android_kernel_cmhtcleo/drivers/power/ds2746_param.c

881 lines
26 KiB
C

/*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Copyright (c) 2010 High Tech Computer Corporation
Module Name:
ds2784_param.c
Abstract:
This module implements the battery formula based on power spec, including below concepts:
1. adc converter
2. voltage mapping to capacity
3. over temperature algorithm
4. id range algorithm
5. ACR maintainance
Add from TPE PMA:
1. temperature index
2. pd_m_coef_boot
3. preserved_capacity_by_temp
Remove from TAO PMA:
1. pd_temp
To adapt different PMA/projects, we need to modify below tables:
1. ID_RANGE: which battery is used in the project?
2. FL_25: the full capacity in temp 25C.
3. pd_m_bias_mA: the discharge current threshold to calculating pd_m
4. M_PARAMTER_TABLE: the voltage-capacity mapping table
5. TEMP_RANGE: how many temp condition we need to consider
6. PD_M_COEF_TABLE(BOOT)/PD_M_RESL_TABLE(BOOT): voltage compensation based on current
7. PD_T_COEF: voltage compensation based on temp
8. CAPACITY_DEDUCTION_01p: the capacity deduction due to low temperature
Original Auther:
Andy.ys Wang June-01-2010
---------------------------------------------------------------------------------*/
#include <linux/kernel.h>
#include <linux/ds2746_battery.h>
#include <linux/ds2746_param.h>
#include <linux/ds2746_param_config.h>
#include <linux/wrapper_types.h>
#include <linux/time.h>
#include <asm/setup.h>
/*========================================================================================
build flags
========================================================================================*/
#define HTC_ENABLE_POWER_DEBUG 0
#define HTC_ENABLE_DUMMY_BATTERY 0
/*========================================================================================
battery common parameter defines (independent on battery id yet...)
========================================================================================*/
#define BATTERY_VOLTAGE_MIN 2000
#define BATTERY_VOLTAGE_MAX 20000
/*========================================================================================
battery parameter helper functions
========================================================================================*/
static INT32 get_id_index(struct battery_type *battery)
{
int i;
for (i = 0; i < BATTERY_ID_NUM - 1; i++) {
/* minus 1, unknown battery is not in ID_RANGE
[min, max)*/
UINT32 resister_min = ID_RANGE[i*2];
UINT32 resister_max = ID_RANGE[i*2 + 1];
if (resister_min <= battery->id_ohm && resister_max > battery->id_ohm) {
return i + 1;
}
}
return BATTERY_ID_UNKNOWN;
}
static INT32 get_temp_index(struct battery_type *battery)
{
int i;
for (i = 0; i < 255; i++) {
/* the table size shall not be greater then 255, to ensure no infinite looping
[min, max)*/
INT32 temp = TEMP_RANGE[i];
if (battery->temp_01c >= temp)
return i;
}
printk(DRIVER_ZONE " invalid batt_temp (%d) or temp range mapping.\n", battery->temp_01c);
return -1;
}
/*========================================================================================
temperature formula definitions
========================================================================================*/
static INT32 get_temp_01c(struct battery_type *battery)
{
int current_index = battery->temp_check_index;
int search_direction = 0;
if (battery->last_temp_adc > battery->temp_adc) {
search_direction = -1;
} else {
search_direction = 1;
}
while (current_index >= 0 && current_index < TEMP_NUM-1) {
UINT32 temp_min = TEMP_MAP[current_index];
UINT32 temp_max = TEMP_MAP[current_index + 1];
if (temp_max > battery->temp_adc && temp_min <= battery->temp_adc) {
battery->temp_check_index = current_index;
battery->last_temp_adc = battery->temp_adc;
return (TEMP_MAX-current_index)*10;
}
current_index += search_direction;
}
return (TEMP_MIN-1)*10;
}
/*========================================================================================
over temperature protection
========================================================================================*/
static BOOL is_over_temp(struct battery_type *battery)
{
/* stop charging*/
if (battery->temp_01c < over_low_temp_lock_01c || battery->temp_01c >= over_high_temp_lock_01c) {
return TRUE;
}
return FALSE;
}
static BOOL is_not_over_temp(struct battery_type *battery)
{
/* start charging*/
if (battery->temp_01c >= over_low_temp_release_01c &&
battery->temp_01c < over_high_temp_release_01c) {
return TRUE;
}
return FALSE;
}
static void __protect_flags_update(struct battery_type *battery,
struct protect_flags_type *flags)
{
/* Flags:
is_charging_enable_available - Over temperature, need to stop charging
is_charging_high_current_avaialble - Temperature is too high so that we have to slow charge*/
if (is_over_temp(battery)) {
/* Ex: T<0 or T>45 */
flags->is_charging_enable_available = FALSE;
flags->is_charging_high_current_avaialble = FALSE;
#if 0
flags->is_battery_overtemp = TRUE;
#endif
} else if (is_not_over_temp(battery)) {
/* Ex: T<42 or T>3*/
flags->is_charging_enable_available = TRUE;
flags->is_charging_high_current_avaialble = TRUE;
#if 0
flags->is_battery_overtemp = FALSE;
#endif
}
/* Flags:
is_battery_dead - If battery is dead, show special indicator for it*/
if (battery->voltage_mV < BATTERY_DEAD_VOLTAGE_LEVEL) {
flags->is_battery_dead = TRUE;
}
else if (battery->voltage_mV > BATTERY_DEAD_VOLTAGE_RELEASE) {
flags->is_battery_dead = FALSE;
}
}
/*========================================================================================
Voltage-Percentage mapping
========================================================================================*/
/*------------------------------------------------------------------------
Example:
p0 = (4200, 10000); 4.2V for 100%
p1 = (3900, 8000); 3.9V for 80%
p2 = (3700, 2000); 3.7V for 20%
p3 = (3300, 0); 3.3V for 0%
if V = 4000, (3900<4000<4200)
P = (4000-3900) * (10000-8000)/(4200-3900) + 8000 = 8666*/
#define NUM_SAMPLED_POINTS_MAX 12
struct sampled_point_type {
DWORD voltage;
DWORD capacity;
};
struct voltage_curve_translator {
DWORD voltage_min;
DWORD voltage_max;
DWORD capacity_min;
DWORD capacity_max;
int sampled_point_count;
struct sampled_point_type sampled_points[NUM_SAMPLED_POINTS_MAX];
};
static void voltage_curve_translator_init(struct voltage_curve_translator *t)
{
memset(t, 0, sizeof(*t));
}
static void voltage_curve_translator_add(struct voltage_curve_translator *t, DWORD voltage, DWORD capacity)
{
struct sampled_point_type *pt;
if (t->sampled_point_count >= NUM_SAMPLED_POINTS_MAX) {
return;
}
t->sampled_points[t->sampled_point_count].voltage = voltage;
t->sampled_points[t->sampled_point_count].capacity = capacity;
pt = &t->sampled_points[t->sampled_point_count];
t->sampled_point_count++;
if (pt->voltage > t->voltage_max)
t->voltage_max = pt->voltage;
if (pt->voltage < t->voltage_min)
t->voltage_min = pt->voltage;
if (pt->capacity > t->capacity_max)
t->capacity_max = pt->capacity;
if (pt->capacity < t->capacity_min)
t->capacity_min = pt->capacity;
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " kadc t: capacity=%d voltage=%d\n", capacity, voltage);
#endif /* HTC_ENABLE_POWER_DEBUG*/
}
static INT32 voltage_curve_translator_get(struct voltage_curve_translator *t, DWORD voltage)
{
struct sampled_point_type *p0, *p1;
INT32 capacity;
int i;
if (voltage > t->voltage_max)
voltage = t->voltage_max;
if (voltage < t->voltage_min)
voltage = t->voltage_min;
p0 = &t->sampled_points[0];
p1 = p0 + 1;
for (i = 0; i < t->sampled_point_count - 1 && voltage < p1->voltage; i++) {
p0++;
p1++;
}
/* DIV ZERO check*/
if (p0->voltage - p1->voltage == 0) {
return 0;
}
/* INT32 overflow check: mv(4200) * capacity(10000), shall be no problem at all...*/
capacity = (voltage - p1->voltage) * (p0->capacity - p1->capacity) / (p0->voltage - p1->voltage) + p1->capacity;
if (capacity > t->capacity_max) {
capacity = t->capacity_max;
}
if (capacity < t->capacity_min) {
capacity = t->capacity_min;
}
return capacity;
}
/*========================================================================================
KADC mapping functions
========================================================================================*/
static struct voltage_curve_translator __get_kadc_t;
static INT32 get_kadc_001p(struct battery_type *battery)
{
INT32 pd_m = 0;
INT32 pd_temp = 0;
INT32 temp_01c = battery->temp_01c;
INT32 current_mA = battery->current_mA;
UINT32 *m_paramtable;
INT32 pd_m_coef;
INT32 pd_m_resl;
INT32 capacity_deduction_01p = CAPACITY_DEDUCTION_01p[battery->temp_index];
INT32 capacity_predict_001p;
/* 1. INT32 overflow check: assert abs(iChgCurrent_ma) <= 3000, iBattTemp_01c>-250, pd_t_coef <= 1000
when calculating pd_temp: 0x7FFFFFFF / (500 * 3000 * 1000) =:= 1.4*/
if (battery->current_mA > 3000)
current_mA = 3000;
else if (battery->current_mA < -3000)
current_mA = -3000;
if (battery->temp_01c <= -250)
temp_01c = -250;
/* 2. calculate pd_m and pd_temp*/
if (battery->is_power_on_reset) {
pd_m_coef = PD_M_COEF_TABLE_BOOT[battery->temp_index][battery->id_index];
pd_m_resl = PD_M_RESL_TABLE_BOOT[battery->temp_index][battery->id_index];
}
else{
pd_m_coef = PD_M_COEF_TABLE[battery->temp_index][battery->id_index];
pd_m_resl = PD_M_RESL_TABLE[battery->temp_index][battery->id_index];
}
if (battery->current_mA < -pd_m_bias_mA) {
/* ex: -150mA < -130mA*/
pd_m = (abs(battery->current_mA) - pd_m_bias_mA) * pd_m_coef /pd_m_resl;
}
if (battery->temp_01c < 250) {
pd_temp = ((250 - battery->temp_01c) * (abs(battery->current_mA) * PD_T_COEF[battery->id_index])) / (10 * 10000);
}
battery->pd_m = pd_m;
/* 3. calculate KADC using M_PARAMTER_TABLE*/
m_paramtable = M_PARAMTER_TABLE[battery->id_index];
if (m_paramtable) {
int i = 0; /* assume that m_paramtable has at least 2 items...the last capacity item must be 0 to end the loop...*/
voltage_curve_translator_init(&__get_kadc_t);
while (1) {
INT32 capacity = m_paramtable[i];
INT32 voltage = m_paramtable[i + 1];
if (capacity == 10000) {
/* full capacity, no need to fix voltage level*/
voltage_curve_translator_add(&__get_kadc_t, voltage, capacity);
}
else {
voltage_curve_translator_add(&__get_kadc_t, voltage - pd_temp, capacity);
}
if (capacity == 0)
break;
i += 2;
}
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " pd_m=%d, pd_temp=%d\n", pd_m, pd_temp);
#endif /* HTC_ENABLE_POWER_DEBUG*/
capacity_predict_001p = voltage_curve_translator_get(&__get_kadc_t, battery->voltage_mV + pd_m);
}
else{
capacity_predict_001p = (battery->voltage_mV - 3400) * 10000 / (4200 - 3400);
}
return (capacity_predict_001p - capacity_deduction_01p * 10) * 10000 / (10000 - capacity_deduction_01p * 10);
}
/*========================================================================================
coulomb counter+curve tracer
========================================================================================*/
static INT32 get_software_acr_revise(struct battery_type *battery, UINT32 ms)
{
INT32 kadc_01p = battery->KADC_01p;
INT32 ccbi_01p = battery->RARC_01p;
INT32 delta_01p = kadc_01p - ccbi_01p;
DWORD C = 5; /* KADC = 15%~100%*/
if (kadc_01p <= 150) {
C = 5;
} /* KADC = 0%~15%*/
if (delta_01p < 0) {
/* if KADC is less than RARC, p shall be lower*/
return -(INT32) (C * ms * delta_01p * delta_01p) / 1000;
}
else{
/* if KADC is larger than RARC, p shall be higher*/
return (INT32) (C * ms * delta_01p * delta_01p) / 1000;
}
}
/*========================================================================================
ds2746 gauge ic functions, to access ds2746 registers and convert ADC to battery param
========================================================================================*/
static void __ds2746_clear_porf(void)
{
UINT8 reg_data;
if (!ds2746_i2c_read_u8(&reg_data, 0x01)) {
printk(DRIVER_ZONE " clear porf error in read.\n");
return;
}
if (!ds2746_i2c_write_u8((reg_data & (~DS2746_STATUS_PORF)), 0x01)) {
printk(DRIVER_ZONE " clear porf error in write.\n");
return;
}
}
static void __ds2746_acr_update(struct battery_type *battery, int capacity_01p)
{
printk(DRIVER_ZONE " acr update: P=%d, C=%d.\n",
capacity_01p,
battery->charge_counter_adc);
ds2746_i2c_write_u8((battery->charge_counter_adc & 0xFF00) >> 8, 0x10);
ds2746_i2c_write_u8((battery->charge_counter_adc & 0x00FF), 0x11);
if (battery->is_power_on_reset) {
__ds2746_clear_porf();
}
}
static void __ds2746_init_config(struct battery_type *battery)
{
UINT8 reg_data;
if (!ds2746_i2c_read_u8(&reg_data, 0x01)) {
printk(DRIVER_ZONE " init config error in read.\n");
return;
}
/* Erase SMOD and NBEN value in DS2746 status/config register*/
reg_data &= ~(DS2746_STATUS_SMOD | DS2746_STATUS_NBEN);
if (!ds2746_i2c_write_u8(reg_data, 0x01)) {
printk(DRIVER_ZONE " init config error in write.\n");
return;
}
}
static BOOL __ds2746_get_reg_data(UINT8 *reg)
{
memset(reg, 0, 12);
if (!ds2746_i2c_read_u8(&reg[0], 0x01))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[2], 0x08))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[3], 0x09))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[4], 0x0a))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[5], 0x0b))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[6], 0x0c))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[7], 0x0d))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[8], 0x0e))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[9], 0x0f))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[10], 0x10))
return FALSE;
if (!ds2746_i2c_read_u8(&reg[11], 0x11))
return FALSE;
return TRUE;
}
static BOOL __ds2746_battery_adc_udpate(struct battery_type *battery)
{
UINT8 reg[12];
if (!__ds2746_get_reg_data((UINT8 *) &reg)) {
printk(DRIVER_ZONE " get ds2746 data failed...\n");
return FALSE;
}
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " [x0]%x [x8]%x %x %x %x %x %x %x %x %x %x\n",
reg[0],
reg[2],
reg[3],
reg[4],
reg[5],
reg[6],
reg[7],
reg[8],
reg[9],
reg[10],
reg[11]);
#endif
if (!(reg[0] & DS2746_STATUS_AIN0) || !(reg[0] & DS2746_STATUS_AIN1)) {
printk(DRIVER_ZONE " AIN not ready...\n");
return FALSE;
}
if (reg[0] & DS2746_STATUS_PORF) {
battery->is_power_on_reset = TRUE;
}
else{
battery->is_power_on_reset = FALSE;
}
/* adc register value*/
battery->voltage_adc = MAKEWORD(reg[7], reg[6]) >> 4;
battery->current_adc = MAKEWORD(reg[9], reg[8]);
if (battery->current_adc & 0x8000) {
battery->current_adc = -(0x10000 - battery->current_adc);
}
battery->current_adc /= 4;
battery->charge_counter_adc = MAKEWORD(reg[11], reg[10]);
if (battery->charge_counter_adc & 0x8000) {
battery->charge_counter_adc = -(0x10000 - battery->charge_counter_adc);
}
battery->id_adc = MAKEWORD(reg[5], reg[4]) >> 4;
battery->temp_adc = MAKEWORD(reg[3], reg[2]) >> 4;
if (support_ds2746_gauge_ic) {
/* we preserve 500mAh for capacity lower than 0%, however the 500mAh is still drained out...we need to do predict for correct ACR*/
if ((battery->charge_counter_adc & 0xFFFF) >= 0xF000){
printk(DRIVER_ZONE " ACR out of range (x%x)...\n",
battery->charge_counter_adc);
battery->is_power_on_reset = TRUE;
}
}
return TRUE;
}
/*========================================================================================
softwar acr functions, to accumulate ACR by software and revise by battery parameter
========================================================================================*/
static void __software_charge_counter_update(struct battery_type *battery, UINT32 ms)
{
/* if the charge counter is maintained by sw, batt_alg shall use this routine to update charge counter and related parameters*/
INT32 capacity_deduction_01p = CAPACITY_DEDUCTION_01p[battery->temp_index];
/* AEL(mAh): A low temp unusable battery capacity, calculated in runtime*/
INT32 ael_mAh = capacity_deduction_01p *battery->charge_full_real_mAh / 1000;
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE "chgctr update: I=%d ms=%d.\n", battery->current_mA, ms);
#endif /* HTC_ENABLE_POWER_DEBUG*/
/* ACRt(mAh): The total capacity battery owns, stored in battery->charge_counter_mAh*/
battery->software_charge_counter_mAms += (INT32) (battery->current_mA * ms);
battery->charge_counter_mAh += (battery->software_charge_counter_mAms / 3600000);
battery->software_charge_counter_mAms -= (battery->software_charge_counter_mAms / 3600000) * 3600000;
/* CCBI(0.1%): A software RARC*/
battery->RARC_01p = (battery->charge_counter_mAh - ael_mAh) * 1000 / (battery->charge_full_real_mAh - ael_mAh);
/* store back the battery->charge_counter_mAh to battery->charge_counter_adc*/
battery->charge_counter_adc = (battery->charge_counter_mAh + charge_counter_zero_base_mAh) * acr_adc_to_mv_coef / acr_adc_to_mv_resl;
}
static void __software_charge_counter_revise(struct battery_type *battery, UINT32 ms)
{
if (battery->current_mA < 0) {
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE "chgctr revise: delta=%d.\n", get_software_acr_revise(battery, ms));
#endif /* HTC_ENABLE_POWER_DEBUG*/
/* revise software charge counter by coulomb counter+curve tracer*/
battery->software_charge_counter_mAms += get_software_acr_revise(battery, ms);
battery->charge_counter_mAh += (battery->software_charge_counter_mAms / 3600000);
battery->software_charge_counter_mAms -= (battery->software_charge_counter_mAms / 3600000) * 3600000;
/* store back the battery->charge_counter_mAh to battery->charge_counter_adc*/
battery->charge_counter_adc = (battery->charge_counter_mAh + charge_counter_zero_base_mAh) * acr_adc_to_mv_coef / acr_adc_to_mv_resl;
}
}
static void __software_acr_update(struct battery_type *battery)
{
static BOOL s_bFirstEntry = TRUE;
static DWORD last_time_ms;
DWORD now_time_ms = BAHW_MyGetMSecs();
if (s_bFirstEntry) {
s_bFirstEntry = FALSE;
last_time_ms = now_time_ms;
}
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE "+acr update: adc=%d C=%d mams=%d.\n",
battery->charge_counter_adc,
battery->charge_counter_mAh,
battery->software_charge_counter_mAms);
#endif /* HTC_ENABLE_POWER_DEBUG*/
__software_charge_counter_update(battery, now_time_ms - last_time_ms);
__software_charge_counter_revise(battery, now_time_ms - last_time_ms);
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE "-acr update: adc=%d C=%d mams=%d.\n",
battery->charge_counter_adc,
battery->charge_counter_mAh,
battery->software_charge_counter_mAms);
#endif /* HTC_ENABLE_POWER_DEBUG*/
last_time_ms = now_time_ms;
}
/*========================================================================================
battery param update, the coef are referenced from power spec
========================================================================================*/
static BOOL __battery_param_udpate(struct battery_type *battery)
{
static int batt_id_stable_counter = 0;
INT32 batt_id_index;
INT32 temp_01c;
if (support_ds2746_gauge_ic) {
/* adc register value are read from __ds2746_battery_adc_udpate()*/
if (!__ds2746_battery_adc_udpate(battery))
return FALSE;
}
else{
/* adc register value are read from BAHW_get_batt_info_all()
if ( !BAHW_get_batt_info_all(battery) ) return FALSE;*/
}
/*real physical value*/
battery->voltage_mV = (battery->voltage_adc * voltage_adc_to_mv_coef / voltage_adc_to_mv_resl);
battery->current_mA = (battery->current_adc * current_adc_to_mv_coef / current_adc_to_mv_resl);
battery->discharge_mA = (battery->discharge_adc * discharge_adc_to_mv_coef / discharge_adc_to_mv_resl);
battery->charge_counter_mAh = (battery->charge_counter_adc * acr_adc_to_mv_coef / acr_adc_to_mv_resl) - charge_counter_zero_base_mAh;
battery->current_mA = battery->current_mA - battery->discharge_mA;
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " battery.id_adc pre clip: %d\n", battery->id_adc);
printk(DRIVER_ZONE " battery.temp_adc pre clip: %d\n", battery->temp_adc);
#endif
/* prevent from adc out of range*/
if (battery->id_adc >= id_adc_resl) {
battery->id_adc = id_adc_resl - 1;
}
if (battery->id_adc <= 0) {
battery->id_adc = 1;
}
if (battery->temp_adc >= temp_adc_resl) {
battery->temp_adc = temp_adc_resl - 1;
}
if (battery->temp_adc <= 0) {
battery->temp_adc = 1;
}
/* battery ID shall be ready first for temp/kadc calculation*/
// if ( id_conversion ) battery->id_ohm = ((float)id_R_kohm / ((float)id_adc_resl/battery->id_adc - 1)) * 1000; // kohm -> ohm
// else battery->id_ohm = battery->id_adc;
battery->id_ohm = battery->temp_adc;
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " battery.id_ohm pre calibrate: %d\n", battery->id_ohm);
#endif /* HTC_ENABLE_POWER_DEBUG*/
//calibrate_id_ohm(battery);
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " battery.id_ohm post calibrate: %d\n", battery->id_ohm);
#endif /* HTC_ENABLE_POWER_DEBUG*/
batt_id_index = get_id_index(battery);
#if HTC_ENABLE_POWER_DEBUG
printk(DRIVER_ZONE " batt_id: %d\n", batt_id_index);
#endif /* HTC_ENABLE_POWER_DEBUG*/
if (is_allow_batt_id_change) {
/*! TODO: batt_id changes immediately; may need to modify in future*/
if (batt_id_stable_counter >= 3 && batt_id_index != battery->id_index){
/* if batt_id is stable but is different from previous one*/
batt_id_stable_counter = 0; /* reset stable counter and set batt_id to new one*/
}
}
if (batt_id_stable_counter < 3) {
if (batt_id_stable_counter == 0) {
/* first time to get the batt id*/
battery->id_index = batt_id_index;
battery->charge_full_design_mAh = FL_25[battery->id_index];
battery->charge_full_real_mAh = battery->charge_full_design_mAh;
batt_id_stable_counter = 1;
}
else{
/* 2nd and further time to get the batt id*/
if (batt_id_index == battery->id_index)
batt_id_stable_counter++;
else
batt_id_stable_counter = 0;
}
}
temp_01c = get_temp_01c(battery);
if (batt_id_index == 5)
{
//battery->temp_adc = battery->temp_adc * 7;
temp_01c = 650 - battery->temp_adc*10;
}
/* calculate temperature*/
// battery->temp_01c = get_temp_c((float)temp_R_kohm / ((float)temp_adc_resl/battery->temp_adc - 1))*10;
if(temp_01c == 700)
{
FL_25[battery->id_index] = 2300;
battery->charge_full_real_mAh = FL_25[battery->id_index];
battery->charge_full_design_mAh = battery->charge_full_real_mAh;
temp_01c = 650 - battery->temp_adc*10;
}
if (temp_01c >= TEMP_MIN*10)
battery->temp_01c = temp_01c;
else
printk(DRIVER_ZONE " get temp_01c(%d) failed...\n", temp_01c);
battery->temp_index = get_temp_index(battery);
/* calculate KADC and RARC*/
battery->KADC_01p = CEILING(get_kadc_001p(battery), 10);
battery->RARC_01p = CEILING(10000 * battery->charge_counter_mAh / battery->charge_full_real_mAh, 10);
if (!support_ds2746_gauge_ic) {
__software_acr_update(battery);
}
if (battery->voltage_mV <BATTERY_VOLTAGE_MIN ||
battery->voltage_mV> BATTERY_VOLTAGE_MAX) {
printk(DRIVER_ZONE " invalid V(%d).\n", battery->voltage_mV);
return FALSE;
}
/*! star_lee 20100426 - minimum RARC is 0%*/
if (battery->RARC_01p <= 0) {
battery->RARC_01p = 0;
}
printk(DRIVER_ZONE " V=%d(%x) I=%d(%x) C=%d.%d/%d(%x) id=%d(%x) T=%d(%x) KADC=%d\n",
battery->voltage_mV,
battery->voltage_adc,
battery->current_mA,
battery->current_adc,
battery->charge_counter_mAh,
battery->software_charge_counter_mAms,
battery->charge_full_real_mAh,
battery->charge_counter_adc,
battery->id_index,
battery->id_adc,
battery->temp_01c,
battery->temp_adc,
battery->KADC_01p);
return TRUE;
}
/*========================================================================================
time functions
========================================================================================*/
DWORD BAHW_MyGetMSecs(void)
{
struct timespec now;
getnstimeofday(&now);
/*struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);*/
return now.tv_sec * 1000 + now.tv_nsec / 1000000;
}
/*========================================================================================
battery param public function
========================================================================================*/
void battery_capacity_update(struct battery_type *battery, int capacity_01p)
{
/* ACR 500~500+FULL mapping to capacity 0~FULL*/
battery->charge_counter_mAh = capacity_01p * battery->charge_full_real_mAh / 1000;
battery->charge_counter_adc = (battery->charge_counter_mAh + charge_counter_zero_base_mAh) * acr_adc_to_mv_resl / acr_adc_to_mv_coef;
battery->RARC_01p = capacity_01p;
if (support_ds2746_gauge_ic) {
__ds2746_acr_update(battery, capacity_01p);
}
printk(DRIVER_ZONE "new RARC=%d C=%dmAh adc=%d.\n",
battery->RARC_01p,
battery->charge_counter_mAh,
battery->charge_counter_adc);
battery->is_power_on_reset = FALSE;
}
BOOL battery_param_update(struct battery_type *battery, struct protect_flags_type *flags)
{
if (!__battery_param_udpate(battery)) {
return FALSE;
}
if (flags->is_fake_room_temp) {
battery->temp_01c = 250;
printk(DRIVER_ZONE "fake temp=%d(%x)\n",
battery->temp_01c,
battery->temp_adc);
}
__protect_flags_update(battery, flags);
#if ! HTC_ENABLE_DUMMY_BATTERY
if (battery->id_index == BATTERY_ID_UNKNOWN) {
flags->is_charging_enable_available = FALSE;
}
#else /* HTC_ENABLE_DUMMY_BATTERY*/
/* do not disable charging for debug stage*/
flags->is_charging_enable_available = TRUE;
#endif /* HTC_ENABLE_DUMMY_BATTERY*/
return TRUE;
}
void battery_param_init(struct battery_type *battery)
{
/* set battery id to unknown to get battery id and related characters*/
battery->id_index = BATTERY_ID_UNKNOWN;
/* default to 25C unless we can get valid battery temp from adc*/
battery->temp_01c = 250;
battery->last_temp_01c = battery->temp_01c;
battery->temp_check_index = 0;
battery->last_temp_adc = 0;
battery->voltage_mV = 3800;
/* this is used when accumulate current by software; initial it as 0mAs*/
battery->software_charge_counter_mAms = 0;
/* set POR at first by software; gauge ic will has correct value*/
battery->is_power_on_reset = TRUE;
if (support_ds2746_gauge_ic) {
__ds2746_init_config(battery);
}
if (battery->thermal_id == THERMAL_1000) {
TEMP_MAP = TEMP_MAP_1000K;
printk(DRIVER_ZONE "Use 1000 Kohm thermal resistance");
} else if (battery->thermal_id == THERMAL_600) {
TEMP_MAP = TEMP_MAP_600K;
printk(DRIVER_ZONE "Use 600 Kohm thermal resistance");
} else {
printk(DRIVER_ZONE "Use default(300 Kohm) thermal resistance");
}
/*printk(DRIVER_ZONE "battery param inited with board name <%s>\n", HTC_BATT_BOARD_NAME);*/
}