467 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			467 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * arch/arm/kernel/kprobes.c
 | |
|  *
 | |
|  * Kprobes on ARM
 | |
|  *
 | |
|  * Abhishek Sagar <sagar.abhishek@gmail.com>
 | |
|  * Copyright (C) 2006, 2007 Motorola Inc.
 | |
|  *
 | |
|  * Nicolas Pitre <nico@marvell.com>
 | |
|  * Copyright (C) 2007 Marvell Ltd.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/stringify.h>
 | |
| #include <asm/traps.h>
 | |
| #include <asm/cacheflush.h>
 | |
| 
 | |
| #define MIN_STACK_SIZE(addr) 				\
 | |
| 	min((unsigned long)MAX_STACK_SIZE,		\
 | |
| 	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
 | |
| 
 | |
| #define flush_insns(addr, cnt) 				\
 | |
| 	flush_icache_range((unsigned long)(addr),	\
 | |
| 			   (unsigned long)(addr) +	\
 | |
| 			   sizeof(kprobe_opcode_t) * (cnt))
 | |
| 
 | |
| /* Used as a marker in ARM_pc to note when we're in a jprobe. */
 | |
| #define JPROBE_MAGIC_ADDR		0xffffffff
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	kprobe_opcode_t insn;
 | |
| 	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
 | |
| 	unsigned long addr = (unsigned long)p->addr;
 | |
| 	int is;
 | |
| 
 | |
| 	if (addr & 0x3 || in_exception_text(addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	insn = *p->addr;
 | |
| 	p->opcode = insn;
 | |
| 	p->ainsn.insn = tmp_insn;
 | |
| 
 | |
| 	switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
 | |
| 	case INSN_REJECTED:	/* not supported */
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	case INSN_GOOD:		/* instruction uses slot */
 | |
| 		p->ainsn.insn = get_insn_slot();
 | |
| 		if (!p->ainsn.insn)
 | |
| 			return -ENOMEM;
 | |
| 		for (is = 0; is < MAX_INSN_SIZE; ++is)
 | |
| 			p->ainsn.insn[is] = tmp_insn[is];
 | |
| 		flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
 | |
| 		break;
 | |
| 
 | |
| 	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
 | |
| 		p->ainsn.insn = NULL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	*p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
 | |
| 	flush_insns(p->addr, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The actual disarming is done here on each CPU and synchronized using
 | |
|  * stop_machine. This synchronization is necessary on SMP to avoid removing
 | |
|  * a probe between the moment the 'Undefined Instruction' exception is raised
 | |
|  * and the moment the exception handler reads the faulting instruction from
 | |
|  * memory.
 | |
|  */
 | |
| int __kprobes __arch_disarm_kprobe(void *p)
 | |
| {
 | |
| 	struct kprobe *kp = p;
 | |
| 	*kp->addr = kp->opcode;
 | |
| 	flush_insns(kp->addr, 1);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->ainsn.insn) {
 | |
| 		free_insn_slot(p->ainsn.insn, 0);
 | |
| 		p->ainsn.insn = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| }
 | |
| 
 | |
| static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
 | |
| 				 struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	regs->ARM_pc += 4;
 | |
| 	p->ainsn.insn_handler(p, regs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with IRQs disabled. IRQs must remain disabled from that point
 | |
|  * all the way until processing this kprobe is complete.  The current
 | |
|  * kprobes implementation cannot process more than one nested level of
 | |
|  * kprobe, and that level is reserved for user kprobe handlers, so we can't
 | |
|  * risk encountering a new kprobe in an interrupt handler.
 | |
|  */
 | |
| void __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p, *cur;
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 	kprobe_opcode_t	*addr = (kprobe_opcode_t *)regs->ARM_pc;
 | |
| 
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 	cur = kprobe_running();
 | |
| 	p = get_kprobe(addr);
 | |
| 
 | |
| 	if (p) {
 | |
| 		if (cur) {
 | |
| 			/* Kprobe is pending, so we're recursing. */
 | |
| 			switch (kcb->kprobe_status) {
 | |
| 			case KPROBE_HIT_ACTIVE:
 | |
| 			case KPROBE_HIT_SSDONE:
 | |
| 				/* A pre- or post-handler probe got us here. */
 | |
| 				kprobes_inc_nmissed_count(p);
 | |
| 				save_previous_kprobe(kcb);
 | |
| 				set_current_kprobe(p);
 | |
| 				kcb->kprobe_status = KPROBE_REENTER;
 | |
| 				singlestep(p, regs, kcb);
 | |
| 				restore_previous_kprobe(kcb);
 | |
| 				break;
 | |
| 			default:
 | |
| 				/* impossible cases */
 | |
| 				BUG();
 | |
| 			}
 | |
| 		} else {
 | |
| 			set_current_kprobe(p);
 | |
| 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 			/*
 | |
| 			 * If we have no pre-handler or it returned 0, we
 | |
| 			 * continue with normal processing.  If we have a
 | |
| 			 * pre-handler and it returned non-zero, it prepped
 | |
| 			 * for calling the break_handler below on re-entry,
 | |
| 			 * so get out doing nothing more here.
 | |
| 			 */
 | |
| 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
 | |
| 				kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 				singlestep(p, regs, kcb);
 | |
| 				if (p->post_handler) {
 | |
| 					kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 					p->post_handler(p, regs, 0);
 | |
| 				}
 | |
| 				reset_current_kprobe();
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (cur) {
 | |
| 		/* We probably hit a jprobe.  Call its break handler. */
 | |
| 		if (cur->break_handler && cur->break_handler(cur, regs)) {
 | |
| 			kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 			singlestep(cur, regs, kcb);
 | |
| 			if (cur->post_handler) {
 | |
| 				kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 				cur->post_handler(cur, regs, 0);
 | |
| 			}
 | |
| 		}
 | |
| 		reset_current_kprobe();
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The probe was removed and a race is in progress.
 | |
| 		 * There is nothing we can do about it.  Let's restart
 | |
| 		 * the instruction.  By the time we can restart, the
 | |
| 		 * real instruction will be there.
 | |
| 		 */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	local_irq_save(flags);
 | |
| 	kprobe_handler(regs);
 | |
| 	local_irq_restore(flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	switch (kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the PC to point back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		regs->ARM_pc = (long)cur->addr;
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		} else {
 | |
| 			reset_current_kprobe();
 | |
| 		}
 | |
| 		break;
 | |
| 
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accounting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
 | |
| 			return 1;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	/*
 | |
| 	 * notify_die() is currently never called on ARM,
 | |
| 	 * so this callback is currently empty.
 | |
| 	 */
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When a retprobed function returns, trampoline_handler() is called,
 | |
|  * calling the kretprobe's handler. We construct a struct pt_regs to
 | |
|  * give a view of registers r0-r11 to the user return-handler.  This is
 | |
|  * not a complete pt_regs structure, but that should be plenty sufficient
 | |
|  * for kretprobe handlers which should normally be interested in r0 only
 | |
|  * anyway.
 | |
|  */
 | |
| void __naked __kprobes kretprobe_trampoline(void)
 | |
| {
 | |
| 	__asm__ __volatile__ (
 | |
| 		"stmdb	sp!, {r0 - r11}		\n\t"
 | |
| 		"mov	r0, sp			\n\t"
 | |
| 		"bl	trampoline_handler	\n\t"
 | |
| 		"mov	lr, r0			\n\t"
 | |
| 		"ldmia	sp!, {r0 - r11}		\n\t"
 | |
| 		"mov	pc, lr			\n\t"
 | |
| 		: : : "memory");
 | |
| }
 | |
| 
 | |
| /* Called from kretprobe_trampoline */
 | |
| static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because multiple functions in the call path have
 | |
| 	 * a return probe installed on them, and/or more than one return
 | |
| 	 * probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler) {
 | |
| 			__get_cpu_var(current_kprobe) = &ri->rp->kp;
 | |
| 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 			__get_cpu_var(current_kprobe) = NULL;
 | |
| 		}
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 
 | |
| 	return (void *)orig_ret_address;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr. */
 | |
| 	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	long sp_addr = regs->ARM_sp;
 | |
| 
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 | |
| 	regs->ARM_pc = (long)jp->entry;
 | |
| 	regs->ARM_cpsr |= PSR_I_BIT;
 | |
| 	preempt_disable();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	__asm__ __volatile__ (
 | |
| 		/*
 | |
| 		 * Setup an empty pt_regs. Fill SP and PC fields as
 | |
| 		 * they're needed by longjmp_break_handler.
 | |
| 		 */
 | |
| 		"sub    sp, %0, %1		\n\t"
 | |
| 		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
 | |
| 		"str    %0, [sp, %2]		\n\t"
 | |
| 		"str    r0, [sp, %3]		\n\t"
 | |
| 		"mov    r0, sp			\n\t"
 | |
| 		"bl     kprobe_handler		\n\t"
 | |
| 
 | |
| 		/*
 | |
| 		 * Return to the context saved by setjmp_pre_handler
 | |
| 		 * and restored by longjmp_break_handler.
 | |
| 		 */
 | |
| 		"ldr	r0, [sp, %4]		\n\t"
 | |
| 		"msr	cpsr_cxsf, r0		\n\t"
 | |
| 		"ldmia	sp, {r0 - pc}		\n\t"
 | |
| 		:
 | |
| 		: "r" (kcb->jprobe_saved_regs.ARM_sp),
 | |
| 		  "I" (sizeof(struct pt_regs)),
 | |
| 		  "J" (offsetof(struct pt_regs, ARM_sp)),
 | |
| 		  "J" (offsetof(struct pt_regs, ARM_pc)),
 | |
| 		  "J" (offsetof(struct pt_regs, ARM_cpsr))
 | |
| 		: "memory", "cc");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
 | |
| 	long orig_sp = regs->ARM_sp;
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 
 | |
| 	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
 | |
| 		if (orig_sp != stack_addr) {
 | |
| 			struct pt_regs *saved_regs =
 | |
| 				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
 | |
| 			printk("current sp %lx does not match saved sp %lx\n",
 | |
| 			       orig_sp, stack_addr);
 | |
| 			printk("Saved registers for jprobe %p\n", jp);
 | |
| 			show_regs(saved_regs);
 | |
| 			printk("Current registers\n");
 | |
| 			show_regs(regs);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		*regs = kcb->jprobe_saved_regs;
 | |
| 		memcpy((void *)stack_addr, kcb->jprobes_stack,
 | |
| 		       MIN_STACK_SIZE(stack_addr));
 | |
| 		preempt_enable_no_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct undef_hook kprobes_break_hook = {
 | |
| 	.instr_mask	= 0xffffffff,
 | |
| 	.instr_val	= KPROBE_BREAKPOINT_INSTRUCTION,
 | |
| 	.cpsr_mask	= MODE_MASK,
 | |
| 	.cpsr_val	= SVC_MODE,
 | |
| 	.fn		= kprobe_trap_handler,
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes()
 | |
| {
 | |
| 	arm_kprobe_decode_init();
 | |
| 	register_undef_hook(&kprobes_break_hook);
 | |
| 	return 0;
 | |
| }
 |