interval=10],[toggle=1]

Example:

 monstart xxx –n (with feeding the node status to xCAT table)

or

monstart xxx (not feeding the node status to xCAT table)

Once it is activated, xCAT will automatically, through the plug-in module, start the 3rd

party software for monitoring. To deactivate the monitoring plug-in and stop the

monitoring use this command:

monstop xxx

3.0Using xCAT Notification Infrastructure
 With xCAT 2.0, you can monitor xCAT database for changes such as nodes

entering/leaving the cluster, hardware updates, node liveness etc. In fact anything stored

in the xCAT database tables can be monitored through the xCAT notification

infrastructure. To start getting notified for changes, simply register your Perl module or

command as the following:

 regnotif filename tablename -o actions

where

filename is the full path name of your Perl module or command.

tablenames is a comma separated list of table names that you are interested in.

actions is a comma separated list of data table actions. 'a' for row addition, 'd' for row deletion and 'u'

for row update.

Example:

 regnotif /opt/xcat/lib/perl/xCAT_monitoring/mycode.pm nodelist,nodhm
-o a,d

 regnotif /usr/bin/mycmd switch,noderes -o u

Use the following command to view all the modules and commands registered.

 tabdump notification

To un-register, just do the following:

 unregnotif filename

Example:

 unregnotif /opt/xcat/lib/perl/xCAT_monitoring/mycode.pm

 unregnotif /usr/bin/mycmd

If the filename specifies a Perl module, the package name must be

xCAT_monitoring::xxx. It must implement the following subroutine which will get

called when database table change occurs:

 processTableChanges(tableop, table_name, old_data, new_data)

 where:

tableop Table operation. It can be 'a' for row addition, 'd' for row deletion and 'u' for row

update.

 tablename The name of the database table whose data has been changed.

old_data An array reference of the old row data that has been changed. The first element is an

array reference that contains the column names. The rest of the elements are array references

each contains attribute values of a row. It is set when the action is u or d.

new_data A hash reference of the new row data; only changed values are in the hash. It is keyed

by column names. It is set when the action is u or a.

 If the file name specifies a command (written by any programming languages or scripts),

when the interested database table changes, the info will be fed to the command through

the standard input. The format of the data in the STDIN is as following:

action(a, u or d)

tablename

[old value]

col1_name,col2_name...

col1_val,col2_val,...

col1_val,col2_val,....

...

[new value]

col1_name,col2_name,...

col1_value,col2_value,...

...

The sample code can be found under

/opt/xcat/lib/perl/xCAT_monitoring/samples/mycode.pm on a installed system.

