cLK/lk/target/htcleo/nand.c
2011-03-25 23:39:33 +02:00

1091 lines
28 KiB
C

/*
* Copyright (c) 2008, Google Inc.
* All rights reserved.
* Copyright (c) 2009-2010, Code Aurora Forum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <debug.h>
#include <reg.h>
#include <stdlib.h>
#include <string.h>
#include <dev/flash.h>
#include <lib/ptable.h>
#include <nand.h>
#include "dmov.h"
#define VERBOSE 0
#define VERIFY_WRITE 0
#define NUM_PROTECTED_BLOCKS 0x212
static void *flash_spare;
static void *flash_data;
typedef struct dmov_ch dmov_ch;
struct dmov_ch
{
volatile unsigned cmd;
volatile unsigned result;
volatile unsigned status;
volatile unsigned config;
};
static void dmov_prep_ch(dmov_ch *ch, unsigned id)
{
ch->cmd = DMOV_CMD_PTR(id);
ch->result = DMOV_RSLT(id);
ch->status = DMOV_STATUS(id);
ch->config = DMOV_CONFIG(id);
}
#define SRC_CRCI_NAND_CMD CMD_SRC_CRCI(DMOV_NAND_CRCI_CMD)
#define DST_CRCI_NAND_CMD CMD_DST_CRCI(DMOV_NAND_CRCI_CMD)
#define SRC_CRCI_NAND_DATA CMD_SRC_CRCI(DMOV_NAND_CRCI_DATA)
#define DST_CRCI_NAND_DATA CMD_DST_CRCI(DMOV_NAND_CRCI_DATA)
#define NAND_CFG0_RAW 0xA80420C0
#define NAND_CFG1_RAW 0x5045D
static unsigned CFG0, CFG1;
#define CFG1_WIDE_FLASH (1U << 1)
#define paddr(n) ((unsigned) (n))
static int dmov_exec_cmdptr(unsigned id, unsigned *ptr)
{
dmov_ch ch;
unsigned n;
dmov_prep_ch(&ch, id);
writel(DMOV_CMD_PTR_LIST | DMOV_CMD_ADDR(paddr(ptr)), ch.cmd);
while(!(readl(ch.status) & DMOV_STATUS_RSLT_VALID)) ;
n = readl(ch.status);
while(DMOV_STATUS_RSLT_COUNT(n)) {
n = readl(ch.result);
if(n != 0x80000002) {
dprintf(CRITICAL, "ERROR: result: %x\n", n);
dprintf(CRITICAL, "ERROR: flush: %x %x %x %x\n",
readl(DMOV_FLUSH0(DMOV_NAND_CHAN)),
readl(DMOV_FLUSH1(DMOV_NAND_CHAN)),
readl(DMOV_FLUSH2(DMOV_NAND_CHAN)),
readl(DMOV_FLUSH3(DMOV_NAND_CHAN)));
return -1;
}
n = readl(ch.status);
}
return 0;
}
static struct flash_info flash_info;
static unsigned flash_pagesize = 0;
struct flash_identification {
unsigned flash_id;
unsigned mask;
unsigned density;
unsigned widebus;
unsigned pagesize;
unsigned blksize;
unsigned oobsize;
};
static struct flash_identification supported_flash[] =
{
/* Flash ID ID Mask Density(MB) Wid Pgsz Blksz oobsz Manuf */
{0x00000000, 0xFFFFFFFF, 0, 0, 0, 0, 0}, /*ONFI*/
{0x1500aaec, 0xFF00FFFF, (256<<20), 0, 2048, (2048<<6), 64}, /*Sams*/
{0x5500baec, 0xFF00FFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Sams*/
{0x1500aa98, 0xFFFFFFFF, (256<<20), 0, 2048, (2048<<6), 64}, /*Tosh*/
{0x5500ba98, 0xFFFFFFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Tosh*/
{0xd580b12c, 0xFFFFFFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Micr*/
{0x5590bc2c, 0xFFFFFFFF, (512<<20), 1, 2048, (2048<<6), 64}, /*Micr*/
{0x1580aa2c, 0xFFFFFFFF, (256<<20), 0, 2048, (2048<<6), 64}, /*Micr*/
{0x1590aa2c, 0xFFFFFFFF, (256<<20), 0, 2048, (2048<<6), 64}, /*Micr*/
{0x1590ac2c, 0xFFFFFFFF, (512<<20), 0, 2048, (2048<<6), 64}, /*Micr*/
{0x5580baad, 0xFFFFFFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Hynx*/
{0x5510baad, 0xFFFFFFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Hynx*/
{0x6600bcec, 0xFF00FFFF, (512<<20), 1, 4096, (4096<<6), 128}, /*Sams*/
/*added from kernel nand */
{0x0000aaec, 0x0000FFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Samsung 2Gbit*/
{0x0000acec, 0x0000FFFF, (512<<20), 1, 2048, (2048<<6), 64}, /*Samsung 4Gbit*/
{0x0000bcec, 0x0000FFFF, (512<<20), 1, 2048, (2048<<6), 64}, /*Samsung 4Gbit*/
{0x6601b3ec, 0xFFFFFFFF, (1024<<20),1, 4096, (4096<<6), 128}, /*Samsung 8Gbit 4Kpage*/
{0x0000b3ec, 0x0000FFFF, (1024<<20),1, 2048, (2048<<6), 64}, /*Samsung 8Gbit*/
{0x0000ba2c, 0x0000FFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Micron 2Gbit*/
{0x0000bc2c, 0x0000FFFF, (512<<20), 1, 2048, (2048<<6), 64}, /*Micron 4Gbit*/
{0x0000b32c, 0x0000FFFF, (1024<<20),1, 2048, (2048<<6), 64}, /*Micron 8Gbit*/
{0x0000baad, 0x0000FFFF, (256<<20), 1, 2048, (2048<<6), 64}, /*Hynix 2Gbit*/
{0x0000bcad, 0x0000FFFF, (512<<20), 1, 2048, (2048<<6), 64}, /*Hynix 4Gbit*/
{0x0000b3ad, 0x0000FFFF, (1024<<20),1, 2048, (2048<<6), 64}, /*Hynix 8Gbit*/
/* Note: Width flag is 0 for 8 bit Flash and 1 for 16 bit flash */
/* Note: The First row will be filled at runtime during ONFI probe */
};
static void set_nand_configuration(char type)
{
ASSERT(type==TYPE_APPS_PARTITION);
}
static void flash_nand_read_id(dmov_s *cmdlist, unsigned *ptrlist)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
data[0] = 0 | 4;
data[1] = NAND_CMD_FETCH_ID;
data[2] = 1;
data[3] = 0;
data[4] = 0;
data[5] = 0;
data[6] = 0;
data[7] = 0xAAD40000; /* Default value for CFG0 for reading device id */
/* Read NAND device id */
cmd[0].cmd = 0 | CMD_OCB;
cmd[0].src = paddr(&data[7]);
cmd[0].dst = NAND_DEV0_CFG0;
cmd[0].len = 4;
cmd[1].cmd = 0;
cmd[1].src = NAND_SFLASHC_BURST_CFG;
cmd[1].dst = paddr(&data[5]);
cmd[1].len = 4;
cmd[2].cmd = 0;
cmd[2].src = paddr(&data[6]);
cmd[2].dst = NAND_SFLASHC_BURST_CFG;
cmd[2].len = 4;
cmd[3].cmd = 0;
cmd[3].src = paddr(&data[0]);
cmd[3].dst = NAND_FLASH_CHIP_SELECT;
cmd[3].len = 4;
cmd[4].cmd = DST_CRCI_NAND_CMD;
cmd[4].src = paddr(&data[1]);
cmd[4].dst = NAND_FLASH_CMD;
cmd[4].len = 4;
cmd[5].cmd = 0;
cmd[5].src = paddr(&data[2]);
cmd[5].dst = NAND_EXEC_CMD;
cmd[5].len = 4;
cmd[6].cmd = SRC_CRCI_NAND_DATA;
cmd[6].src = NAND_FLASH_STATUS;
cmd[6].dst = paddr(&data[3]);
cmd[6].len = 4;
cmd[7].cmd = 0;
cmd[7].src = NAND_READ_ID;
cmd[7].dst = paddr(&data[4]);
cmd[7].len = 4;
cmd[8].cmd = CMD_OCU | CMD_LC;
cmd[8].src = paddr(&data[5]);
cmd[8].dst = NAND_SFLASHC_BURST_CFG;
cmd[8].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[3]);
#endif
flash_info.id = data[4];
flash_info.vendor = data[4] & 0xff;
flash_info.device = (data[4] >> 8) & 0xff;
return;
}
static int flash_nand_block_isbad(dmov_s *cmdlist, unsigned *ptrlist,
unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
char buf[4];
unsigned cwperpage;
if (page < (NUM_PROTECTED_BLOCKS<<6))
{
//protected blocks are always good
return 0;
}
cwperpage = (flash_pagesize >> 9);
/* Check first page of this block */
if(page & 63)
page = page - (page & 63);
/* Check bad block marker */
data[0] = NAND_CMD_PAGE_READ; /* command */
/* addr0 */
if (CFG1 & CFG1_WIDE_FLASH)
data[1] = (page << 16) | ((528*(cwperpage-1)) >> 1);
else
data[1] = (page << 16) | (528*(cwperpage-1));
data[2] = (page >> 16) & 0xff; /* addr1 */
data[3] = 0 | 4; /* chipsel */
data[4] = NAND_CFG0_RAW & ~(7U << 6); /* cfg0 */
data[5] = NAND_CFG1_RAW | (CFG1 & CFG1_WIDE_FLASH); /* cfg1 */
data[6] = 1;
data[7] = CLEAN_DATA_32; /* flash status */
data[8] = CLEAN_DATA_32; /* buf status */
cmd[0].cmd = DST_CRCI_NAND_CMD | CMD_OCB;
cmd[0].src = paddr(&data[0]);
cmd[0].dst = NAND_FLASH_CMD;
cmd[0].len = 16;
cmd[1].cmd = 0;
cmd[1].src = paddr(&data[4]);
cmd[1].dst = NAND_DEV0_CFG0;
cmd[1].len = 8;
cmd[2].cmd = 0;
cmd[2].src = paddr(&data[6]);
cmd[2].dst = NAND_EXEC_CMD;
cmd[2].len = 4;
cmd[3].cmd = SRC_CRCI_NAND_DATA;
cmd[3].src = NAND_FLASH_STATUS;
cmd[3].dst = paddr(&data[7]);
cmd[3].len = 8;
cmd[4].cmd = CMD_OCU | CMD_LC;
cmd[4].src = NAND_FLASH_BUFFER + (flash_pagesize - (528*(cwperpage-1)));
cmd[4].dst = paddr(&buf);
cmd[4].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[7]);
#endif
/* we fail if there was an operation error, a mpu error, or the
** erase success bit was not set.
*/
if(data[7] & 0x110) return -1;
/* Check for bad block marker byte */
if (CFG1 & CFG1_WIDE_FLASH) {
if (buf[0] != 0xFF || buf[1] != 0xFF)
return 1;
} else {
if (buf[0] != 0xFF)
return 1;
}
return 0;
}
static int flash_nand_erase_block(dmov_s *cmdlist, unsigned *ptrlist,
unsigned page)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
unsigned *data = ptrlist + 4;
int isbad = 0;
if (page < (NUM_PROTECTED_BLOCKS<<6))
{
dprintf(INFO, "protected block not errased: %x\n", (page>>6));
return -1;
}
/* only allow erasing on block boundaries */
if(page & 63) return -1;
/* Check for bad block and erase only if block is not marked bad */
isbad = flash_nand_block_isbad(cmdlist, ptrlist, page);
if (isbad) {
dprintf(INFO, "skipping @ %d (bad block)\n", page >> 6);
return -1;
}
/* Erase block */
data[0] = NAND_CMD_BLOCK_ERASE;
data[1] = page;
data[2] = 0;
data[3] = 0 | 4;
data[4] = 1;
data[5] = 0xeeeeeeee;
data[6] = CFG0 & (~(7 << 6)); /* CW_PER_PAGE = 0 */
data[7] = CFG1;
data[8] = 0x00000020;
data[9] = 0x000000C0;
cmd[0].cmd = DST_CRCI_NAND_CMD | CMD_OCB;
cmd[0].src = paddr(&data[0]);
cmd[0].dst = NAND_FLASH_CMD;
cmd[0].len = 16;
cmd[1].cmd = 0;
cmd[1].src = paddr(&data[6]);
cmd[1].dst = NAND_DEV0_CFG0;
cmd[1].len = 8;
cmd[2].cmd = 0;
cmd[2].src = paddr(&data[4]);
cmd[2].dst = NAND_EXEC_CMD;
cmd[2].len = 4;
cmd[3].cmd = SRC_CRCI_NAND_DATA;
cmd[3].src = NAND_FLASH_STATUS;
cmd[3].dst = paddr(&data[5]);
cmd[3].len = 4;
cmd[4].cmd = 0;
cmd[4].src = paddr(&data[8]);
cmd[4].dst = NAND_FLASH_STATUS;
cmd[4].len = 4;
cmd[5].cmd = CMD_OCU | CMD_LC;
cmd[5].src = paddr(&data[9]);
cmd[5].dst = NAND_READ_STATUS;
cmd[5].len = 4;
ptr[0] = (paddr(cmd) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "status: %x\n", data[5]);
#endif
/* we fail if there was an operation error, a mpu error, or the
** erase success bit was not set.
*/
if(data[5] & 0x110) return -1;
if(!(data[5] & 0x80)) return -1;
return 0;
}
struct data_flash_io {
unsigned cmd;
unsigned addr0;
unsigned addr1;
unsigned chipsel;
unsigned cfg0;
unsigned cfg1;
unsigned exec;
unsigned ecc_cfg;
unsigned ecc_cfg_save;
unsigned clrfstatus;
unsigned clrrstatus;
struct {
unsigned flash_status;
unsigned buffer_status;
} result[8];
};
static int _flash_nand_read_page(dmov_s *cmdlist, unsigned *ptrlist,
unsigned page, void *_addr, void *_spareaddr)
{
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_flash_io *data = (void*) (ptrlist + 4);
unsigned addr = (unsigned) _addr;
unsigned spareaddr = (unsigned) _spareaddr;
unsigned n;
int isbad = 0;
unsigned cwperpage;
unsigned cwdatasize;
unsigned cwoobsize;
cwperpage = (flash_pagesize >> 9);
cwdatasize = flash_pagesize/cwperpage;
cwoobsize = /*oobavail*/ 16 / cwperpage; //spare size - ecc size (64 - 4*10)
/* Check for bad block and read only from a good block */
isbad = flash_nand_block_isbad(cmdlist, ptrlist, page);
if (isbad)
{
dprintf(INFO, "bad block %x:\n",page);
return -2;
}
data->cmd = NAND_CMD_PAGE_READ_ALL;
data->addr0 = page << 16;
data->addr1 = (page >> 16) & 0xff;
data->chipsel = 0 | 4; /* flash0 + undoc bit */
/* GO bit for the EXEC register */
data->exec = 1;
data->cfg0 = (CFG0 & ~(7U << 6)) | ((cwperpage-1) << 6);
data->cfg1 = CFG1;
data->ecc_cfg = 0x1FF;
/* save existing ecc config */
cmd->cmd = CMD_OCB;
cmd->src = NAND_EBI2_ECC_BUF_CFG;
cmd->dst = paddr(&data->ecc_cfg_save);
cmd->len = 4;
cmd++;
for(n = 0; n < cwperpage; n++) {
/* write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NAND_FLASH_CMD;
cmd->len = ((n == 0) ? 16 : 4);
cmd++;
if (n == 0) {
/* block on cmd ready, set configuration */
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NAND_DEV0_CFG0;
cmd->len = 8;
cmd++;
/* set our ecc config */
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
cmd++;
}
/* kick the execute register */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NAND_EXEC_CMD;
cmd->len = 4;
cmd++;
/* block on data ready, then read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_FLASH_STATUS;
cmd->dst = paddr(&data->result[n]);
cmd->len = 8;
cmd++;
/* read data block */
cmd->cmd = 0;
cmd->src = NAND_FLASH_BUFFER;
cmd->dst = addr + n * cwdatasize;
cmd->len = cwdatasize;
cmd++;
/* read extra data */
cmd->cmd = 0;
cmd->src = NAND_FLASH_BUFFER + cwdatasize + 10; // adter data and 10 bytes of ECC
cmd->dst = spareaddr + n*cwoobsize;
cmd->len = cwoobsize;
cmd++;
}
/* restore saved ecc config */
cmd->cmd = CMD_OCU | CMD_LC;
cmd->src = paddr(&data->ecc_cfg_save);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
int result = dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
if(result!=0)
{
dprintf(INFO, "read page failed %x (block %x)\n",page, page>>6);
return -1;
}
#if VERBOSE
dprintf(INFO, "read page %d: status: %x %x %x %x\n",
page, data[5], data[6], data[7], data[8]);
for(n = 0; n < 4; n++) {
ptr = (unsigned*)(addr + 512 * n);
dprintf(INFO, "data%d: %x %x %x %x\n", n, ptr[0], ptr[1], ptr[2], ptr[3]);
ptr = (unsigned*)(spareaddr + 16 * n);
dprintf(INFO, "spare data%d %x %x %x %x\n", n, ptr[0], ptr[1], ptr[2], ptr[3]);
}
#endif
/* if any of the writes failed (0x10), or there was a
** protection violation (0x100), we lose
*/
for(n = 0; n < cwperpage; n++) {
if (data->result[n].flash_status & 0x110) {
return -1;
}
}
return 0;
}
static int _flash_nand_write_page(dmov_s *cmdlist, unsigned *ptrlist, unsigned page,
const void *_addr, const void *_spareaddr, unsigned raw_mode)
{
if (page < (NUM_PROTECTED_BLOCKS<<6))
{
dprintf(INFO, "write disabled block %x is protected\n", (page>>6));
return -1;
}
dmov_s *cmd = cmdlist;
unsigned *ptr = ptrlist;
struct data_flash_io *data = (void*) (ptrlist + 4);
unsigned addr = (unsigned) _addr;
unsigned spareaddr = (unsigned) _spareaddr;
unsigned n;
unsigned cwperpage;
unsigned cwdatasize;
unsigned cwoobsize;
cwperpage = (flash_pagesize >> 9);
cwdatasize = flash_pagesize/cwperpage;
cwoobsize = /*oobavail*/ 16 / cwperpage; //spare size - ecc size (64 - 4*10)
data->cmd = NAND_CMD_PRG_PAGE_ALL;
data->addr0 = page << 16;
data->addr1 = (page >> 16) & 0xff;
data->chipsel = 0 | 4; /* flash0 + undoc bit */
data->clrfstatus = 0x00000020;
data->clrrstatus = 0x000000C0;
if (!raw_mode){
data->cfg0 = CFG0;
data->cfg1 = CFG1;
}else{
data->cfg0 = (NAND_CFG0_RAW & ~(7 << 6)) |((cwperpage-1) << 6);
data->cfg1 = NAND_CFG1_RAW | (CFG1 & CFG1_WIDE_FLASH);
}
/* GO bit for the EXEC register */
data->exec = 1;
data->ecc_cfg = 0x1FF;
/* save existing ecc config */
cmd->cmd = CMD_OCB;
cmd->src = NAND_EBI2_ECC_BUF_CFG;
cmd->dst = paddr(&data->ecc_cfg_save);
cmd->len = 4;
cmd++;
for(n = 0; n < cwperpage; n++) {
/* write CMD / ADDR0 / ADDR1 / CHIPSEL regs in a burst */
cmd->cmd = DST_CRCI_NAND_CMD;
cmd->src = paddr(&data->cmd);
cmd->dst = NAND_FLASH_CMD;
cmd->len = ((n == 0) ? 16 : 4);
cmd++;
if (n == 0) {
/* set configuration */
cmd->cmd = 0;
cmd->src = paddr(&data->cfg0);
cmd->dst = NAND_DEV0_CFG0;
cmd->len = 8;
cmd++;
/* set our ecc config */
cmd->cmd = 0;
cmd->src = paddr(&data->ecc_cfg);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
cmd++;
}
/* write data block */
cmd->cmd = 0;
cmd->dst = NAND_FLASH_BUFFER;
if (!raw_mode){
cmd->src = addr + n * cwdatasize;
cmd->len = cwdatasize;
}else{
cmd->src = addr;
cmd->len = 528;
}
cmd++;
if ((!raw_mode)) {
/* write extra data */
cmd->cmd = 0;
cmd->src = spareaddr+n*cwoobsize;
cmd->dst = NAND_FLASH_BUFFER + cwdatasize;
cmd->len = cwoobsize;
cmd++;
}
/* kick the execute register */
cmd->cmd = 0;
cmd->src = paddr(&data->exec);
cmd->dst = NAND_EXEC_CMD;
cmd->len = 4;
cmd++;
/* block on data ready, then read the status register */
cmd->cmd = SRC_CRCI_NAND_DATA;
cmd->src = NAND_FLASH_STATUS;
cmd->dst = paddr(&data->result[n]);
cmd->len = 8;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->clrfstatus);
cmd->dst = NAND_FLASH_STATUS;
cmd->len = 4;
cmd++;
cmd->cmd = 0;
cmd->src = paddr(&data->clrrstatus);
cmd->dst = NAND_READ_STATUS;
cmd->len = 4;
cmd++;
}
/* restore saved ecc config */
cmd->cmd = CMD_OCU | CMD_LC;
cmd->src = paddr(&data->ecc_cfg_save);
cmd->dst = NAND_EBI2_ECC_BUF_CFG;
cmd->len = 4;
ptr[0] = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptr);
#if VERBOSE
dprintf(INFO, "write page %d: status: %x %x %x %x\n",
page, data[5], data[6], data[7], data[8]);
#endif
/* if any of the writes failed (0x10), or there was a
** protection violation (0x100), or the program success
** bit (0x80) is unset, we lose
*/
for(n = 0; n < cwperpage; n++) {
if(data->result[n].flash_status & 0x110) return -1;
if(!(data->result[n].flash_status & 0x80)) return -1;
}
#if VERIFY_WRITE
n = _flash_read_page(cmdlist, ptrlist, page, flash_data,
flash_data + 2048);
if (n != 0)
return -1;
if (memcmp(flash_data, _addr, 2048) ||
memcmp(flash_data + 2048, _spareaddr, 16)) {
dprintf(CRITICAL, "verify error @ page %d\n", page);
return -1;
}
#endif
return 0;
}
char empty_buf[528];
static int flash_nand_mark_badblock(dmov_s *cmdlist, unsigned *ptrlist, unsigned page)
{
if (page < (NUM_PROTECTED_BLOCKS<<6))
{
dprintf(INFO, "protected block %x cannot be marked bad: \n", (page>>6));
return -1;
}
memset(empty_buf,0,528);
/* Going to first page of the block */
if(page & 63)
page = page - (page & 63);
return _flash_nand_write_page(cmdlist, ptrlist, page, empty_buf, 0, 1);
}
unsigned nand_cfg0;
unsigned nand_cfg1;
static int flash_nand_read_config(dmov_s *cmdlist, unsigned *ptrlist)
{
static unsigned CFG0_TMP, CFG1_TMP;
cmdlist[0].cmd = CMD_OCB;
cmdlist[0].src = NAND_DEV0_CFG0;
cmdlist[0].dst = paddr(&CFG0_TMP);
cmdlist[0].len = 4;
cmdlist[1].cmd = CMD_OCU | CMD_LC;
cmdlist[1].src = NAND_DEV0_CFG1;
cmdlist[1].dst = paddr(&CFG1_TMP);
cmdlist[1].len = 4;
*ptrlist = (paddr(cmdlist) >> 3) | CMD_PTR_LP;
dmov_exec_cmdptr(DMOV_NAND_CHAN, ptrlist);
if((CFG0_TMP == 0) || (CFG1_TMP == 0)) {
return -1;
}
CFG0 = CFG0_TMP;
CFG1 = CFG1_TMP;
if (flash_info.type == FLASH_16BIT_NAND_DEVICE) {
nand_cfg1 |= CFG1_WIDE_FLASH;
}
dprintf(INFO, "nandcfg: %x %x (initial)\n", CFG0_TMP, CFG1_TMP);
CFG0 = (((flash_pagesize >> 9) - 1) << 6) /* 4/8 cw/pg for 2/4k */
| (512 << 9) /* 516 user data bytes */
| (10 << 19) /* 10 parity bytes */
| (4 << 23) /* spare size */
| (5 << 27) /* 5 address cycles */
| (1 << 30) /* Do not read status before data */
| (1 << 31); /* Send read cmd */
CFG1 = CFG1
#if 0
| (7 << 2) /* 8 recovery cycles */
| (0 << 5) /* Allow CS deassertion */
| (2 << 17) /* 6 cycle tWB/tRB */
#endif
| ((flash_pagesize - (528 * ((flash_pagesize >> 9) - 1)) + 1) << 6) /* Bad block marker location */
| (nand_cfg1 & CFG1_WIDE_FLASH); /* preserve wide flash flag */
CFG1 = CFG1
& ~(1 << 0) /* Enable ecc */
& ~(1 << 16); /* Bad block in user data area */
dprintf(INFO, "nandcfg: %x %x (used)\n", CFG0, CFG1);
return 0;
}
static int flash_mark_badblock(dmov_s *cmdlist, unsigned *ptrlist, unsigned page)
{
return flash_nand_mark_badblock(cmdlist, ptrlist, page);
}
/* Wrapper functions */
static void flash_read_id(dmov_s *cmdlist, unsigned *ptrlist)
{
int dev_found = 0;
unsigned index;
// Try to read id
flash_nand_read_id(cmdlist, ptrlist);
// Check if we support the device
for (index=1;
index < (sizeof(supported_flash)/sizeof(struct flash_identification));
index++)
{
if ((flash_info.id & supported_flash[index].mask) ==
(supported_flash[index].flash_id &
(supported_flash[index].mask))) {
dev_found = 1;
break;
}
}
if(dev_found) {
if (supported_flash[index].widebus)
flash_info.type = FLASH_16BIT_NAND_DEVICE;
else
flash_info.type = FLASH_8BIT_NAND_DEVICE;
flash_info.page_size = supported_flash[index].pagesize;
flash_pagesize = flash_info.page_size;
flash_info.block_size = supported_flash[index].blksize;
flash_info.spare_size = supported_flash[index].oobsize;
if (flash_info.block_size && flash_info.page_size)
{
flash_info.num_blocks = supported_flash[index].density;
flash_info.num_blocks /= (flash_info.block_size);
}
else
{
flash_info.num_blocks = 0;
}
ASSERT(flash_info.num_blocks);
//return;
}
// Assume 8 bit nand device for backward compatability
if (dev_found == 0) {
dprintf(INFO, "Device not supported. Assuming 8 bit NAND device\n");
flash_info.type = FLASH_8BIT_NAND_DEVICE;
}
dprintf(INFO, "nandid: 0x%x maker=0x%02x device=0x%02x page_size=%d\n",
flash_info.id, flash_info.vendor, flash_info.device,
flash_info.page_size);
dprintf(INFO, " spare_size=%d block_size=%d num_blocks=%d\n",
flash_info.spare_size, flash_info.block_size,
flash_info.num_blocks);
}
static int flash_erase_block(dmov_s *cmdlist, unsigned *ptrlist, unsigned page)
{
return flash_nand_erase_block(cmdlist, ptrlist, page);
}
static int _flash_read_page(dmov_s *cmdlist, unsigned *ptrlist,
unsigned page, void *_addr, void *_spareaddr)
{
return _flash_nand_read_page(cmdlist, ptrlist, page, _addr, _spareaddr);
}
static int _flash_block_isbad(dmov_s *cmdlist, unsigned *ptrlist, unsigned page)
{
return flash_nand_block_isbad(cmdlist, ptrlist, page);
}
static int _flash_write_page(dmov_s *cmdlist, unsigned *ptrlist,
unsigned page, const void *_addr,
const void *_spareaddr)
{
return _flash_nand_write_page(cmdlist, ptrlist, page, _addr, _spareaddr, 0);
}
static unsigned *flash_ptrlist;
static dmov_s *flash_cmdlist;
static struct ptable *flash_ptable = NULL;
void flash_init(void)
{
ASSERT(flash_ptable == NULL);
flash_ptrlist = memalign(32, 1024);
flash_cmdlist = memalign(32, 1024);
flash_data = memalign(32, 4096 + 128);
flash_spare = memalign(32, 128);
flash_read_id(flash_cmdlist, flash_ptrlist);
if((FLASH_8BIT_NAND_DEVICE == flash_info.type)
||(FLASH_16BIT_NAND_DEVICE == flash_info.type)) {
if(flash_nand_read_config(flash_cmdlist, flash_ptrlist)) {
dprintf(CRITICAL, "ERROR: could not read CFG0/CFG1 state\n");
ASSERT(0);
}
}
}
struct ptable *flash_get_ptable(void)
{
return flash_ptable;
}
void flash_set_ptable(struct ptable *new_ptable)
{
ASSERT(flash_ptable == NULL && new_ptable != NULL);
flash_ptable = new_ptable;
}
struct flash_info *flash_get_info(void)
{
return &flash_info;
}
int flash_erase(struct ptentry *ptn)
{
unsigned block = ptn->start;
unsigned count = ptn->length;
set_nand_configuration(ptn->type);
while(count-- > 0) {
if(flash_erase_block(flash_cmdlist, flash_ptrlist, block * 64)) {
dprintf(INFO, "cannot erase @ %d (bad block?)\n", block);
}
block++;
}
return 0;
}
int flash_read_ext(struct ptentry *ptn, unsigned extra_per_page,
unsigned offset, void *data, unsigned bytes)
{
unsigned page = (ptn->start * 64) + (offset / flash_pagesize);
unsigned lastpage = (ptn->start + ptn->length) * 64;
unsigned count = (bytes + flash_pagesize - 1 + extra_per_page) / (flash_pagesize + extra_per_page);
unsigned *spare = (unsigned*) flash_spare;
unsigned errors = 0;
unsigned char *image = data;
unsigned current_block = (page - (page & 63)) >> 6;
unsigned start_block = ptn->start;
int result = 0;
int isbad = 0;
int start_block_count = 0;
dprintf(INFO, "flash read: %s %x %x\n", ptn->name, offset, bytes);
ASSERT(ptn->type == TYPE_APPS_PARTITION);
set_nand_configuration(TYPE_APPS_PARTITION);
if(offset & (flash_pagesize - 1))
return -1;
// Adjust page offset based on number of bad blocks from start to current page
if (start_block < current_block)
{
start_block_count = (current_block - start_block);
while (start_block_count && (start_block < (ptn->start + ptn->length))) {
isbad = _flash_block_isbad(flash_cmdlist, flash_ptrlist, start_block*64);
if (isbad)
page += 64;
else
start_block_count--;
start_block++;
}
}
while((page < lastpage) && !start_block_count) {
if(count == 0) {
dprintf(INFO, "flash_read_image: success (%d errors)\n", errors);
return 0;
}
result = _flash_read_page(flash_cmdlist, flash_ptrlist, page, image, spare);
if (result == -1) {
// bad page, go to next page
page++;
errors++;
continue;
}
else if (result == -2) {
// bad block, go to next block same offset
page += 64;
errors++;
continue;
}
page++;
image += flash_pagesize;
memcpy(image, spare, extra_per_page);
image += extra_per_page;
count -= 1;
}
/* could not find enough valid pages before we hit the end */
dprintf(INFO, "flash_read_image: failed (%d errors)\n", errors);
return 0xffffffff;
}
int flash_write(struct ptentry *ptn, unsigned extra_per_page, const void *data,
unsigned bytes)
{
unsigned page = ptn->start * 64;
unsigned lastpage = (ptn->start + ptn->length) * 64;
unsigned *spare = (unsigned*) flash_spare;
const unsigned char *image = data;
unsigned wsize = flash_pagesize + extra_per_page;
unsigned n;
int r;
if (ptn->type == TYPE_MODEM_PARTITION)
{
dprintf(CRITICAL, "flash_write_image: model partition not supported\n");
return -1;
}
set_nand_configuration(ptn->type);
for(n = 0; n < 16; n++) spare[n] = 0xffffffff;
while(bytes > 0) {
if(bytes < wsize) {
dprintf(CRITICAL, "flash_write_image: image undersized (%d < %d)\n", bytes, wsize);
return -1;
}
if(page >= lastpage) {
dprintf(CRITICAL, "flash_write_image: out of space\n");
return -1;
}
if((page & 63) == 0) {
if(flash_erase_block(flash_cmdlist, flash_ptrlist, page)) {
dprintf(INFO, "flash_write_image: bad block @ %d\n", page >> 6);
page += 64;
continue;
}
}
if(extra_per_page) {
r = _flash_write_page(flash_cmdlist, flash_ptrlist, page, image, image + flash_pagesize);
} else {
r = _flash_write_page(flash_cmdlist, flash_ptrlist, page, image, spare);
}
if(r) {
dprintf(INFO, "flash_write_image: write failure @ page %d (src %d)\n", page, image - (const unsigned char *)data);
image -= (page & 63) * wsize;
bytes += (page & 63) * wsize;
page &= ~63;
if(flash_erase_block(flash_cmdlist, flash_ptrlist, page)) {
dprintf(INFO, "flash_write_image: erase failure @ page %d\n", page);
}
if (ptn->type != TYPE_MODEM_PARTITION) {
flash_mark_badblock(flash_cmdlist, flash_ptrlist, page);
}
dprintf(INFO, "flash_write_image: restart write @ page %d (src %d)\n", page, image - (const unsigned char *)data);
page += 64;
continue;
}
page++;
image += wsize;
bytes -= wsize;
}
/* erase any remaining pages in the partition */
page = (page + 63) & (~63);
while(page < lastpage){
if(flash_erase_block(flash_cmdlist, flash_ptrlist, page)) {
dprintf(INFO, "flash_write_image: bad block @ %d\n", page >> 6);
}
page += 64;
}
dprintf(INFO, "flash_write_image: success\n");
return 0;
}
#if 0
static int flash_read_page(unsigned page, void *data, void *extra)
{
return _flash_read_page(flash_cmdlist, flash_ptrlist,
page, data, extra);
}
#endif
unsigned flash_page_size(void)
{
return flash_pagesize;
}