1142 lines
26 KiB
C

/* Copyright (c) 2002,2007-2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/types.h>
#include <linux/device.h>
#include <linux/spinlock.h>
#include <linux/genalloc.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include "kgsl.h"
#include "kgsl_mmu.h"
#define KGSL_MMU_ALIGN_SHIFT 13
#define KGSL_MMU_ALIGN_MASK (~((1 << KGSL_MMU_ALIGN_SHIFT) - 1))
#define GSL_PT_PAGE_BITS_MASK 0x00000007
#define GSL_PT_PAGE_ADDR_MASK PAGE_MASK
#define GSL_MMU_INT_MASK \
(MH_INTERRUPT_MASK__AXI_READ_ERROR | \
MH_INTERRUPT_MASK__AXI_WRITE_ERROR)
static ssize_t
sysfs_show_ptpool_entries(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", kgsl_driver.ptpool.entries);
}
static ssize_t
sysfs_show_ptpool_min(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
kgsl_driver.ptpool.static_entries);
}
static ssize_t
sysfs_show_ptpool_chunks(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", kgsl_driver.ptpool.chunks);
}
static ssize_t
sysfs_show_ptpool_ptsize(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", kgsl_driver.ptpool.ptsize);
}
static struct kobj_attribute attr_ptpool_entries = {
.attr = { .name = "ptpool_entries", .mode = 0444 },
.show = sysfs_show_ptpool_entries,
.store = NULL,
};
static struct kobj_attribute attr_ptpool_min = {
.attr = { .name = "ptpool_min", .mode = 0444 },
.show = sysfs_show_ptpool_min,
.store = NULL,
};
static struct kobj_attribute attr_ptpool_chunks = {
.attr = { .name = "ptpool_chunks", .mode = 0444 },
.show = sysfs_show_ptpool_chunks,
.store = NULL,
};
static struct kobj_attribute attr_ptpool_ptsize = {
.attr = { .name = "ptpool_ptsize", .mode = 0444 },
.show = sysfs_show_ptpool_ptsize,
.store = NULL,
};
static struct attribute *ptpool_attrs[] = {
&attr_ptpool_entries.attr,
&attr_ptpool_min.attr,
&attr_ptpool_chunks.attr,
&attr_ptpool_ptsize.attr,
NULL,
};
static struct attribute_group ptpool_attr_group = {
.attrs = ptpool_attrs,
};
static int
_kgsl_ptpool_add_entries(struct kgsl_ptpool *pool, int count, int dynamic)
{
struct kgsl_ptpool_chunk *chunk;
size_t size = ALIGN(count * pool->ptsize, PAGE_SIZE);
BUG_ON(count == 0);
if (get_order(size) >= MAX_ORDER) {
KGSL_CORE_ERR("ptpool allocation is too big: %d\n", size);
return -EINVAL;
}
chunk = kzalloc(sizeof(*chunk), GFP_KERNEL);
if (chunk == NULL) {
KGSL_CORE_ERR("kzalloc(%d) failed\n", sizeof(*chunk));
return -ENOMEM;
}
chunk->size = size;
chunk->count = count;
chunk->dynamic = dynamic;
chunk->data = dma_alloc_coherent(NULL, size,
&chunk->phys, GFP_KERNEL);
if (chunk->data == NULL) {
KGSL_CORE_ERR("dma_alloc_coherent(%d) failed\n", size);
goto err;
}
chunk->bitmap = kzalloc(BITS_TO_LONGS(count) * 4, GFP_KERNEL);
if (chunk->bitmap == NULL) {
KGSL_CORE_ERR("kzalloc(%d) failed\n",
BITS_TO_LONGS(count) * 4);
goto err_dma;
}
list_add_tail(&chunk->list, &pool->list);
pool->chunks++;
pool->entries += count;
if (!dynamic)
pool->static_entries += count;
return 0;
err_dma:
dma_free_coherent(NULL, chunk->size, chunk->data, chunk->phys);
err:
kfree(chunk);
return -ENOMEM;
}
static void *
_kgsl_ptpool_get_entry(struct kgsl_ptpool *pool, unsigned int *physaddr)
{
struct kgsl_ptpool_chunk *chunk;
list_for_each_entry(chunk, &pool->list, list) {
int bit = find_first_zero_bit(chunk->bitmap, chunk->count);
if (bit >= chunk->count)
continue;
set_bit(bit, chunk->bitmap);
*physaddr = chunk->phys + (bit * pool->ptsize);
return chunk->data + (bit * pool->ptsize);
}
return NULL;
}
/**
* kgsl_ptpool_add
* @pool: A pointer to a ptpool structure
* @entries: Number of entries to add
*
* Add static entries to the pagetable pool.
*/
int
kgsl_ptpool_add(struct kgsl_ptpool *pool, int count)
{
int ret = 0;
BUG_ON(count == 0);
mutex_lock(&pool->lock);
/* Only 4MB can be allocated in one chunk, so larger allocations
need to be split into multiple sections */
while (count) {
int entries = ((count * pool->ptsize) > SZ_4M) ?
SZ_4M / pool->ptsize : count;
/* Add the entries as static, i.e. they don't ever stand
a chance of being removed */
ret = _kgsl_ptpool_add_entries(pool, entries, 0);
if (ret)
break;
count -= entries;
}
mutex_unlock(&pool->lock);
return ret;
}
/**
* kgsl_ptpool_alloc
* @pool: A pointer to a ptpool structure
* @addr: A pointer to store the physical address of the chunk
*
* Allocate a pagetable from the pool. Returns the virtual address
* of the pagetable, the physical address is returned in physaddr
*/
void *kgsl_ptpool_alloc(struct kgsl_ptpool *pool, unsigned int *physaddr)
{
void *addr = NULL;
int ret;
mutex_lock(&pool->lock);
addr = _kgsl_ptpool_get_entry(pool, physaddr);
if (addr)
goto done;
/* Add a chunk for 1 more pagetable and mark it as dynamic */
ret = _kgsl_ptpool_add_entries(pool, 1, 1);
if (ret)
goto done;
addr = _kgsl_ptpool_get_entry(pool, physaddr);
done:
mutex_unlock(&pool->lock);
return addr;
}
static inline void _kgsl_ptpool_rm_chunk(struct kgsl_ptpool_chunk *chunk)
{
list_del(&chunk->list);
if (chunk->data)
dma_free_coherent(NULL, chunk->size, chunk->data,
chunk->phys);
kfree(chunk->bitmap);
kfree(chunk);
}
/**
* kgsl_ptpool_free
* @pool: A pointer to a ptpool structure
* @addr: A pointer to the virtual address to free
*
* Free a pagetable allocated from the pool
*/
void kgsl_ptpool_free(struct kgsl_ptpool *pool, void *addr)
{
struct kgsl_ptpool_chunk *chunk, *tmp;
if (pool == NULL || addr == NULL)
return;
mutex_lock(&pool->lock);
list_for_each_entry_safe(chunk, tmp, &pool->list, list) {
if (addr >= chunk->data &&
addr < chunk->data + chunk->size) {
int bit = ((unsigned long) (addr - chunk->data)) /
pool->ptsize;
clear_bit(bit, chunk->bitmap);
memset(addr, 0, pool->ptsize);
if (chunk->dynamic &&
bitmap_empty(chunk->bitmap, chunk->count))
_kgsl_ptpool_rm_chunk(chunk);
break;
}
}
mutex_unlock(&pool->lock);
}
void kgsl_ptpool_destroy(struct kgsl_ptpool *pool)
{
struct kgsl_ptpool_chunk *chunk, *tmp;
if (pool == NULL)
return;
mutex_lock(&pool->lock);
list_for_each_entry_safe(chunk, tmp, &pool->list, list)
_kgsl_ptpool_rm_chunk(chunk);
mutex_unlock(&pool->lock);
memset(pool, 0, sizeof(*pool));
}
/**
* kgsl_ptpool_init
* @pool: A pointer to a ptpool structure to initialize
* @ptsize: The size of each pagetable entry
* @entries: The number of inital entries to add to the pool
*
* Initalize a pool and allocate an initial chunk of entries.
*/
int kgsl_ptpool_init(struct kgsl_ptpool *pool, int ptsize, int entries)
{
int ret = 0;
BUG_ON(ptsize == 0);
pool->ptsize = ptsize;
mutex_init(&pool->lock);
INIT_LIST_HEAD(&pool->list);
if (entries) {
ret = kgsl_ptpool_add(pool, entries);
if (ret)
return ret;
}
return sysfs_create_group(kgsl_driver.ptkobj, &ptpool_attr_group);
}
/* pt_mutex needs to be held in this function */
static struct kgsl_pagetable *
kgsl_get_pagetable(unsigned long name)
{
struct kgsl_pagetable *pt;
list_for_each_entry(pt, &kgsl_driver.pagetable_list, list) {
if (pt->name == name)
return pt;
}
return NULL;
}
static struct kgsl_pagetable *
_get_pt_from_kobj(struct kobject *kobj)
{
unsigned long ptname;
if (!kobj)
return NULL;
if (sscanf(kobj->name, "%ld", &ptname) != 1)
return NULL;
return kgsl_get_pagetable(ptname);
}
static ssize_t
sysfs_show_entries(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct kgsl_pagetable *pt;
int ret = 0;
mutex_lock(&kgsl_driver.pt_mutex);
pt = _get_pt_from_kobj(kobj);
if (pt)
ret += snprintf(buf, PAGE_SIZE, "%d\n", pt->stats.entries);
mutex_unlock(&kgsl_driver.pt_mutex);
return ret;
}
static ssize_t
sysfs_show_mapped(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct kgsl_pagetable *pt;
int ret = 0;
mutex_lock(&kgsl_driver.pt_mutex);
pt = _get_pt_from_kobj(kobj);
if (pt)
ret += snprintf(buf, PAGE_SIZE, "%d\n", pt->stats.mapped);
mutex_unlock(&kgsl_driver.pt_mutex);
return ret;
}
static ssize_t
sysfs_show_va_range(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct kgsl_pagetable *pt;
int ret = 0;
mutex_lock(&kgsl_driver.pt_mutex);
pt = _get_pt_from_kobj(kobj);
if (pt)
ret += snprintf(buf, PAGE_SIZE, "0x%x\n", pt->va_range);
mutex_unlock(&kgsl_driver.pt_mutex);
return ret;
}
static ssize_t
sysfs_show_max_mapped(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct kgsl_pagetable *pt;
int ret = 0;
mutex_lock(&kgsl_driver.pt_mutex);
pt = _get_pt_from_kobj(kobj);
if (pt)
ret += snprintf(buf, PAGE_SIZE, "%d\n", pt->stats.max_mapped);
mutex_unlock(&kgsl_driver.pt_mutex);
return ret;
}
static ssize_t
sysfs_show_max_entries(struct kobject *kobj,
struct kobj_attribute *attr,
char *buf)
{
struct kgsl_pagetable *pt;
int ret = 0;
mutex_lock(&kgsl_driver.pt_mutex);
pt = _get_pt_from_kobj(kobj);
if (pt)
ret += snprintf(buf, PAGE_SIZE, "%d\n", pt->stats.max_entries);
mutex_unlock(&kgsl_driver.pt_mutex);
return ret;
}
static struct kobj_attribute attr_entries = {
.attr = { .name = "entries", .mode = 0444 },
.show = sysfs_show_entries,
.store = NULL,
};
static struct kobj_attribute attr_mapped = {
.attr = { .name = "mapped", .mode = 0444 },
.show = sysfs_show_mapped,
.store = NULL,
};
static struct kobj_attribute attr_va_range = {
.attr = { .name = "va_range", .mode = 0444 },
.show = sysfs_show_va_range,
.store = NULL,
};
static struct kobj_attribute attr_max_mapped = {
.attr = { .name = "max_mapped", .mode = 0444 },
.show = sysfs_show_max_mapped,
.store = NULL,
};
static struct kobj_attribute attr_max_entries = {
.attr = { .name = "max_entries", .mode = 0444 },
.show = sysfs_show_max_entries,
.store = NULL,
};
static struct attribute *pagetable_attrs[] = {
&attr_entries.attr,
&attr_mapped.attr,
&attr_va_range.attr,
&attr_max_mapped.attr,
&attr_max_entries.attr,
NULL,
};
static struct attribute_group pagetable_attr_group = {
.attrs = pagetable_attrs,
};
static void
pagetable_remove_sysfs_objects(struct kgsl_pagetable *pagetable)
{
if (pagetable->kobj)
sysfs_remove_group(pagetable->kobj,
&pagetable_attr_group);
kobject_put(pagetable->kobj);
}
static int
pagetable_add_sysfs_objects(struct kgsl_pagetable *pagetable)
{
char ptname[16];
int ret = -ENOMEM;
snprintf(ptname, sizeof(ptname), "%d", pagetable->name);
pagetable->kobj = kobject_create_and_add(ptname,
kgsl_driver.ptkobj);
if (pagetable->kobj == NULL)
goto err;
ret = sysfs_create_group(pagetable->kobj, &pagetable_attr_group);
err:
if (ret) {
if (pagetable->kobj)
kobject_put(pagetable->kobj);
pagetable->kobj = NULL;
}
return ret;
}
static inline uint32_t
kgsl_pt_entry_get(struct kgsl_pagetable *pt, uint32_t va)
{
return (va - pt->va_base) >> PAGE_SHIFT;
}
static inline void
kgsl_pt_map_set(struct kgsl_pagetable *pt, uint32_t pte, uint32_t val)
{
uint32_t *baseptr = (uint32_t *)pt->base.hostptr;
writel_relaxed(val, &baseptr[pte]);
}
static inline uint32_t
kgsl_pt_map_getaddr(struct kgsl_pagetable *pt, uint32_t pte)
{
uint32_t *baseptr = (uint32_t *)pt->base.hostptr;
uint32_t ret = readl_relaxed(&baseptr[pte]) & GSL_PT_PAGE_ADDR_MASK;
return ret;
}
void kgsl_mh_intrcallback(struct kgsl_device *device)
{
unsigned int status = 0;
unsigned int reg;
kgsl_regread_isr(device, device->mmu.reg.interrupt_status, &status);
if (status & MH_INTERRUPT_MASK__AXI_READ_ERROR) {
kgsl_regread_isr(device, device->mmu.reg.axi_error, &reg);
KGSL_MEM_CRIT(device, "axi read error interrupt: %08x\n", reg);
} else if (status & MH_INTERRUPT_MASK__AXI_WRITE_ERROR) {
kgsl_regread_isr(device, device->mmu.reg.axi_error, &reg);
KGSL_MEM_CRIT(device, "axi write error interrupt: %08x\n", reg);
} else if (status & MH_INTERRUPT_MASK__MMU_PAGE_FAULT) {
kgsl_regread_isr(device, device->mmu.reg.page_fault, &reg);
KGSL_MEM_CRIT(device, "mmu page fault interrupt: %08x\n", reg);
} else {
KGSL_MEM_WARN(device,
"bad bits in REG_MH_INTERRUPT_STATUS %08x\n", status);
}
kgsl_regwrite_isr(device, device->mmu.reg.interrupt_clear, status);
/*TODO: figure out how to handle errror interupts.
* specifically, page faults should probably nuke the client that
* caused them, but we don't have enough info to figure that out yet.
*/
}
EXPORT_SYMBOL(kgsl_mh_intrcallback);
static int kgsl_setup_pt(struct kgsl_pagetable *pt)
{
int i = 0;
int status = 0;
for (i = 0; i < KGSL_DEVICE_MAX; i++) {
struct kgsl_device *device = kgsl_driver.devp[i];
if (device) {
status = device->ftbl.device_setup_pt(device, pt);
if (status)
goto error_pt;
}
}
return status;
error_pt:
while (i >= 0) {
struct kgsl_device *device = kgsl_driver.devp[i];
if (device)
device->ftbl.device_cleanup_pt(device, pt);
i--;
}
return status;
}
static int kgsl_cleanup_pt(struct kgsl_pagetable *pt)
{
int i;
for (i = 0; i < KGSL_DEVICE_MAX; i++) {
struct kgsl_device *device = kgsl_driver.devp[i];
if (device)
device->ftbl.device_cleanup_pt(device, pt);
}
return 0;
}
static struct kgsl_pagetable *kgsl_mmu_createpagetableobject(
unsigned int name)
{
int status = 0;
struct kgsl_pagetable *pagetable = NULL;
pagetable = kzalloc(sizeof(struct kgsl_pagetable), GFP_KERNEL);
if (pagetable == NULL) {
KGSL_CORE_ERR("kzalloc(%d) failed\n",
sizeof(struct kgsl_pagetable));
return NULL;
}
pagetable->refcnt = 1;
spin_lock_init(&pagetable->lock);
pagetable->tlb_flags = 0;
pagetable->name = name;
pagetable->va_base = KGSL_PAGETABLE_BASE;
pagetable->va_range = CONFIG_MSM_KGSL_PAGE_TABLE_SIZE;
pagetable->last_superpte = 0;
pagetable->max_entries = KGSL_PAGETABLE_ENTRIES(pagetable->va_range);
pagetable->tlbflushfilter.size = (pagetable->va_range /
(PAGE_SIZE * GSL_PT_SUPER_PTE * 8)) + 1;
pagetable->tlbflushfilter.base = (unsigned int *)
kzalloc(pagetable->tlbflushfilter.size, GFP_KERNEL);
if (!pagetable->tlbflushfilter.base) {
KGSL_CORE_ERR("kzalloc(%d) failed\n",
pagetable->tlbflushfilter.size);
goto err_alloc;
}
GSL_TLBFLUSH_FILTER_RESET();
pagetable->pool = gen_pool_create(PAGE_SHIFT, -1);
if (pagetable->pool == NULL) {
KGSL_CORE_ERR("gen_pool_create(%d) failed\n", PAGE_SHIFT);
goto err_flushfilter;
}
if (gen_pool_add(pagetable->pool, pagetable->va_base,
pagetable->va_range, -1)) {
KGSL_CORE_ERR("gen_pool_add failed\n");
goto err_pool;
}
pagetable->base.hostptr = kgsl_ptpool_alloc(&kgsl_driver.ptpool,
&pagetable->base.physaddr);
if (pagetable->base.hostptr == NULL)
goto err_pool;
/* ptpool allocations are from coherent memory, so update the
device statistics acordingly */
KGSL_STATS_ADD(KGSL_PAGETABLE_SIZE, kgsl_driver.stats.coherent,
kgsl_driver.stats.coherent_max);
pagetable->base.gpuaddr = pagetable->base.physaddr;
pagetable->base.size = KGSL_PAGETABLE_SIZE;
status = kgsl_setup_pt(pagetable);
if (status)
goto err_free_sharedmem;
list_add(&pagetable->list, &kgsl_driver.pagetable_list);
/* Create the sysfs entries */
pagetable_add_sysfs_objects(pagetable);
return pagetable;
err_free_sharedmem:
kgsl_ptpool_free(&kgsl_driver.ptpool, &pagetable->base.hostptr);
err_pool:
gen_pool_destroy(pagetable->pool);
err_flushfilter:
kfree(pagetable->tlbflushfilter.base);
err_alloc:
kfree(pagetable);
return NULL;
}
static void kgsl_mmu_destroypagetable(struct kgsl_pagetable *pagetable)
{
list_del(&pagetable->list);
pagetable_remove_sysfs_objects(pagetable);
kgsl_cleanup_pt(pagetable);
kgsl_ptpool_free(&kgsl_driver.ptpool, pagetable->base.hostptr);
kgsl_driver.stats.coherent -= KGSL_PAGETABLE_SIZE;
if (pagetable->pool) {
gen_pool_destroy(pagetable->pool);
pagetable->pool = NULL;
}
if (pagetable->tlbflushfilter.base) {
pagetable->tlbflushfilter.size = 0;
kfree(pagetable->tlbflushfilter.base);
pagetable->tlbflushfilter.base = NULL;
}
kfree(pagetable);
}
struct kgsl_pagetable *kgsl_mmu_getpagetable(unsigned long name)
{
struct kgsl_pagetable *pt;
mutex_lock(&kgsl_driver.pt_mutex);
pt = kgsl_get_pagetable(name);
if (pt) {
spin_lock(&pt->lock);
pt->refcnt++;
spin_unlock(&pt->lock);
goto done;
}
pt = kgsl_mmu_createpagetableobject(name);
done:
mutex_unlock(&kgsl_driver.pt_mutex);
return pt;
}
void kgsl_mmu_putpagetable(struct kgsl_pagetable *pagetable)
{
bool dead;
if (pagetable == NULL)
return;
mutex_lock(&kgsl_driver.pt_mutex);
spin_lock(&pagetable->lock);
dead = (--pagetable->refcnt) == 0;
spin_unlock(&pagetable->lock);
if (dead)
kgsl_mmu_destroypagetable(pagetable);
mutex_unlock(&kgsl_driver.pt_mutex);
}
int kgsl_mmu_setstate(struct kgsl_device *device,
struct kgsl_pagetable *pagetable)
{
int status = 0;
struct kgsl_mmu *mmu = &device->mmu;
if (mmu->flags & KGSL_FLAGS_STARTED) {
/* page table not current, then setup mmu to use new
* specified page table
*/
if (mmu->hwpagetable != pagetable) {
mmu->hwpagetable = pagetable;
spin_lock(&mmu->hwpagetable->lock);
mmu->hwpagetable->tlb_flags &= ~(1<<device->id);
spin_unlock(&mmu->hwpagetable->lock);
/* call device specific set page table */
status = kgsl_setstate(mmu->device,
KGSL_MMUFLAGS_TLBFLUSH |
KGSL_MMUFLAGS_PTUPDATE);
}
}
return status;
}
EXPORT_SYMBOL(kgsl_mmu_setstate);
int kgsl_mmu_init(struct kgsl_device *device)
{
/*
* intialize device mmu
*
* call this with the global lock held
*/
int status = 0;
struct kgsl_mmu *mmu = &device->mmu;
mmu->device = device;
/* make sure aligned to pagesize */
BUG_ON(mmu->mpu_base & (PAGE_SIZE - 1));
BUG_ON((mmu->mpu_base + mmu->mpu_range) & (PAGE_SIZE - 1));
/* sub-client MMU lookups require address translation */
if ((mmu->config & ~0x1) > 0) {
/*make sure virtual address range is a multiple of 64Kb */
BUG_ON(CONFIG_MSM_KGSL_PAGE_TABLE_SIZE & ((1 << 16) - 1));
/* allocate memory used for completing r/w operations that
* cannot be mapped by the MMU
*/
status = kgsl_allocate_contig(&mmu->dummyspace, 64);
if (!status)
kgsl_sharedmem_set(&mmu->dummyspace, 0, 0,
mmu->dummyspace.size);
}
return status;
}
int kgsl_mmu_start(struct kgsl_device *device)
{
/*
* intialize device mmu
*
* call this with the global lock held
*/
int status;
struct kgsl_mmu *mmu = &device->mmu;
if (mmu->flags & KGSL_FLAGS_STARTED)
return 0;
/* MMU not enabled */
if ((mmu->config & 0x1) == 0)
return 0;
mmu->flags |= KGSL_FLAGS_STARTED;
/* setup MMU and sub-client behavior */
kgsl_regwrite(device, device->mmu.reg.config, mmu->config);
/* enable axi interrupts */
kgsl_regwrite(device, device->mmu.reg.interrupt_mask,
GSL_MMU_INT_MASK);
/* idle device */
kgsl_idle(device, KGSL_TIMEOUT_DEFAULT);
/* define physical memory range accessible by the core */
kgsl_regwrite(device, device->mmu.reg.mpu_base, mmu->mpu_base);
kgsl_regwrite(device, device->mmu.reg.mpu_end,
mmu->mpu_base + mmu->mpu_range);
/* enable axi interrupts */
kgsl_regwrite(device, device->mmu.reg.interrupt_mask,
GSL_MMU_INT_MASK | MH_INTERRUPT_MASK__MMU_PAGE_FAULT);
/* sub-client MMU lookups require address translation */
if ((mmu->config & ~0x1) > 0) {
kgsl_sharedmem_set(&mmu->dummyspace, 0, 0,
mmu->dummyspace.size);
/* TRAN_ERROR needs a 32 byte (32 byte aligned) chunk of memory
* to complete transactions in case of an MMU fault. Note that
* we'll leave the bottom 32 bytes of the dummyspace for other
* purposes (e.g. use it when dummy read cycles are needed
* for other blocks */
kgsl_regwrite(device, device->mmu.reg.tran_error,
mmu->dummyspace.physaddr + 32);
if (mmu->defaultpagetable == NULL)
mmu->defaultpagetable =
kgsl_mmu_getpagetable(KGSL_MMU_GLOBAL_PT);
mmu->hwpagetable = mmu->defaultpagetable;
kgsl_regwrite(device, device->mmu.reg.pt_page,
mmu->hwpagetable->base.gpuaddr);
kgsl_regwrite(device, device->mmu.reg.va_range,
(mmu->hwpagetable->va_base |
(mmu->hwpagetable->va_range >> 16)));
status = kgsl_setstate(device, KGSL_MMUFLAGS_TLBFLUSH);
if (status) {
KGSL_MEM_ERR(device, "Failed to setstate TLBFLUSH\n");
goto error;
}
}
return 0;
error:
/* disable MMU */
kgsl_regwrite(device, device->mmu.reg.interrupt_mask, 0);
kgsl_regwrite(device, device->mmu.reg.config, 0x00000000);
return status;
}
EXPORT_SYMBOL(kgsl_mmu_start);
unsigned int kgsl_virtaddr_to_physaddr(void *virtaddr)
{
unsigned int physaddr = 0;
pgd_t *pgd_ptr = NULL;
pmd_t *pmd_ptr = NULL;
pte_t *pte_ptr = NULL, pte;
pgd_ptr = pgd_offset(current->mm, (unsigned long) virtaddr);
if (pgd_none(*pgd) || pgd_bad(*pgd)) {
KGSL_CORE_ERR("Invalid pgd entry\n");
return 0;
}
pmd_ptr = pmd_offset(pgd_ptr, (unsigned long) virtaddr);
if (pmd_none(*pmd_ptr) || pmd_bad(*pmd_ptr)) {
KGSL_CORE_ERR("Invalid pmd entry\n");
return 0;
}
pte_ptr = pte_offset_map(pmd_ptr, (unsigned long) virtaddr);
if (!pte_ptr) {
KGSL_CORE_ERR("pt_offset_map failed\n");
return 0;
}
pte = *pte_ptr;
physaddr = pte_pfn(pte);
pte_unmap(pte_ptr);
physaddr <<= PAGE_SHIFT;
return physaddr;
}
int
kgsl_mmu_map(struct kgsl_pagetable *pagetable,
struct kgsl_memdesc *memdesc,
unsigned int protflags)
{
int numpages;
unsigned int pte, ptefirst, ptelast, physaddr;
int flushtlb;
unsigned int offset = 0;
BUG_ON(protflags & ~(GSL_PT_PAGE_RV | GSL_PT_PAGE_WV));
BUG_ON(protflags == 0);
memdesc->gpuaddr = gen_pool_alloc_aligned(pagetable->pool,
memdesc->size, KGSL_MMU_ALIGN_SHIFT);
if (memdesc->gpuaddr == 0) {
KGSL_CORE_ERR("gen_pool_alloc(%d) failed\n", memdesc->size);
KGSL_CORE_ERR(" [%d] allocated=%d, entries=%d\n",
pagetable->name, pagetable->stats.mapped,
pagetable->stats.entries);
return -ENOMEM;
}
numpages = (memdesc->size >> PAGE_SHIFT);
ptefirst = kgsl_pt_entry_get(pagetable, memdesc->gpuaddr);
ptelast = ptefirst + numpages;
pte = ptefirst;
flushtlb = 0;
/* tlb needs to be flushed when the first and last pte are not at
* superpte boundaries */
if ((ptefirst & (GSL_PT_SUPER_PTE - 1)) != 0 ||
((ptelast + 1) & (GSL_PT_SUPER_PTE-1)) != 0)
flushtlb = 1;
spin_lock(&pagetable->lock);
for (pte = ptefirst; pte < ptelast; pte++, offset += PAGE_SIZE) {
#ifdef VERBOSE_DEBUG
/* check if PTE exists */
uint32_t val = kgsl_pt_map_getaddr(pagetable, pte);
BUG_ON(val != 0 && val != GSL_PT_PAGE_DIRTY);
#endif
if ((pte & (GSL_PT_SUPER_PTE-1)) == 0)
if (GSL_TLBFLUSH_FILTER_ISDIRTY(pte / GSL_PT_SUPER_PTE))
flushtlb = 1;
/* mark pte as in use */
physaddr = memdesc->ops->physaddr(memdesc, offset);
BUG_ON(physaddr == 0);
kgsl_pt_map_set(pagetable, pte, physaddr | protflags);
}
/* Keep track of the statistics for the sysfs files */
KGSL_STATS_ADD(1, pagetable->stats.entries,
pagetable->stats.max_entries);
KGSL_STATS_ADD(memdesc->size, pagetable->stats.mapped,
pagetable->stats.max_mapped);
/* Post all writes to the pagetable */
wmb();
/* Invalidate tlb only if current page table used by GPU is the
* pagetable that we used to allocate */
if (flushtlb) {
/*set all devices as needing flushing*/
pagetable->tlb_flags = UINT_MAX;
GSL_TLBFLUSH_FILTER_RESET();
}
spin_unlock(&pagetable->lock);
return 0;
}
int
kgsl_mmu_unmap(struct kgsl_pagetable *pagetable,
struct kgsl_memdesc *memdesc)
{
unsigned int numpages;
unsigned int pte, ptefirst, ptelast, superpte;
unsigned int range = memdesc->size;
/* All GPU addresses as assigned are page aligned, but some
functions purturb the gpuaddr with an offset, so apply the
mask here to make sure we have the right address */
unsigned int gpuaddr = memdesc->gpuaddr & KGSL_MMU_ALIGN_MASK;
if (range == 0 || gpuaddr == 0)
return 0;
numpages = (range >> PAGE_SHIFT);
if (range & (PAGE_SIZE - 1))
numpages++;
ptefirst = kgsl_pt_entry_get(pagetable, gpuaddr);
ptelast = ptefirst + numpages;
spin_lock(&pagetable->lock);
superpte = ptefirst - (ptefirst & (GSL_PT_SUPER_PTE-1));
GSL_TLBFLUSH_FILTER_SETDIRTY(superpte / GSL_PT_SUPER_PTE);
for (pte = ptefirst; pte < ptelast; pte++) {
#ifdef VERBOSE_DEBUG
/* check if PTE exists */
BUG_ON(!kgsl_pt_map_getaddr(pagetable, pte));
#endif
kgsl_pt_map_set(pagetable, pte, GSL_PT_PAGE_DIRTY);
superpte = pte - (pte & (GSL_PT_SUPER_PTE - 1));
if (pte == superpte)
GSL_TLBFLUSH_FILTER_SETDIRTY(superpte /
GSL_PT_SUPER_PTE);
}
/* Remove the statistics */
pagetable->stats.entries--;
pagetable->stats.mapped -= range;
/* Post all writes to the pagetable */
wmb();
spin_unlock(&pagetable->lock);
gen_pool_free(pagetable->pool, gpuaddr, range);
return 0;
}
EXPORT_SYMBOL(kgsl_mmu_unmap);
int kgsl_mmu_map_global(struct kgsl_pagetable *pagetable,
struct kgsl_memdesc *memdesc, unsigned int protflags)
{
int result = -EINVAL;
unsigned int gpuaddr = 0;
if (memdesc == NULL) {
KGSL_CORE_ERR("invalid memdesc\n");
goto error;
}
gpuaddr = memdesc->gpuaddr;
result = kgsl_mmu_map(pagetable, memdesc, protflags);
if (result)
goto error;
/*global mappings must have the same gpu address in all pagetables*/
if (gpuaddr && gpuaddr != memdesc->gpuaddr) {
KGSL_CORE_ERR("pt %p addr mismatch phys 0x%08x"
"gpu 0x%0x 0x%08x", pagetable, memdesc->physaddr,
gpuaddr, memdesc->gpuaddr);
goto error_unmap;
}
return result;
error_unmap:
kgsl_mmu_unmap(pagetable, memdesc);
error:
return result;
}
EXPORT_SYMBOL(kgsl_mmu_map_global);
int kgsl_mmu_stop(struct kgsl_device *device)
{
/*
* stop device mmu
*
* call this with the global lock held
*/
struct kgsl_mmu *mmu = &device->mmu;
if (mmu->flags & KGSL_FLAGS_STARTED) {
/* disable mh interrupts */
/* disable MMU */
kgsl_regwrite(device, device->mmu.reg.interrupt_mask, 0);
kgsl_regwrite(device, device->mmu.reg.config, 0x00000000);
mmu->flags &= ~KGSL_FLAGS_STARTED;
}
return 0;
}
EXPORT_SYMBOL(kgsl_mmu_stop);
int kgsl_mmu_close(struct kgsl_device *device)
{
/*
* close device mmu
*
* call this with the global lock held
*/
struct kgsl_mmu *mmu = &device->mmu;
if (mmu->dummyspace.gpuaddr)
kgsl_sharedmem_free(&mmu->dummyspace);
if (mmu->defaultpagetable)
kgsl_mmu_putpagetable(mmu->defaultpagetable);
return 0;
}