/* * Copyright (c) 2009, Google Inc. * All rights reserved. * * Copyright (c) 2009-2010, Code Aurora Forum. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Google, Inc. nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include struct gpio_kp { struct gpio_keypad_info *keypad_info; struct timer timer; event_t full_scan; int current_output; unsigned int some_keys_pressed:2; unsigned long keys_pressed[0]; }; struct gpio_qwerty_kp { struct qwerty_keypad_info *keypad_info; struct timer timer; event_t full_scan; int num_of_scans; unsigned int some_keys_pressed:2; unsigned long keys_pressed[0]; }; static struct gpio_qwerty_kp *qwerty_keypad; /* TODO: Support multiple keypads? */ static struct gpio_kp *keypad; static void check_output(struct gpio_kp *kp, int out, int polarity) { struct gpio_keypad_info *kpinfo = kp->keypad_info; int key_index; int in; int gpio; int changed = 0; key_index = out * kpinfo->ninputs; for (in = 0; in < kpinfo->ninputs; in++, key_index++) { gpio = kpinfo->input_gpios[in]; changed = 0; if (gpio_get(gpio) ^ !polarity) { if (kp->some_keys_pressed < 3) kp->some_keys_pressed++; changed = !bitmap_set(kp->keys_pressed, key_index); } else { changed = bitmap_clear(kp->keys_pressed, key_index); } if (changed) { int state = bitmap_test(kp->keys_pressed, key_index); keys_post_event(kpinfo->keymap[key_index], state); } } /* sets up the right state for the next poll cycle */ gpio = kpinfo->output_gpios[out]; if (kpinfo->flags & GPIOKPF_DRIVE_INACTIVE) gpio_set(gpio, !polarity); else gpio_config(gpio, GPIO_INPUT); } static enum handler_return gpio_keypad_timer_func(struct timer *timer, time_t now, void *arg) { struct gpio_kp *kp = keypad; struct gpio_keypad_info *kpinfo = kp->keypad_info; int polarity = !!(kpinfo->flags & GPIOKPF_ACTIVE_HIGH); int out; int gpio; out = kp->current_output; if (out == kpinfo->noutputs) { out = 0; kp->some_keys_pressed = 0; } else { check_output(kp, out, polarity); out++; } kp->current_output = out; if (out < kpinfo->noutputs) { gpio = kpinfo->output_gpios[out]; if (kpinfo->flags & GPIOKPF_DRIVE_INACTIVE) gpio_set(gpio, polarity); else gpio_config(gpio, polarity ? GPIO_OUTPUT : 0); timer_set_oneshot(timer, kpinfo->settle_time, gpio_keypad_timer_func, NULL); goto done; } if (/*!kp->use_irq*/ 1 || kp->some_keys_pressed) { event_signal(&kp->full_scan, false); timer_set_oneshot(timer, kpinfo->poll_time, gpio_keypad_timer_func, NULL); goto done; } #if 0 /* No keys are pressed, reenable interrupt */ for (out = 0; out < kpinfo->noutputs; out++) { if (gpio_keypad_flags & GPIOKPF_DRIVE_INACTIVE) gpio_set(kpinfo->output_gpios[out], polarity); else gpio_config(kpinfo->output_gpios[out], polarity ? GPIO_OUTPUT : 0); } for (in = 0; in < kpinfo->ninputs; in++) enable_irq(gpio_to_irq(kpinfo->input_gpios[in])); return INT_RESCHEDULE; #endif done: return INT_RESCHEDULE; } void gpio_keypad_init(struct gpio_keypad_info *kpinfo) { int key_count; int output_val; int output_cfg; int i; int len; ASSERT(kpinfo->keymap && kpinfo->input_gpios && kpinfo->output_gpios); key_count = kpinfo->ninputs * kpinfo->noutputs; len = sizeof(struct gpio_kp) + (sizeof(unsigned long) * BITMAP_NUM_WORDS(key_count)); keypad = malloc(len); ASSERT(keypad); memset(keypad, 0, len); keypad->keypad_info = kpinfo; output_val = (!!(kpinfo->flags & GPIOKPF_ACTIVE_HIGH)) ^ (!!(kpinfo->flags & GPIOKPF_DRIVE_INACTIVE)); output_cfg = kpinfo->flags & GPIOKPF_DRIVE_INACTIVE ? GPIO_OUTPUT : 0; for (i = 0; i < kpinfo->noutputs; i++) { gpio_set(kpinfo->output_gpios[i], output_val); gpio_config(kpinfo->output_gpios[i], output_cfg); } for (i = 0; i < kpinfo->ninputs; i++) gpio_config(kpinfo->input_gpios[i], GPIO_INPUT); keypad->current_output = kpinfo->noutputs; event_init(&keypad->full_scan, false, EVENT_FLAG_AUTOUNSIGNAL); timer_initialize(&keypad->timer); timer_set_oneshot(&keypad->timer, 0, gpio_keypad_timer_func, NULL); /* wait for the keypad to complete one full scan */ event_wait(&keypad->full_scan); } int i2c_ssbi_poll_for_device_ready(void) { unsigned long timeout = SSBI_TIMEOUT_US; while (!(readl(MSM_SSBI_BASE + SSBI2_STATUS) & SSBI_STATUS_READY)) { if (--timeout == 0) { dprintf(INFO, "In Device ready function:Timeout, status %x\n", readl(MSM_SSBI_BASE + SSBI2_STATUS)); return 1; } } return 0; } int i2c_ssbi_poll_for_read_completed(void) { unsigned long timeout = SSBI_TIMEOUT_US; while (!(readl(MSM_SSBI_BASE + SSBI2_STATUS) & SSBI_STATUS_RD_READY)) { if (--timeout == 0) { dprintf(INFO, "In read completed function:Timeout, status %x\n", readl(MSM_SSBI_BASE + SSBI2_STATUS)); return 1; } } return 0; } int i2c_ssbi_read_bytes(unsigned char *buffer, unsigned short length, unsigned short slave_addr) { int ret = 0; unsigned char *buf = buffer; unsigned short len = length; unsigned short addr = slave_addr; unsigned long read_cmd = SSBI_CMD_READ(addr); unsigned long mode2 = readl(MSM_SSBI_BASE + SSBI2_MODE2); //buf = alloc(len * sizeof(8)); if (mode2 & SSBI_MODE2_SSBI2_MODE) writel(SSBI_MODE2_REG_ADDR_15_8(mode2, addr), MSM_SSBI_BASE + SSBI2_MODE2); while (len) { ret = i2c_ssbi_poll_for_device_ready(); if (ret) { dprintf (CRITICAL, "Error: device not ready\n"); return ret; } writel(read_cmd, MSM_SSBI_BASE + SSBI2_CMD); ret = i2c_ssbi_poll_for_read_completed(); if (ret) { dprintf (CRITICAL, "Error: read not completed\n"); return ret; } *buf++ = readl(MSM_SSBI_BASE + SSBI2_RD) & SSBI_RD_REG_DATA_MASK; len--; } return 0; } int i2c_ssbi_write_bytes(unsigned char *buffer, unsigned short length, unsigned short slave_addr) { int ret = 0; unsigned long timeout = SSBI_TIMEOUT_US; unsigned char *buf = buffer; unsigned short len = length; unsigned short addr = slave_addr; unsigned long mode2 = readl(MSM_SSBI_BASE + SSBI2_MODE2); if (mode2 & SSBI_MODE2_SSBI2_MODE) writel(SSBI_MODE2_REG_ADDR_15_8(mode2, addr), MSM_SSBI_BASE + SSBI2_MODE2); while (len) { ret = i2c_ssbi_poll_for_device_ready(); if (ret) { dprintf (CRITICAL, "Error: device not ready\n"); return ret; } writel(SSBI_CMD_WRITE(addr, *buf++), MSM_SSBI_BASE + SSBI2_CMD); while (readl(MSM_SSBI_BASE + SSBI2_STATUS) & SSBI_STATUS_MCHN_BUSY) { if (--timeout == 0) { dprintf(INFO, "In Device ready function:Timeout, status %x\n", readl(MSM_SSBI_BASE + SSBI2_STATUS)); return 1; } } len--; } return 0; } int pa1_ssbi2_read_bytes(unsigned char *buffer, unsigned short length, unsigned short slave_addr) { unsigned val = 0x0; unsigned temp = 0x0000; unsigned char *buf = buffer; unsigned short len = length; unsigned short addr = slave_addr; unsigned long timeout = SSBI_TIMEOUT_US; while(len) { val |= ((addr << PA1_SSBI2_REG_ADDR_SHIFT) | (PA1_SSBI2_CMD_READ << PA1_SSBI2_CMD_RDWRN_SHIFT)); writel(val, PA1_SSBI2_CMD); while(!((temp = readl(PA1_SSBI2_RD_STATUS)) & (1 << PA1_SSBI2_TRANS_DONE_SHIFT))) { if (--timeout == 0) { dprintf(INFO, "In Device ready function:Timeout\n"); return 1; } } len--; *buf++ = (temp & (PA1_SSBI2_REG_DATA_MASK << PA1_SSBI2_REG_DATA_SHIFT)); } return 0; } int pa1_ssbi2_write_bytes(unsigned char *buffer, unsigned short length, unsigned short slave_addr) { unsigned val; unsigned char *buf = buffer; unsigned short len = length; unsigned short addr = slave_addr; unsigned temp = 0x00; unsigned char written_data1 = 0x00; unsigned long timeout = SSBI_TIMEOUT_US; //unsigned char written_data2 = 0x00; while(len) { temp = 0x00; written_data1 = 0x00; val = (addr << PA1_SSBI2_REG_ADDR_SHIFT) | (PA1_SSBI2_CMD_WRITE << PA1_SSBI2_CMD_RDWRN_SHIFT) | (*buf & 0xFF); writel(val, PA1_SSBI2_CMD); while(!((temp = readl(PA1_SSBI2_RD_STATUS)) & (1 << PA1_SSBI2_TRANS_DONE_SHIFT))) { if (--timeout == 0) { dprintf(INFO, "In Device write function:Timeout\n"); return 1; } } len--; buf++; } return 0; } int pa2_ssbi2_read_bytes(unsigned char *buffer, unsigned short length, unsigned short slave_addr) { unsigned val = 0x0; unsigned temp = 0x0000; unsigned char *buf = buffer; unsigned short len = length; unsigned short addr = slave_addr; unsigned long timeout = SSBI_TIMEOUT_US; while(len) { val |= ((addr << PA2_SSBI2_REG_ADDR_SHIFT) | (PA2_SSBI2_CMD_READ << PA2_SSBI2_CMD_RDWRN_SHIFT)); writel(val, PA2_SSBI2_CMD); while(!((temp = readl(PA2_SSBI2_RD_STATUS)) & (1 << PA2_SSBI2_TRANS_DONE_SHIFT))) { if (--timeout == 0) { dprintf(INFO, "In Device ready function:Timeout\n"); return 1; } } len--; *buf++ = (temp & (PA2_SSBI2_REG_DATA_MASK << PA2_SSBI2_REG_DATA_SHIFT)); } return 0; } int pa2_ssbi2_write_bytes(unsigned char *buffer, unsigned short length, unsigned short slave_addr) { unsigned val; unsigned char *buf = buffer; unsigned short len = length; unsigned short addr = slave_addr; unsigned temp = 0x00; unsigned char written_data1 = 0x00; unsigned long timeout = SSBI_TIMEOUT_US; while(len) { temp = 0x00; written_data1 = 0x00; val = (addr << PA2_SSBI2_REG_ADDR_SHIFT) | (PA2_SSBI2_CMD_WRITE << PA2_SSBI2_CMD_RDWRN_SHIFT) | (*buf & 0xFF); writel(val, PA2_SSBI2_CMD); while(!((temp = readl(PA2_SSBI2_RD_STATUS)) & (1 << PA2_SSBI2_TRANS_DONE_SHIFT))) { if (--timeout == 0) { dprintf(INFO, "In Device write function:Timeout\n"); return 1; } } len--; buf++; } return 0; } int pm8058_gpio_config(int gpio, struct pm8058_gpio *param) { int rc; write_func wr_function = (qwerty_keypad->keypad_info)->wr_func; unsigned char bank[8]; static int dir_map[] = { PM8058_GPIO_MODE_OFF, PM8058_GPIO_MODE_OUTPUT, PM8058_GPIO_MODE_INPUT, PM8058_GPIO_MODE_BOTH, }; if (param == 0) { dprintf (INFO, "pm8058_gpio struct not defined\n"); return -1; } /* Select banks and configure the gpio */ bank[0] = PM8058_GPIO_WRITE | ((param->vin_sel << PM8058_GPIO_VIN_SHIFT) & PM8058_GPIO_VIN_MASK) | PM8058_GPIO_MODE_ENABLE; bank[1] = PM8058_GPIO_WRITE | ((1 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) | ((dir_map[param->direction] << PM8058_GPIO_MODE_SHIFT) & PM8058_GPIO_MODE_MASK) | ((param->direction & PM_GPIO_DIR_OUT) ? PM8058_GPIO_OUT_BUFFER : 0); bank[2] = PM8058_GPIO_WRITE | ((2 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) | ((param->pull << PM8058_GPIO_PULL_SHIFT) & PM8058_GPIO_PULL_MASK); bank[3] = PM8058_GPIO_WRITE | ((3 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) | ((param->out_strength << PM8058_GPIO_OUT_STRENGTH_SHIFT) & PM8058_GPIO_OUT_STRENGTH_MASK); bank[4] = PM8058_GPIO_WRITE | ((4 << PM8058_GPIO_BANK_SHIFT) & PM8058_GPIO_BANK_MASK) | ((param->function << PM8058_GPIO_FUNC_SHIFT) & PM8058_GPIO_FUNC_MASK); rc = (*wr_function)(bank, 5, SSBI_REG_ADDR_GPIO(gpio)); if (rc) { dprintf(INFO, "Failed on 1st ssbi_write(): rc=%d.\n", rc); return 1; } return 0; } int pm8058_gpio_config_kypd_drv(int gpio_start, int num_gpios) { int rc; struct pm8058_gpio kypd_drv = { .direction = PM_GPIO_DIR_OUT, .pull = PM_GPIO_PULL_NO, .vin_sel = 2, .out_strength = PM_GPIO_STRENGTH_LOW, .function = PM_GPIO_FUNC_1, .inv_int_pol = 1, }; while (num_gpios--) { rc = pm8058_gpio_config(gpio_start++, &kypd_drv); if (rc) { dprintf(INFO, "FAIL pm8058_gpio_config(): rc=%d.\n", rc); return rc; } } return 0; } int pm8058_gpio_config_kypd_sns(int gpio_start, int num_gpios) { int rc; struct pm8058_gpio kypd_sns = { .direction = PM_GPIO_DIR_IN, .pull = PM_GPIO_PULL_UP1, .vin_sel = 2, .out_strength = PM_GPIO_STRENGTH_NO, .function = PM_GPIO_FUNC_NORMAL, .inv_int_pol = 1, }; while (num_gpios--) { rc = pm8058_gpio_config(gpio_start++, &kypd_sns); if (rc) { dprintf(INFO, "FAIL pm8058_gpio_config(): rc=%d.\n", rc); return rc; } } return 0; } void ssbi_gpio_init(void) { unsigned char kypd_cntl_init = 0x84; unsigned char kypd_scan_init = 0x20; int rows = (qwerty_keypad->keypad_info)->rows; int columns = (qwerty_keypad->keypad_info)->columns; write_func wr_function = (qwerty_keypad->keypad_info)->wr_func; if ((*wr_function)(&kypd_cntl_init, 1, SSBI_REG_KYPD_CNTL_ADDR)) dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_CNTL register\n"); if ((*wr_function)(&kypd_scan_init, 1, SSBI_REG_KYPD_SCAN_ADDR)) dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_SCAN register\n"); pm8058_gpio_config_kypd_sns(SSBI_OFFSET_ADDR_GPIO_KYPD_SNS, columns); pm8058_gpio_config_kypd_drv(SSBI_OFFSET_ADDR_GPIO_KYPD_DRV, rows); } static enum handler_return scan_qwerty_keypad(struct timer *timer, time_t now, void *arg) { unsigned int rows = (qwerty_keypad->keypad_info)->rows; unsigned int columns = (qwerty_keypad->keypad_info)->columns; unsigned int num_of_ssbi_reads = (qwerty_keypad->keypad_info)->num_of_reads; read_func rd_function = (qwerty_keypad->keypad_info)->rd_func; unsigned char column_new_keys = 0x00; unsigned char column_old_keys = 0x00; int shift = 0; static int key_detected = 0; if ((*rd_function)((qwerty_keypad->keypad_info)->rec_keys, num_of_ssbi_reads, SSBI_REG_KYPD_REC_DATA_ADDR)) dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_CNTL register\n"); if ((*rd_function)((qwerty_keypad->keypad_info)->old_keys, num_of_ssbi_reads, SSBI_REG_KYPD_OLD_DATA_ADDR)) dprintf (CRITICAL, "Error in initializing SSBI_REG_KYPD_CNTL register\n"); while (rows--) { if (((qwerty_keypad->keypad_info)->rec_keys[rows] != (qwerty_keypad->keypad_info)->old_keys[rows]) && ((qwerty_keypad->keypad_info)->rec_keys[rows] != 0x00) && ((qwerty_keypad->keypad_info)->old_keys[rows] != 0x00)) { while (columns--) { column_new_keys = ((qwerty_keypad->keypad_info)->rec_keys[rows]); column_old_keys = ((qwerty_keypad->keypad_info)->old_keys[rows]); if (((0x01 << columns) & (~column_new_keys)) && !((0x01 << columns) & (~column_old_keys))) { shift = (rows * 8) + columns; if ((qwerty_keypad->keypad_info)->keymap[shift]) { if (shift != key_detected) { key_detected = shift; keys_post_event((qwerty_keypad->keypad_info)->keymap[shift], 1); event_signal(&qwerty_keypad->full_scan, false); timer_set_oneshot(timer, (qwerty_keypad->keypad_info)->poll_time, scan_qwerty_keypad, NULL); return INT_RESCHEDULE; } } } } } } if (qwerty_keypad->num_of_scans < 10) { (qwerty_keypad->num_of_scans)++; timer_set_oneshot(timer, (qwerty_keypad->keypad_info)->settle_time, scan_qwerty_keypad, NULL); return INT_RESCHEDULE; } event_signal(&qwerty_keypad->full_scan, false); return INT_RESCHEDULE; } void ssbi_keypad_init(struct qwerty_keypad_info *qwerty_kp) { int len; len = sizeof(struct gpio_qwerty_kp); qwerty_keypad = malloc(len); ASSERT(qwerty_keypad); memset(qwerty_keypad, 0, len); qwerty_keypad->keypad_info = qwerty_kp; ssbi_gpio_init(); qwerty_keypad->num_of_scans = 0; event_init(&qwerty_keypad->full_scan, false, EVENT_FLAG_AUTOUNSIGNAL); timer_initialize(&qwerty_keypad->timer); timer_set_oneshot(&qwerty_keypad->timer, 0, scan_qwerty_keypad, NULL); /* wait for the keypad to complete one full scan */ event_wait(&qwerty_keypad->full_scan); } void pmic_write(unsigned address, unsigned data) { write_func wr_function = &i2c_ssbi_write_bytes; if(wr_function == NULL) return; if ((*wr_function)(&data, 1, address)) dprintf (CRITICAL, "Error in initializing register\n"); } void toshiba_pmic_gpio_init(unsigned gpio) { pmic_write(gpio,0x85); pmic_write(gpio,0x98); pmic_write(gpio,0xB8); pmic_write(gpio,0xC6); }