
xCAT 2 Developer's Guide
08/04/10, 08:35:04 AM

Table of Contents
1.0 Introduction...1
2.0 xCAT Architecture..2
3.0 Developing xCAT Code...2

3.1 Client/Server Model..2
3.1.1 Client code..2
3.1.2 Server code (plugins)..2
3.1.1 Debugging Commands (XCATBYPASS mode)..3

3.2 Hierarchy..4
3.1 Calling Plugins from other Plugins...4
3.2 Remote Commands (ssh, rsh)..4

4.0 Common Perl Libraries for xCAT code ...5
4.1 General Utilities...5

5.0 Adding Tables to the xCAT Database..6
6.0 Documentation..6

6.1 Creating Manpages..6
7.0 Packaging new Code...7
8.0 Changes to xCAT *.spec files...7
9.0 Setting up your SVN development Environment ...7

9.1 Setting up SVN for windows...8
9.1 Setting up SVN for RedHat...8
9.1 Building xCAT rpms...9

1.0 Introduction

The Developer's Guide intends to give you enough information that you can start writing code for the
xCAT project. It's intent is to be a starting point but by no means will provide all the information you
need because each new function developed has it's own problems to solve.

Before starting to write code for xCAT, you should post your intentions to the xcat mailing list . First
this will allow the xCAT architects to evaluate the function to see if it fits into the future plans of
xCAT; and also to determine, if the function is already in plan and being developed by someone else.

To contribute code: To contribute code, please create a SourceFourge account, and send your id to
xcat-user@lists.xcat.org.

Go to the xCAT SourceForge wiki. Read and follow the instructions in the contribution guidelines.

You may also check the xCAT list of requested features and submit your request there.

1

https://sourceforge.net/tracker/?group_id=208749&atid=1006948
http://xcat.wiki.sourceforge.net/xCAT+2+Contribution+Guildelines
http://xcat.wiki.sourceforge.net/
mailto:xcat-user@lists.xcat.org
http://sourceforge.net/account/registration/
http://xcat.org/mailman/listinfo/xcat-user

2.0 xCAT Architecture
The heart of the xCAT architecture is the xCAT daemon (xcatd) on the management node. This
receives requests from the client, validates the requests, and then invokes the operation. Function
developed for xCAT should be designed to operate in this environment.
You need to review and understand the xCAT Architecture before developing your commands.

The xCAT Top Doc will give you pointers to all other xCAT documentation including this documents.

3.0 Developing xCAT Code

Code written for xCAT should be in Perl except under the condition that the code will run in
environments where Perl may not be installed (e.g compute nodes), or Perl is not appropriate for
the function being developed. Non-use of Perl should be reviewed by the architecture committee.
With the many OS's and architectures that xCAT must support, when a language like C or C++ is
used, it causes additional packaging work. More rules for code development are listed at
contribution guidelines.

Recommended good programming practices should be followed as outlined in our Programming
Tips page.

3.1 Client/Server Model
Review the Client/Server flow in the xCAT Architecture. When developing your command, there
will be two major parts to the command. The Client Code and the Server Code (plugin).

We have provided a very simple example xCATWorld client code and the xCATWorld.pm
plugin in the release.

3.1.1 Client code
First you will develop the client front-end. Many commands can use the two available client front-
ends provided (xcatclient or xcatclientnnr). The command can either be a sym link to
xcatclient/xcatclientnnr or a thin wrapper that calls xCAT::Client::submit_request() .

The xcatclient client front end supports commands that will provide a noderange and flags to the
new function. The xcatclientnrr client front end supports commands that do not need a noderange.
If your command has a more complex interface than is supported by these two routines, you can
write your own client front-end. You can go to the /opt/xcat/bin directory to check which
commands are links and which wrote their own clients.

3.1.2 Server code (plugins)
Next you will develop your plugin that will support processing the request from your client front-
end. Review the xCATd Plugins flow in the xCAT Architecture. It tells you how xcatd processes
the plugins and is very important for your design. All xCAT plugins are installed in
/opt/xcat/lib/perl/xCAT_plugin.

2

http://xcat.wiki.sourceforge.net/xCAT+2+Architecture
http://xcat.wiki.sourceforge.net/xCAT+2+Architecture
http://xcat.wiki.sourceforge.net/Programming+Tips
http://xcat.wiki.sourceforge.net/Programming+Tips
http://xcat.wiki.sourceforge.net/xCAT+2+Contribution+Guildelines
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.wiki.sourceforge.net/xCAT+2+Architecture

Each Plugin is divided into three major sections:

1. handled_commands() - returns list of command(s) handled by this plugin. If commands are
related we tend to put them in one plugin.

2. preprocess_request() - Needed if your command supports hierarchy, that is the plugin will
be run on a service node to process the compute node.

3. process_request () - This is where the function of you command is placed.

Implementation note for handled_commands:

For many of the xCAT commands, the same command can be implemented in different plugins
and the correct plugin is invoked based on a table value. For example, the rpower command is
implemented in the hmc.pm for pSeries nodes, in the blade.pm for blades, and so on, and the
correct plugin is invoked based on the value of nodehm:power and nodehm:mgt attributes for
that node. This is coded in the plugin as follows:
sub handled_commands {
 return {
 findme => 'blade',
 getmacs => 'nodehm:getmac,mgt',
 rscan => 'nodehm:mgt',
 rpower => 'nodehm:power,mgt',
 getbladecons => 'blade',
 getrvidparms => 'nodehm:mgt',
 rvitals => 'nodehm:mgt',
 rinv => 'nodehm:mgt',
 rbeacon => 'nodehm:mgt',
 rspreset => 'nodehm:mgt',
 rspconfig => 'nodehm:mgt',
 rbootseq => 'nodehm:mgt',
 reventlog => 'nodehm:mgt',
 switchblade => 'nodehm:mgt',
 };
}

When the xCAT daemon loads all of the plugins, it builds an internal table of handled
commands. When the same command is listed in more than one plugin, the value for the last
plugin that is loaded is the one that the daemon will use. Therefore, ALL plugins must code the
identical value for a table-driven command. For example, all plugins that implement the
rpower command MUST code the handled_commands entry as

rpower => 'nodehm:power,mgt',
If you are coding one of these database-driven commands, you should search all existing
plugins for entries that match the command you are coding and use the same value.

3.1.1 Debugging Commands (XCATBYPASS mode)
 Debugging you new client/server command through the xcatd can be difficult, so we have put in
 place a debug mode that bypasses the daemon. This allows you to run the perl debugger from the

3

 client invocation through the plugin.
If the XCATBYPASS environment variable is set (to anything) , the connection to the
server/daemon will be bypassed and the plugin will be called directly by Client.pm. If it is set to a
directory, all perl modules in that directory will be loaded in as plugins. This allows you to add or
change new xCAT perl module libraries for test without disrupting other users on the system. If it
is set to any other value (e.g. "yes", "default", whatever string you want) the default plugin
directory will be used.

3.2 Hierarchy
Commands that are going to be run on the compute nodes, need to support hierarchy, because
xCAT can be configured for hierarchy. This means the preprocess_request function in the plugin
for the command must be provided. A simple example, is in the xCATWorld.pm plugin.

3.1 Calling Plugins from other Plugins
If you xCAT client/server command needs to call another xCAT client/server command from your
plugin (e.g. xdsh), you are in the situation that your plugin must call the other commands plugin.
You cannot successfully call the other xCAT command from the command line from your plugin.

There is a special interface defined in Utils.pm (runxcmd) for doing this. If it does not support the
returns you need from the command you can write your own.
See the General Utilities provided by xCAT.

3.2 Remote Commands (ssh, rsh)
We desire that all the xCAT commands to be using the same remote shell method to the nodes.
The default is ssh on Linux and AIX. On AIX, it is determined by the site table attribute
“useSSHonAIX". If this attribute is set to “no” then rsh will be used on AIX. If set to “yes”, ssh
is used on AIX. We need the attribute on AIX, because OpenSSH has not historically been the
remove shell for AIX and in older versions of the OS, was not shipped with AIX.

If you are developing commands that will use remote shell, you may want to discuss this with the
xCAT architects. One way to always use the appropriate remote shell is to not call ssh or rsh (scp/
rcp) directly but to use xdsh and xdcp- api or plugin (for hierarchy support) which will check the
remote shell setup for xCAT and use the appropriate remote shell.

4

4.0 Common Perl Libraries for xCAT code

4.1 General Utilities

There are a many of xCAT Perl libraries available that contain utility functions that we have found
useful to share across the xCAT code. Here are some of the more useful ones. You should look in
the xCAT Perl library (/opt/xcat/lib/perl/xcat) when you need function to see if it already exists.

• Utils.pm – Contains a large number of Utilities. Some of the more commonly used are the
following.

 a) isLinux

 b) isAIX

 c) isMN

 d) isServiceNode

 e) Version

 f) runcmd

 g) runxcmd

• DbobjUtils.pm – A set of Utilities that handle xCAT data objects at a more abstract level.
They are used by commands like lsdef which will access many database tables to return all
the information for a node.

• NodeRange.pm – Routines to figure out the list of node based on an input group or
noderange.

• MsgUtils.pm – Contains the messaging, logging interface for xCAT. All message should
use these utilities. This ensure that the message do work in a client/server and hierarchical
architecture. It also records messages to syslog appopriately for xCAT. You can see many
examples in the existing code.

• Table.pm – all the xCAT database access routines. These routines use a Perl DBI to access
the database that xCAT is currently running. All accesses to the xCAT database should be
through one of these routines. This ensure sthat your code will support all the databases
supported by xCAT (e.g. Sqlite, mysql,postgresql, etc), and be unaware of what database
we are using. If new routines are needed, the need should be submitted as a feature
request. Changes to the existing routines must be done by the xCAT core development
team to ensure existing code is not broken.

• Client.pm – this routine is the primary interface from your command to the xcatd daemon.
No changes should be make without careful review with the xCAT architects.

5

• Schema.pm - Database Schema. Any change or addition requests to that Schema must be
submitted to the xCAT architects. Currently in plan, is a being designed a way for an
individual to extend the Schema and not affect the basic schema that everyone uses.

5.0 Adding Tables to the xCAT Database

You can extend the xCAT database schema with your tables. XCAT will automatically add your
tables on the restart of the xcatd daemon.

On your installed system, open the file : /opt/xcat/lib/perl/xCAT_schema/samples/Sample.pm and
read the comments at the top. It explains how to add your tables.

To read online:http://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk/xCAT-
server/lib/xcat/schema/samples/Sample.pm

You can check to make sure your table syntax is correct, before starting the daemon, by :

export XCATBYPASS=y

tabdump <yourtable>

6.0 Documentation

All new command must be documented:

1. There must be a man page. See Creating ManPages.

2. There must be a link added in xCAT2top doc. This will be done by the xCAT development
team, but they must be made aware of new function. Posting to the xcat forum is a good
method.

3. The code must be documented. See contribution guidelines for coding standards.

6.1 Creating Manpages
XCAT automatically creates manpages out of pods during the build process. To create a manpage
for a new command a pod must be created and checked into SVN. The pods are located at
/svn/xcat/xcat-core/trunk/xCAT-client/pods. You can get good examples of pods to copy there.
Most of commands manpages go in the man1 directory, but if you have any questions, contact the
xCAT architects.

6

http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.wiki.sourceforge.net/xCAT+2+Contribution+Guildelines
http://xcat.wiki.sourceforge.net/xCAT+2+Contribution+Guildelines
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf
http://xcat.svn.sourceforge.net/viewvc/xcat/xcat-core/trunk/xCAT-client/share/doc/xCAT2top.pdf

7.0 Packaging new Code
In most cases it will be obvious where your client code will be checked into SVN (the xCAT-
client path) and the plugin code (the xCAT-Server path) , but it would be good to review with the
xCAT architects any new code that will be packaged with the xCAT code. For the most part,
putting the code in the appropriate directory in SVN will automatically have it packaged with xCAt
when it is built.

8.0 Changes to xCAT *.spec files

All changes to the xCAT *.spec files should be done by the core xCAT team. Submit any change
requests through a feature or directly to the team on the xCAT mailing list.

9.0 Setting up your SVN development Environment

SVN is a open source sw that you can download from
http://subversion.tigris.org/project_packages.html#binary-packages . It supports a variety of OS
including RedHat Linux, Windows and IBM OS/400. The documentation can be found here:
http://svnbook.red-bean.com/nightly/en/svn-book.html

The concept of SVN is you extract all the files under a directory to your workspace by svn
checkout command. After modifying files, you then use svn commit command to merger you
changes back into the repository. Multiple people can checkout (copy) the same files at the same
time.

xCAT 2.xsource files are stored under http://xcat.svn.sourceforge.net/svnroot/xcat .

• xcat-contrib - contributed code

• xcat-core – source code for all releases

1. branches

1. 2.0 - 2.0 release source tree

2. 2.1 – 2.1 release source tree

2. trunk - 2.x (next) release source tree

• xcat-deps – xcat dependency code

Usually all new development is checked into the trunk. Only fixes go into the branches.

7

http://xcat.svn.sourceforge.net/svnroot/xcat
http://svnbook.red-bean.com/nightly/en/svn-book.html
http://subversion.tigris.org/project_packages.html#binary-packages
http://subversion.tigris.org/project_packages.html#binary-packages
http://svnbook.red-bean.com/nightly/en/svn-book.html
http://xcat.svn.sourceforge.net/svnroot/xcat

9.1 Setting up SVN for windows

1. Download svn-1.5.1-setup.exe from
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
2. Install it on PC by running
 svn-1.5.1-setup.exe.
3. Create directories for my sandbox (workspace in SVN's term) C:\Ling\xCAT\sb\xcat-
core\trunk\bin
4. Extract files. From command line window:
 cd C:\Ling\xCAT\sb\xcat-core\trunk\bin
 svn checkout http://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk
5.Add a new file by first creating a file called test, then run
 svn add test.
6. Check in the changes

 svn --username linggao -m "my comments " ci (It asks my password).
7. undo what I have done
 svn del ling_test
 svn --username linggao -m "my first experience on SVN" ci

9.1 Setting up SVN for RedHat
1. Download and install the following from

http://the.earth.li/pub/subversion/summersoft.fay.ar.us/pub/subversion/latest/rhel-3/bin/ .
 apr-util-0.9.5-0.3.i386.rpm
 subversion-1.3.2-1.rhel3.i386.rpm

2. Create directories for workspace: /svn

3. Extract xCAT source code using command-line:

cd /svn

svn checkout http://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk

4. Use same commands as above (svn add, svn del, svnci).

5. To update you development tree later

cd /svn

svn update

8

http://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk
http://the.earth.li/pub/subversion/summersoft.fay.ar.us/pub/subversion/latest/rhel-3/bin/
http://xcat.svn.sourceforge.net/svnroot/xcat/xcat-core/trunk/
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://the.earth.li/pub/subversion/summersoft.fay.ar.us/pub/subversion/latest/rhel-3/bin/

9.1 Building xCAT rpms
To get the latest level of the xCAT code and build the rpms on your machine:

cd /svn/xcat/xcat-core/trunk
svn update
./makeperlxcatrpm
./makeclientrpm
./makeserverrpm
./makexcatsnrpm
./makexcatrpm
rm -f /usr/src/redhat/RPMS/noarch/xCAT-nbroot-core-x86_64*.rpm
./makenbrootrpm x86_64
rm -f /usr/src/redhat/RPMS/noarch/xCAT-nbroot-core-ppc*.rpm
./makenbrootrpm ppc64

9

	1.0Introduction
	2.0xCAT Architecture
	3.0Developing xCAT Code
	3.1Client/Server Model
	3.1.1Client code
	3.1.2Server code (plugins)
	3.1.1Debugging Commands (XCATBYPASS mode)

	3.2 Hierarchy
	3.1Calling Plugins from other Plugins
	3.2Remote Commands (ssh, rsh)

	4.0Common Perl Libraries for xCAT code
	4.1General Utilities

	5.0Adding Tables to the xCAT Database
	6.0Documentation
	6.1Creating Manpages

	7.0Packaging new Code
	8.0Changes to xCAT *.spec files
	9.0Setting up your SVN development Environment
	9.1Setting up SVN for windows
	9.1Setting up SVN for RedHat
	9.1Building xCAT rpms

