
xCAT 2.0 Beta Release Cookbook

03/3/2008

1.1 Release Description .. 1
1.1.1 Function supported: .. 2
1.1.2 Function not supported ... 3
1.1.3 Prerequisites:... 3
1.1.4 Licensing... 3

1.2 Installing xCAT 2.0 Software .. 3
1.3 Syslog setup .. 4
1.4 xCAT 2.0 Commands ... 5
1.5 xCAT Tables... 7

1.5.1 Table edit commands .. 9
1.5.2 Using the node* commands .. 9
1.5.3 Using xCAT object definition commands .. 10

1.6 Using xCAT hardware commands.. 12
1.6.1 Hardware discovery .. 12
1.6.2 Hardware Control.. 14

1.7 Adding and Installing Nodes .. 15
1.8 Using xCAT Notification Infrastructure... 17
1.9 Using xCAT Monitoring Plug-in Infrastructure: .. 19
1.10 xCAT Hierarchy using Service nodes... 21

1.10.1 Setting up PostgreSQL.. 21
1.10.2 Defining your service nodes ... 23
1.10.3 Installing xCAT Service Nodes (diskfull) ... 24

1.11 xCAT Architecture... 25
1.11.1 Client/Server ... 26
1.11.2 Flow .. 26

1.1 Release Description

xCAT 2.0 is a complete rewrite of xCAT 1.2/1.3 implementing a new architecture (see
description at end of this document). All commands are client/server, authenticated,
logged and policy driven. The clients can be run on any OS with Perl, including
Windows. The code has been completely rewritten in Perl, and table data is now stored
in a relational database. For the beta, we are including SQLite with the xCAT OSS rpm.
To use the new Service Node feature, you must be using Redhat 5 or Fedora 8 and install
and setup the PostgreSQL Database. See instructions below in Chapter 1.10 “xCAT
Hierarchy using Service Nodes chapter”.

The code is being released as RPMs and SRPMs . For the beta release, there is support
for x86_64 hardware (IPMI and Blades) and ppc64 hardware (js and qs blades) . The
OS must be RedHat 5, CentOS5, Fedora 8 or SLES 10.

The beta code should not be used for production work

1.1.1 Function supported:

• Tools to manipulate the database tables: tabdump,tabrestore,tabedit, chtab ,
nodels, nodech, nodeadd, noderm, chdef, mkdef, lsdef, rmdef,

• Cluster setup commands: makehosts, makedhcp ,makeconservercf

• Notification commands (infrastructure allowing users to register for xCAT
database table changes): regnotif, unregnotif

• Monitoring commands (monitoring plug-in infrastructure allowing plug-in
third party monitoring software to the xCAT cluster): startmon, stopmon

• Hardware control commands : lsslp, rscan, rpower, reventlog, rinv, getmacs,
rvitals

• Install commands : rnetboot

• Parallel remote and remote copy commands : xdsh, xdcp, xdshbak, psh.
xdsh/xdcp is now packaged with xCAT.

• Node discovery and diskfull and diskless deployment of CentOS5 and
RHELS5, Fedora 8 on the supported hardware (see Prerequisites).

• Hierarchical install (diskfull/diskless) using Service Nodes on Redhat 5 or
Fedora 8.

• For a list of all 2.0 xCAT commands run rpm –ql xcat-client.

• manpages

• Diskless/Stateless install

• Data abstraction commands to make creating node and other database
definitions easier. See Chapter 1.5.3, “Using xCAT Object Definition
Commands”.

1.1.2 Function not supported

• No imaging

• No flash

• pSeries hardware control using HMC, IVM, FSP for Power5 and Power6
hardware

• Web GUI interface

1.1.3 Prerequisites:

• Hardware requirements:

• x3455, x3550, x3650, x3455, LS21, HS21, LS41, x336, x346, ppc64

• no SOL for x386 or x486

• Must be IPMI based, rack mounted unit.

• Blades

• Ethernet switch must be SNMP enabled for node discovery.

• Software supported

• RedHat5, CentOS5, Fedora 8, SLES 10

1.1.4 Licensing

xCAT 2.0 is OSS with a EPL license. For license information visit

 http://www.opensource.org/licenses/eclipse-1.0.php

1.2 Installing xCAT 2.0 Software

Install your xCAT management node with RedHat5, CentOS5, Fedora 8, SLES 10
making sure to install all packages available with the distribution to reduce the
number of dependency RPMs you need to track down.

1. If you installed the xCAT2.0 alpha code, you should remove it from the system.
2. You can easily use YUM to install xCAT 2.0 on your management node.

a. If your management node is connected to the internet, YUM can be
pointed directly to the download site. Down load the following two files
to the management node and place in the /etc/yum.repos.d directory.
 http://xcat.org/xcat/xCAT-core.repo
 http://xcat.org/xcat/xCAT-oss.repo

b. If your management node is not connected to the internet, download the
following tar files to a system that is and then copy them to your
management node:

http://xcat.sourceforge.net/yum/core-repo.tar.bz2

http://xcat.sourceforge.net/yum/oss-repo.tar.bz2

Un-tar the files. Each tar file has a mklocalrepo.sh script that you will
need to run to modify the included copy of the xCAT-*.repo file to point
to your local copies of the rpms.

3. Make sure that the management node hostname resolves to the ip address set in
/etc/hosts. The output of “hostname –d” should print the correct domain name.
If /etc/hosts is set with the long and short hostname, this should work.

For example: 7.113.47.250 rh5.clusters.com rh5 line in /etc/hosts results in

[root@rh5 ~]# hostname -d

clusters.com

4. If OpenIPMI-tools is installed on your system, remove it “rpm –e OpenIPMI-
tools”. The version shipped with Redhat 5/CentOS5 is back-level and has many
bugs. xCAT will be installing a newer version from the xCAT-oss.repo.

5. Now run “yum install xCAT” to install the xCAT and dependent OSS rpms.
Postscripts in the rpms will set up default xCAT configurations and start the xcatd
daemons.

6. If you are reinstalling xCAT 2.0, run “yum update” to update the xCAT
packages.

7. Check to make sure the xcatd daemons started:

[root@rh5 xCAT-core]# ps -ef | grep -i xcat

root 3471 1 0 14:07 ? 00:00:00 xcatd: SSL listener

root 3472 3471 0 14:07 ? 00:00:00 xcatd: UDP listener

root 3473 3471 0 14:07 ? 00:00:00 xcatd: install monitor

If not, start it manually:

[root@rh5 xCAT-core]# service xcatd start

Starting xCATd

8. Run “chkconfig tftp on” run “service xinetd restart” to enable the TFTP server.

9. Add xCAT manpages /opt/xcat/share/man to your MANPATH . You may need
to export LC_ALL=en_US for the manpages to display correctly.

1.3 Syslog setup

The install of xCAT will automatically setup syslog.conf with the following entries to log
errors to the /var/log/localmessages file. Severe errors from commands and errors from
the xCAT will be logged in syslog. You can tailor the configuration but be sure and
include the facility local4 which is used by xCAT.

/etc/syslog.conf

*.debug /var/log/messages

*.crit /var/log/messages

1.4 xCAT 2.0 Commands
Note: use ‘<xCAT command> -h’ for a usage message from each command. MAN pages are not available at this time.

XCAT

COMMAND

DESCRIPTION

chtab

(Note: will be

renamed to tabch in

beta)

To add or update rows in a table. Allows you to add nodes, create groups, add attributes to the xCAT tables.

chtab node=devnode01 nodelist.group=all,compute will add a new node devnode01 to the nodelist table and

assign to the all and compute groups.

chtab key=rsh site.value=/usr/bin/ssh will assign the site table rsh attribute to /usr/bin/ssh

chtab –d node=devnode01 will delete the previously create node from the nodelist table.

copycds Copies Linux distributions and service levels to install directories.

chdef Change xCAT data object definitions.

chvm Changes HMC- and IVM-managed partition profiles. (not available for use)

getmacs Collect node MAX addresses

lsdef Use this command to list xCAT data object definitions.

lsslp Queries selected networked services configuration information.

lsvm Lists partition profile information for HMC- and IVM-managed nodes. (not available for use)

makeconservercf Make Conserver Configuration

mkdef Use this command to create xCAT data object definitions.

makedhcp Sets up the DHCP server.

makehosts Creates entries in /etc/hosts for nodes. Node nodenames and ip addresses must be setup in the hosts table.

makenetworks Builds the networks table

mkvm Creates HMC- and IVM-managed partitions. (not available for use yet)

nodeadd Add a node to the cluster

For example: nodeadd <noderange> [table.column=value] [table.column=value]….

 nodeadd blade1-blade7 nodelist.groups=all,compute

nodeadd also supports some short cut tags:

 groups is equivalent to table.column = nodelist.groups

• nodeadd blade1-blade8 groups=all,compute
 mgt is equivalent to table.column = nodehm.mgt

• nodeadd blade7 mgt=blade
 switch is equivalent to table.colum= switch.switch

• nodeadd blade8 switch=switch1

nodech Change node information

nodels Display information about a node or range of nodes or all nodes

noderm Remove Node

nodeset Installs, boots the nodes uses pxe.

psh Runs a command across a list of nodes or nodegroups in parallel

rbeacon Turns beacon on/off/blink or gives status of a node or a range of nodes.

rbootseq For boot of Bladecenter node range. Change each node boot order.

regnotif Register a Perl module or a command that will get called when changes occur in desired xCAT database
tables.
See Using xCAT Notification

reventlog Retrieves or clears remote hardware event logs

rinv Retrieves hardware configuration information for a single or range of nodes

rmdef Use this command to remove xCAT data object definitions.

rmvm Removes HMC- and IVM-managed partitions. (not supported yet)

rnetboot Will force an unattended network install for a range of nodes (diskless) .

rpower Boots, resets, powers on and off and queries nodes

Note: “boot” option not implemented yet. Use either “on” or “reset” options as appropriate.

rscan Collects node information from hardware control point

rsetboot rsetboot (IPMI) is a way to specify the singular device to try to boot only for the next power cycle

rspreset Used to reset service processors out-of-band

rvitals Retrieves hardware vital information from the on-board Service Processor for a range of nodes

startmon starts a monitoring plug-in module to monitor the xCAT cluster.

stopmon stops a monitoring plug-in module to monitoring the xCAT cluster

tabdump Display Database table information for table requested. tabdump with no input will display a list of all valid

table names. tabdump –d <tablename> will list the fields of the table and their definitions

tabedit Edit a table . Must export EDITOR to define your editor.

tabrestore Restore a table from the table.csv template or from a tabdump output file.

unregnotif Unregistered a Perl module or a command that was watching for changes of desired xCAT database tables.

xdcp Concurrently copies files to/from multiple nodes. See xdsh and xdcp man page for more information

xdsh Concurrently runs remote commands on multiple nodes. All dsh code is now shipped with xCAT 2.0. If dsh

rpms were obtained from the following website and installed for the alpha release, you should erase the

csm.dsh* rpm. http://www14.software.ibm.com/webapp/set2/sas/f/csm/download/home.html.

See xdsh man page for more information.

xdshbak Presents formatted output from the xdsh command

1.5 xCAT Tables
Note: The Database Table Schema can be viewed in the /usr/lib/perl5/site_perl/5.8.3/xCAT/Schema.pm file or by running the
tabdump command.

TABLE

NAME

DESCRIPTION

chain Lists action that occur during node install, node boot . Used by nodeset.

deps Dependency node table

hosts List of hosts, alias hostname, ip addresses. Used to update /etc/hosts with makehosts

ipmi Lists information on the nodes IPMI interface – bmc, username, password

iscsi List information for setting up iSCSI

mac Lists mac address for each node.

monitoring Lists the monitoring plug-in module names that are monitoring the xCAT cluster.

mp This is the management processor network. Whereas the mpa.tab lists the adapter, this table lists devices that are

networked off that adapter via daisy chained networks, or in the case of Blade Center, an internal network..

mpa Lists the MPA, username and password for the nodes.

networks Defines masks, gateways and DNS servers. Build my makenetworks command.

nodegroup Lists information on all nodegroups defined

nodehm Defines the hardware management method for each node.

nodelist Defines all nodes and groups.

nodepos Node physical location

noderes Installation resources for the node.

nodetype Node install type (osversion, arch, type)

notification Lists the Perl modules and commands that will get called for changes in certain xCAT database tables.

osimage Contains information that describes a unique operating system image that may be deployed on a cluster node

passwd user names and passwords used by xCAT scripts

policy Table controls the policy for the execution of the xcat commands.

postscripts Comma separated list of scripts that should be run on this node after installation or diskless boot. (TBD)

ppc Store Series p hardware components – HMC, IVM, BPA, FSP, LPAR

ppcdirect Contains direct-attached FSP hardware information

ppchcp Contains HMC and IVM hardware information

site Main xCat configuration file. Holds global information for the cluster.

switch Lists switch interface(s) for the node.

vpd Vital product data table. Holds machine serial number and model type.

1.5.1 Table edit commands

To manage these tables directly, xCAT provides the chtab, tabdump, tabrestore, and
tabedit commands.

The following are some basic examples of how to use the database table commands.

1. To see what tables exist in the xCAT database:

tabdump

2. To display the definition of the attributes of the nodelist table:

tabdump –d nodelist

3. To display the contents of the site table

 tabdump site

4. To back up all the xCAT tables.

mkdir -p /tmp/xcatdb.backup

for i in `tabdump`;do echo "Dumping $i..."; tabdump $i
>/tmp/xcatdb.backup/$i.csv; done

5. Add a new node “devnode01” to the “nodelist” table and assign it to the “all” and
“compute” groups.

chtab node=devnode01 nodelist.group=all,compute

6. Assign the “site” table “rsh” attribute to “/usr/bin/ssh”.

chtab key=rsh site.value=/usr/bin/ssh

7. Delete the previously created node from the “nodelist” table.

i) chtab –d node=devnode01 nodelist

8. To restore database tables that were dumped with tabdump:

 cd /tmp/xcatdb.backup

for i in *.csv;do echo "Restoring $i..."; tabrestore $i; done

1.5.2 Using the node* commands

These are a set of commands for adding (nodeadd), changing (nodech), listing (nodels)
and removing (noderm) from the database.

The following are some basic examples of how to use the node* commands:

1. To add a node to the nodelist table with groups all:
 nodeadd sn1 nodelist.groups=all

2. To change the node sn1 os definition in the nodetype table:

 nodech sn1 nodetype.os=rhel5

3. To remove node sn1 from all database tables:
 noderm sn1

4. To list all the nodes in the input noderange:
 nodels sn1-sn10

1.5.3 Using xCAT object definition commands

In addition to managing the database tables directly xCAT also supports the concept of
data object definitions. Data objects are abstractions of the data that is stored in the
xCAT database. This support provides a conceptually simpler implementation for
managing cluster data. It is also more consistent with other IBM systems management
products such as Director, CSM, and AIX/NIM etc. The attributes and values defined in
the data object definitions will still be stored in the database tables defined for xCAT 2.0.
These data object definitions should not limit experienced xCAT customers from
managing the specific tables directly, if they so desire. A new set of commands is
provided to support the object definitions. These commands will automatically handle
the storage in and retrieval from the correct tables.

The following data object types are currently supported.

� site - Cluster-wide information. All the data is stored in the site table.
� node - Information for a specific cluster node. The data for a node is stored in

multiple tables in the database. The commands that are provided to manage these
definitions automatically figure out which attributes are stored in which table. It
is therefore not necessary to keep track of a large number of table names and
attribute locations.

� network - A description of a unique network. This data is stored in the networks
table.

� monitoring - A description of a monitoring plugin. This data is stored in the
monitoring table.

� notification - Defines the Perl modules and commands that will get called for
changes in certain xCAT database tables. The data is stored in the notification
table.

� group – Defines a set of nodes. A group definition can be used as the target set
of nodes for a specific xCAT operation. It can also be used to define node
attributes that are applied to all group members. The group data is stored in
multiple tables in the database.

� policy – Define the policies used when executing xCAT commands. The data is
stored in the policy table.

There are four xCAT commands that may be used to manage any of the data object
definitions.

� mkdef – Make data object definitions.
� chdef - Change data object definitions.
� lsdef - List data object definitions.
� rmdef - Remove data object definitions.

The following are some basic examples of how to use the database object definition
commands. For more information on using these commands refer to the MAN pages.

1) To view the list of supported object definition types you can issue any of the
commands with the “-h” option. Along with the usage you will also see a list of
supported object types.

lsdef –h

2) To get a description of the attributes that can be defined for each object type you
can issue the lsdef command with the “-t <object type>” option.

lsdef –h –t node

3) To get a list of all the objects currently defined.

lsdef –a

4) To get the details of a specific node definition.
lsdef -t node –l –o node01

5) To create a very simple node definition.

mkdef –t node –o node02 groups="all,aix"

6) To create a node group containing all nodes that have a “nodetype” attribute set to
“compute”.

mkdef -t group -o computenodes -w nodetype= compute

7) To change the site definition.
 chdef -t site -o clustersite rsh=/bin/rsh rcp=/bin/rcp installdir=/xcatinstall

8) To remove all node and group definitions.

rmdef –t node,group

9) To remove the group called hmcnodes.
rmdef -t group -o hmcnodes

In addition to the standard command line input and output the mkdef, chdef, and lsdef
commands support the use of a stanza file format for the input and output of information.
Input to a command can be read from a stanza file and the output of a command can be
written to a stanza file. A stanza file contains one or more stanzas that provide
information for individual object definitions. For example:

5. To create a set of definitions using information contained in a stanza file.
cat mystanzafile | mkdef -z

6. To write all node definitions to a stanza file.
lsdef –t node -l -z > nodestanzafile

The stanza file support also provides an easy way to backup and restore the cluster data.

For more information on the use of stanza files see the xcatstanzafile MAN page.

Note: In some cases the object definition commands may not be able to recognize
changes that were made by updating the database tables directly by using the table
commands. Generally speaking, the intermixing of the use of the two sets of commands
is not recommended.

1.6 Using xCAT hardware commands

1.6.1 Hardware discovery

The following commands can be used to gather information about cluster hardware. See
the MAN pages for additional details.

1. rinv - Retrieves hardware configuration information for a single or range of

nodes and groups.

For example:

 rinv node5 all

node5: Machine Type/Model 865431Z
node5: Serial Number 23C5030
node5: Asset Tag 00:06:29:1F:01:1A

node5: PCI Information
node5: Bus VendID DevID RevID Description Slot Pass/Fail
node5: 0 1166 0009 06 Host Bridge 0 PASS
node5: 0 1166 0009 06 Host Bridge 0 PASS
node5: 0 5333 8A22 04 VGA Compatible Controller 0 PASS
node5: 0 8086 1229 08 Ethernet Controller 0 PASS
node5: 0 8086 1229 08 Ethernet Controller 0 PASS
node5: 0 1166 0200 50 ISA Bridge 0 PASS

node5: 0 1166 0211 00 IDE Controller 0 PASS
node5: 0 1166 0220 04 Universal Serial Bus 0 PASS
node5: 1 9005 008F 02 SCSI Bus Controller 0 PASS
node5: 1 14C1 8043 03 Unknown Device Type 2 PASS
node5: Machine Configuration Info
node5: Number of Processors: 2
node5: Processor Speed: 866 MHz
node5: Total Memory: 512 MB
node5: Memory DIMM locations: Slot(s) 3 4

2. rvitals - Retrieves hardware vital information for a single or range of nodes and

groups.

For example:

 rvitals node5 all

node5: Frame Voltage (Vab): 201V
node5: Frame Voltage (Vbc): 203V
node5: Frame Voltage (Vca): 202V
node5: Frame Current (Ia): 19A
node5: Frame Current (Ib): 19A
node5: Frame Current (Ic): 20A
node5: System Temperature: 33 C (91.4 F)
node5: Running

3. lsslp - Queries selected networked services information within the same subnet. If

the HMC/IVM that you are interested in discovering is on the same subnet as your
Management Node, you can run the lsslp to discover and add his hardware to the
xCAT database.

Note that the dependent programs slp_query and libslp_client.so are compiled
modules required to perform SLP broadcasts. These modules can be obtained by
posting a request to the xCAT mailing list (please specify the target O/S in the
request).

For example:

 lsslp -s HMC

 device type-model serial-number ip-addresses hostname

 HMC 7310CR2 103F55A 1.1.1.115 2.2.2.164 3.3.3.102 hmc01
 HMC 7310CR2 105369A 3.3.3.103 2.2.2.103 1.1.1.163 hmc02
 HMC 7310CR3 KPHHK24 3.3.3.154 2.2.2.110 1.1.1.154 hmc03

4. rscan - Collects node information from one or more hardware control points.

For example:

 rscan hmc01

 type name id type-model serial- number address

 hmc hmc01 7310-C05 10F426A hmc01
 fsp Server-9117-MMA-SN10F6F3D 9117-MMA 10F6F3D 3.3.3.197
 lpar lpar3 4 9117-MMA 10F6F3D
 lpar lpar2 3 9117-MMA 10F6F3D
 lpar lpar1 2 9117-MMA 10F6F3D
 lpar p6vios 1 9117-MMA 10F6F3D

5. getmacs – Gathers adapter MAC information from cluster nodes.
For example:

 getmacs node01

lpar4:

#Type Location Code MAC Address Full Path Name Ping Result

ent U9133.55A.10B7D1G-V12-C4-T1 8ee2245cf004 /vdevice/l-
lan@30000004 virtual

1.6.2 Hardware Control

The following commands can be used to control cluster hardware. See the MAN pages
for additional details.

7. rnetboot – Initiate a network boot request on one or more cluster nodes.

For example, to initiate a network boot of the node “node01”, enter:
 rnetboot node01

8. rpower – Boots, resets, powers on and off, and queries node hardware, and
devices.
For example, to power on a node, enter:

rpower -n clsn04 on

1.7 Adding and Installing Nodes

1) Check the default required site table attributes:
[root@rh5 xCAT-core]# tabdump site
#key,value,comments,disable
"xcatdport","3001",,
"xcatiport","3002",,
"master","9.114.47.251",,
"domain","ppd.pok.ibm.com",,
"installdir","/install",,
"timezone","America/New_York",,
"nameservers","176.60.50.209",,

To change any of these values, use chtab or tabedit.
chtab:
a) chtab key=domain site.value=<your domain name>

For example: chtab key=domain site.value=clusters.com
b) chtab key=master site.value=<ip address on the cluster network of Master node>

For example: chtab key=master site.value=8.777.43.5
c) chtab key=dhcpinterfaces site.value=<comma delimited list of nics to run dhcp>

For example: chtab key=dhcpinterfaces site.value=eth1
tabedit:
a) export EDITOR=vim (or your favorite editor)
b) tabedit site
c) make your changes, and use the editor command to save the file and quit. Your

changes will automatically be imported into the xCAT database.
2) Check the 1350 default database template files in /usr/share/xcat/template/e1350

directory to see if they apply to your environment. These templates, or templates
you create from them, can be used to load the database xCAT tables using the
tabrestore <path to template> command. The README, in the directory, explains
how to use these files.

3) The tabdump <tablename> will dump current contents of the database table. This
can be used to dump the contents of a table and, if you redirect the output to a file,
you can later reload the data using tabrestore.

4) Use tabedit <tablename> to make any needed changes to the tables. Check the
previous released xCAT tables for definitions. The 2.0 tables contain a header with
the format of the fields in comments.

5) Define the nodes in your cluster by using the nodeadd command. Ensure that all
nodes, bmcs or management modules, and switches have hosts definitions, or the
dhcp configuration will not update, and the bmcsetup will not receive meaningful
data. (see nodeadd command in the xCAT Tables).

6) If you want makehosts to update the /etc/hosts file for the defined nodes, bmcs/mms,
and switches, use tabedit to update the hosts table with the hostnames and ip
addresses to be added to /etc/hosts. Then run makehosts .

7) makenetworks runs during the xCAT install and updates the networks table. You
should tabdump networks to ensure the setting are correct. If any need changing,
tabedit networks table. Ensure the networks to be managed have the “dynamicrange”
set to a hyphenated range of IP addresses to serve as staging for nodes being brought
up. If any new networks are added, the makenetworks should be run again.

8) Run makedhcp –n. Review the /etc/dhcp.conf file created to ensure all your network
definitions are correct. Note that the node host definitions will no longer appear here,
but rather will appear in the leases file (/var/lib/dhcpd/dhcpd.leases) after the initial
DHCP request from the node. xCAT 2.0 sets up dhcp to use the OMAPI command
shell to setup, query and change the dhcp configuration. See man omshell, and
http://linux.die.net/man/3/omapi for more information.

9) Run “service dhcpd start” to load the initial omapi dhcp configuration.
10) For blades, make sure your bladecenter management module is configured for the

SNMP protocol:
a) Telnet into you management module. Once in, do the following (assumes

“mm[1]” is the current active mm and “PASSW0RD” is your mm password).
b) env -T mm[1]
c) users -1 -ap sha -pp des -at set -ppw PASSW0RD
d) Log off the management module and test the connection with a query command

such as rpower <noderange> stat or rinv <noderange> all.
Note: This was only tested with the latest release level firmware BPET32D. Older
firmware may not properly support SNMP.

11) Set up conserver.
a) Update the nodehm table (tabedit nodehm) to set fields for cons, termport, and

termserver for your nodes. Currently, supported values for cons are “blade” and
“ipmi”.

b) Run makeconservercf to generate a conserver 8 configuration file. Review
/etc/conserver.cf. Make sure you have valid “trusted” entries in the “access{}”
stanza for any host starting a console (most likely your management node).

c) Start the conserver daemon: service conserver start
d) Try opening a console: console -M <management node> <node>

12) xCAT 2.0 will discover your hardware:
a) Create the initrd:

(1) rm /tftpboot/pxelinux.cfg/default
(2) mknb x86_64 (creates the netboot image and writes out the master

parameter to the /tftpboot/pxelinux.cfg/default file).
b) Make sure your boot sequence is set to boot from network before harddrive:

rbootseq <noderange> list
If not, change it: rbootseq <noderange> f,c,n,h

c) Power up the system using rpower <noderange> on.
d) Within a few seconds of booting to the network, any BMCs should be configured

and be setup to allow ssh. All nodes will be network booted (you can watch
/var/log/messages for DHCP and TFTP traffic).

e) nodels <noderange> vpd.serial vpd.mtm mac.mac should show interesting data
after discovery.

13) Run copycds with full path to the ISO images
14) Run nodech (or tabedit) to change nodetype OS and setup node profile :

nodech <noderange> nodetype.os=<os> nodetype.profile=compute
(for now only, the compute template file has been provided. See
/usr/share/xcat/install/). Current possible values for os: rhels5, rhelc5,centos5
If using 64 bit distro, the nodetype.arch should have been populated with

“x86_64” at discovery time. If not, set this value, too. This is the only
architecture supported for now.

15) Run nodech (or tabedit) to set noderes nfsserver :
nodech <noderange> noderes.nfsserver=<server>
(Note: may need to use your management server IP address instead of the hostname
for the nfsserver for now)

16) Also check the following fields to make sure they are set correctly and update as
necessary:
noderes.installnic -- the Ethernet adapter on the node used for installation
noderes.serialport -- standard SOL for Blades “1”, for IPMI nodes “0”
nodehm.serialspeed -- standard SOL for Blades “19200”
nodehm.serialflow -- standard SOL for Blades “hard”

17) Postscripts that will be run during node install are identified in
/etc/xcat/postscripts.rules and located in /install/postscripts. Not all of the
postscripts have been ported to xCAT 2.0 yet, so you may get some “script not
found” messages during the postscript processing. Also, the postage and postrules
commands have not been ported yet, so debug may take a little more effort.

18) Run nodeset <noderange> install, to setup for installing the OS.
19) Run rpower <noderange> on or rpower <noderange> reset, to boot the systems and

start the network install process.
 (note, rpower <noderange> boot is not working yet)

� The kexec to installers doesn't have the client scripts written yet, necessitating
the reboot, if wanting to try kexec for now, you have to manually transfer the
kernel, initrd, and run kexec -f with the right arguments to the xCAT nbfs
environment)

1.8 Using xCAT Notification Infrastructure

 With xCAT 2.0, you can monitor xCAT database for changes such as nodes
entering/leaving the cluster, hardware updates, node liveness (to be added later) etc. In
fact anything stored in the xCAT database tables can be monitored through the xCAT
notification infrastructure. To start getting notified for changes, simply register your Perl
module or command as the following:

 regnotif filename tablename -o actions

where

filename is the full path name of your Perl module or command.

tablenames is a comma separated list of table names that you are interested in.

actions is a comma separated list of data table actions. 'a' for row addition, 'd' for row deletion and 'u'
for row update.

Example:

 regnotif /opt/xcat/lib/perl/xCAT_monitoring/mycode.pm nodelist,nodhm -o a,d

 regnotif /usr/bin/mycmd switch,noderes -o u

Use the following command to view all the modules and commands registered.

 tabdump notification

To un-register, just do the following:

 unregnotif filename

Example:

 unregnotif /opt/xcat/lib/perl/xCAT_monitoring/mycode.pm

 unregnotif /usr/bin/mycmd

If the filename specifies a Perl module, the package name must be
xCAT_monitoring::xxx. It must implement the following subroutine which will get
called when database table change occurs:

 processTableChanges(tableop, table_name, old_data, new_data)

 where:

tableop Table operation. It can be 'a' for row addition, 'd' for row deletion and 'u' for row
update.

 tablename The name of the database table whose data has been changed.

old_data An array reference of the old row data that has been changed. The first element is an
array reference that contains the column names. The rest of the elements are array references
each contains attribute values of a row. It is set when the action is u or d.

new_data A hash reference of the new row data; only changed values are in the hash. It is keyed
by column names. It is set when the action is u or a.

If the file name specifies a command (written by any programming languages or scripts),
when the interested database table changes, the info will be fed to the command through
the standard input. The format of the data in the STDIN is as following:

action(a, u or d)

tablename

[old value]

col1_name,col2_name...

col1_val,col2_val,...

col1_val,col2_val,....

...

[new value]

col1_name,col2_name,...

col1_value,col2_value,...

...

The sample code can be found under
/opt/xcat/lib/perl/xCAT_monitoring/samples/mycode.pm on a installed system.

1.9 Using xCAT Monitoring Plug-in Infrastructure:

 With xCAT 2.0, you can integrate 3rd party monitoring software into your xCAT
cluster. The idea is to use monitoring plug-in modules that act as bridges to connect
xCAT and the 3rd party software. The functions of a monitoring plug-in module include
initializing the 3rd party software, informing it with the changes of the xCAT node list,
setting it up to feed node status back to xCAT etc. The following figure depicts the
relationship and data flow among xcatd, plug-in modules and 3rd party monitoring
software.

 To use this infrastructure, first create a monitoring plug-in module and put it under
/opt/xcat/lib/perl/xCAT_monitoring/ directory. If the file name is xxx.pm then the
package name will be xCAT_monitoring::xxx. The following is a list of subroutines
that a plug-in module must implement:

start

stop

supportNodeStatusMon

startNodeStatusMon

stopNodeStatusMon

addNodes

removeNodes

Please refer to /opt/xcat/lib/perl/xCAT_monitoring/samples/tmplatemon.pm for the
detailed description of the functions.

Second, register the module in xCAT monitoring table using the following command:

 startmon name [-n|--nodestatmon] [-s|--settings tag=value,tag=value…]

where

name is the monitoring plug-in module short file name without the extension. In this case xxx.

-n or --nodestatmon indicates it can help feeding the node status to xCAT. The node status is stored in

the status column of the nodelist table.

-s or –settings specifies the plug-in specific settings. These setting will be used by the plug-in to
customize certain entities for the plug-in or the third party monitoring software. e.g.
mon_interval=10,toggle=1

Example:

startmon xxx –n (with feeding the node status to xCAT table)

or

startmon xxx (not feeding the node status to xCAT table)

Once it is registered, xCAT will automatically, through the plug-in module, start the 3rd
party software for monitoring. To unregister the monitoring plug-in and stop the
monitoring use this command:

stopmon name

Example:

stopmon xxx

Though you can write your own monitoring plug-in modules, over the time, xCAT will
supply a list of built-in plug-in modules for the most common monitoring software. They
are:

• xCAT (xcatmon.pm) (released in this beta)

• RMC (rmcmon.pm)

• Ganglia (gangliamon.pm)

• Nagios (nagiosmon.pm)

• SNMP (snmpmon.pm)

xcatmon.pm is included in this release. It provides node liveness monitoring using fping.
This can be used if no other 3rd party software is used for node status monitoring. The
status column of the nodelist table will be updated periodically with the latest node
liveness status by this plug-in. To activate, use the startmon command:

startmon xcatmon –n –s ping-interval=2

where 2 means that the nodes are pinged for status every 2 minutes.

1.10 xCAT Hierarchy using Service nodes

In large clusters it is desirable to have more than one node (the Management Server)
handle the installation of the compute nodes. We call these nodes service nodes. You
can have one or more service nodes setup to install groups of compute nodes.

The service nodes need to communicate with the xCAT2.0 database on the Management
Server and run xCAT command to install the nodes. The service node will be installed
with the xCAT code and we required the PostgreSQL Database be setup instead of
SQLite. PostgreSQL allows a client to be setup on the service node such that the service
node can access the database on the Management Server (Masternode).

1.10.1 Setting up PostgreSQL

The following rpms should be installed from the RHELS5.1/Fedora8 media on the
Management Server (and service node when installed).
perl-DBD-Pg-1.49-1.fc6
postgresql-server-8.1.9-1.el5
postgresql-8.1.9-1.el5

To setup the database on the Management Server follow this steps.
This example assumes:
192.168.0.1: ip of master
xcatdb: database name
xcatadmin: database role (aka user)
cluster: database password
192.168.0.10 & 192.168.0.11 (service nodes)
Substitute your address and desired userid and database name as appropriate

1. /etc/init.d/postgresql start

Initializing database: [OK]
Starting postgresql service: [OK]

2. su – postgres
3. -bash-3.1$ createuser -P xcatadmin

Enter password for new role: cluster
Enter it again: cluster
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n
CREATE ROLE

4. $ createdb -O xcatadmin xcatdb
CREATE DATABASE

5. $ exit
logout

6. cd /var/lib/pgsql/data/
7. vi pg_hba.conf

#lines should look like:
local all all ident sameuser

8. IPv4 local connections:
host all all 127.0.0.1/32 md5
host all all 192.168.0.1/32 md5
host all all 192.168.0.10/32 md5
host all all 192.168.0.11/32 md5 where 192.168.0.10 and 11 are service nodes.

9. vi postgresql.conf
10. set listen_addresses to '*':

listen_addresses = '*' This allows remote access
11. service postgresql restart
12. (if trying to save an existing configuration/migrate)

#mkdir -p ~/xcat-dbback
13. cd /etc/xcat

for i in *sqlite; do
tabdump ${i%%.sqlite}> ~/xcat-dbback/$.csv done

14. /etc/sysconfig/xcat should contain this, substitute your cluster facing address for
192.168.0.1, and user and password are xcatadmin cluster in this instance
XCATCFG='Pg:dbname=xcatdb;host=192.168.0.1|xcatadmin|cluster'
export XCATCFG
XCATROOT=/opt/xcat
export XCATROOT

15. copy /etc/sysconfig/xcat /install/postscripts/sysconfig/xcat
16. chmod 700 /etc/sysconfig/xcat #only root should be able to read due to passwd
17. . /etc/sysconfig/xcat #read the text into the current shell
18. You . /etc/sysconfig/xcat to a setup shell script in /etc/profile.d, so the XCATROOT

and XCATCFG environment variables are setup when you login.
19. Add this line to /etc/profile.d/xcat.sh : export

XCATCFG="Pg:dbname=xcatdb;host=9.114.47.227|xcatadmin|cluster" with your
database name, admin and password substituted.

20. Now initialize the database

• chtab key=xcatdport site.value=3001
chtab key=xcatiport site.value=3002
chtab key=master site.value=$(getent hosts `hostname`|awk '{print $1}')
chtab key=tftpdir site.value=/tftpboot
chtab key=domain site.value=$(hostname -d)
chtab key=installdir site.value=/install
chtab key=timezone site.value=`grep ^ZONE /etc/sysconfig/clock|cut -d= -f 2|sed
-e 's/"//g'`
chtab priority=1 policy.name=root policy.rule=allow
chtab priority=2 policy.commands=getbmcconfig policy.rule=allow
chtab priority=3 policy.commands=nextdestiny policy.rule=allow
chtab priority=4 policy.commands=getdestiny policy.rule=allow

Setup your xCAT servers in the site.tab table for makedhcp
chtab key=xcatservers site.value=sn1,sn2,.......

21. service xcatd restart
22. Restore your saved database: cd ~/xcat-dbback

 for i in *csv; do
tabrestore $i
done

23. chkconfig postgresql on
24. Need to update the policy table: Run this command to get correct Master node name

known by ssl:

• openssl x509 -text -in /etc/xcat/cert/server-cert.pem -noout|grep Subject
Subject: CN=mgt.cluster
Subject Public Key Info:
X509v3 Subject Key Identifier:

25. Update the policy table with mgt.cluster output from the command:
chtab priority=5 policy.name=<mgt.cluster> policy.rule=allow

26. service postgresql restart

1.10.2 Defining your service nodes

The noderes table defines which service node will service the nodes in your cluster.
For each of the nodes in the cluster, change the service node attribute in the noderes table
to point to the name or ip address of it’s service node. So for nodes node1-node25, setup
the service node sn1. Then assign the service that you would like run on the service
node.
 Define nodes:

• nodeadd node1-node25 nodelist.groups=compute,all

 Define service nodes and as nodes and in the site table

• nodeadd sn1-sn2 nodelist.groups=service,all

• chtab key=xcatservers site.value=sn1,sn2

 Assign service node to the node group

• nodech node1-node25 noderes.servicenode=sn1

 Define services to run on the servicenode for the node group.

• nodech node1-node25 noderes.tftpserver=sn1

• chtab netname=extnet networks.dhcpserver=78.44.66.1 (ip address of sn1)

Note: if in the noderes table you have an assigned servicenode for a node, and the field
for the service (e.g nfsserver) is left blank, it is assumed that you want that service
running on the service node. So you can either explicitly assign a service node to a node

for any given service, or you can leave the fields blank and the service node assigned to
the node will run all services for that node.

For example: [root@xcat20mn bin]# tabdump noderes

#node,servicenode,netboot,tftpserver,nfsserver,monserver,kernel,initrd,kcmdline,nfsdir,se
rialport,installnic,primarynic,xcatmaster,current_osimage,next_osimage,comments,disabl
e

"mynode","sn1","pxe","sn1",,,,,,,,,,,,,,

Here sn1 is the servicenode for mynode. sn1 is the tftpserver for mynode because it was
explicitly set. sn1 is also the nfsserver, because no other service node was put in that
field. The settings for the services in the database will determine which services are
setup on the service node. These services are setup when the xcatd daemon is started
on the service node.

 The services that are setup by xCAT on the service node are as follows:

• nfs (always setup)

• dns

• conserver

• tftp

• http (automatically installed)

• dhcp

• syslog (always setup)

1.10.3 Installing xCAT Service Nodes (diskfull)

Before installing make sure that at least one node in the database has the service node you
are going to installed defined as its service node.

Follow the normal steps for an OS install, see 1.7 “ Adding and Installing Nodes”.

In addition we need to install the xCAT rpms and dependencies on the Service Node:

• Create a directory /install/postscripts/xcat/RPMS/noarch

• Create a directory /install/postscripts/xcat/RPMS/x86_64

• The following rpms should be in /install/postscripts/xcat/RPMS/noarch

• perl-Expect-1.20-1.noarch.rpm

• perl-xCAT-2.0-*.rpm

• xCAT-client-2.0-*.rpm

• xCAT-nbkernel-x86_64-2.6.18_8-*.noarch.rpm

• xCAT-nbroot-core-x86_64-2.0-*.noarch.rpm

• xCAT-nbroot-oss-x86_64-2.0-*.noarch.rpm

• xCAT-server-2.0-*.noarch.rpm

• The following rpms should be in /install/postscripts/xcat/RPMS/x86_64

• atftp-0.7-1.x86_64.rpm

• atftp-client-0.7-1.x86_64.rpm

• atftp-debuginfo-0.7-1.x86_64.rpm

• conserver-8.1.16-2.x86_64.rpm

• conserver-debuginfo-8.1.16-2.x86_64.rpm

• fping-2.4b2_to-2.x86_64.rpm

• ipmitool-1.8.9-2.x86_64.rpm

• ipmitool-debuginfo-1.8.9-2.x86_64.rpm

• perl-IO-Tty-1.07-1.x86_64.rpm

• xCATsn-2.0-*.x86_64.rpm

Run nodeset <service nodename>. Check /install/postscripts/<service nodename> to see
if the servicenode is one of the postinstall scripts that will be run. If not, make sure you
have a node defined in the database with this service node designated as its service node
in the noderes table.

rpower <service nodename> off

rpower <service nodename> stat - do this until you see status is off

rpower <service nodename> on

You can monitor progress with nodestat < service nodename> and tailing
/var/log/messages

When the service node comes up, it should have services (tftp, dhcp, dns, nfs, conserver)
started, you should be able to run run database command like nodels or tabdump on the
service node.

1.11 xCAT Architecture

General/Overall Concepts

The heart of the xCAT 2.0 architecture is the xCAT daemon (xcatd) on the management
node. This receives requests from the client, validates the requests, and then invokes the
operation. The xcatd daemon also receives status and inventory information from the
nodes

1.11.1 Client/Server

1.11.2 Flow

• User invokes an xcat cmd on the client
• The cmds can either be a sym link to xcatclient or a thin wrapper that calls

xcatclient.
• Some cmds will implement their own xcatclient function, if they have more

processing than the generic xcatclient function supports. (e.g. xdsh/xdcp).
• The xcatclient function packages the info into xml and passes it to xcatd
• xcatd receives the request and forks to process the request
• The ACL/Role Policy Engine determines whether this person is allowed to

execute this request. It evaluates the following info:
o The cmd name and args
o Who executed the cmd on the client machine
o The hostname/IP address of the client machine
o The node range passed to the cmd

• If the ACL check is approved, the cmd is passed to the Queue:
o The queue can run the action in either of 2 modes. The client cmd wrapper

decides which mode to use (although it can give the user a flag to specify):

Client Command

xCATd

Access Control

Queue

Command plugin

� Keep the socket connection with the client open for the life of the
action and continue to send back the output of the action as it is
produced.

� Initiate the action, pass the action ID back to the client, and close
the connection. At any subsequent time, the client can use the
action ID to request the status and output of the action. This is
intended long running cmds.

o The Queue logs every action performed, including date/time, cmd name,
arguments, who, etc.

o In phase 2, the Queue will support locking (semaphores) to serialize
actions that should not be run simultaneously.

• To invoke the action, the xml is passed to the process_request() function of the
appropriate plugin pm which contains the code for the function being run.

o With the request examined per policy table, and noderange expanded to
nodes, the request is passed in its entirety (including tags otherwise
ignored) to a plugin's process_request function, which will receive two
arguments, the first the aforementioned hash reference, the second a
reference to a callback function to call per response message to send back.

o The appropriate pm is chosen by loading all of the plugins from
/usr/lib/xcat/plugins and invoking handled_commands to see which cmds
each pm handles.

o Data is returned from the command plugin back to the client command
handle_response routine.

