android_kernel_cmhtcleo/drivers/misc/bma150_spi.c

609 lines
14 KiB
C

/* drivers/misc/bma150_spi.c - bma150 G-sensor driver
*
* Copyright (C) 2009 HTC Corporation.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/miscdevice.h>
#include <asm/uaccess.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/bma150.h>
#include <asm/gpio.h>
#include <linux/earlysuspend.h>
#include <linux/platform_device.h>
#include <mach/atmega_microp.h>
struct early_suspend bma_early_suspend;
static struct bma150_platform_data *this_pdata;
static struct mutex gsensor_RW_mutex;
static struct mutex gsensor_set_mode_mutex;
static atomic_t PhoneOn_flag = ATOMIC_INIT(0);
#define DEVICE_ACCESSORY_ATTR(_name, _mode, _show, _store) \
struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
static int spi_microp_enable(uint8_t on)
{
int ret;
ret = microp_spi_vote_enable(SPI_GSENSOR, on);
if (ret < 0)
printk(KERN_ERR "%s: i2c_write_block fail\n", __func__);
return ret;
}
static int spi_gsensor_read(uint8_t *data)
{
int ret;
mutex_lock(&gsensor_RW_mutex);
ret = microp_i2c_write(MICROP_I2C_WCMD_GSENSOR_REG_DATA_REQ, data, 1);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_write_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
ret = microp_i2c_read(MICROP_I2C_RCMD_GSENSOR_REG_DATA, data, 2);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_read_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
static int spi_gsensor_write(uint8_t *data)
{
int ret;
mutex_lock(&gsensor_RW_mutex);
ret = microp_i2c_write(MICROP_I2C_WCMD_GSENSOR_REG, data, 2);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_write_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
static int spi_gsensor_init_hw(void)
{
char buffer[2];
memset(buffer, 0x0, sizeof(buffer));
buffer[0] = RANGE_BWIDTH_REG;
if (spi_gsensor_read(buffer) < 0)
return -EIO;
/*printk("spi_gsensor_init_hw,read RANGE_BWIDTH_REG = %x "
, buffer[1]);*/
buffer[1] = (buffer[1]&0xe0);
buffer[0] = RANGE_BWIDTH_REG;
if (spi_gsensor_write(buffer) < 0)
return -EIO;
buffer[0] = SMB150_CONF2_REG;
if (spi_gsensor_read(buffer) < 0)
return -EIO;
buffer[1] = buffer[1]|1<<3;
buffer[0] = SMB150_CONF2_REG;
if (spi_gsensor_write(buffer) < 0)
return -EIO;
return 0;
}
/*
static int spi_gsensor_read_version(void)
{
uint8_t buffer[2];
int ret = -EIO;
buffer[0] = VERSION_REG;
buffer[1] = 1;
ret = spi_gsensor_read(buffer);
if (ret < 0) {
printk(KERN_ERR "%s: get al_version fail(%d)\n", __func__, ret);
return ret;
}
printk(KERN_INFO "%s: al_version: 0x%2.2X\n", __func__, buffer[0]);
buffer[0] = CHIP_ID_REG;
buffer[1] = 1;
ret = spi_gsensor_read(buffer);
if (ret < 0) {
printk(KERN_ERR "%s: get chip_id fail(%d)\n", __func__, ret);
return ret;
}
printk(KERN_INFO "%s: chip_id: 0x%2.2X\n", __func__, buffer[0]);
return 0;
}
*/
static int spi_bma150_TransRBuff(short *rbuf)
{
int ret;
unsigned char buffer[6];
memset(buffer, 0, 6);
mutex_lock(&gsensor_RW_mutex);
buffer[0] = 1;
ret = microp_i2c_write(MICROP_I2C_WCMD_GSENSOR_DATA_REQ, buffer, 1);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_write_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
if (this_pdata && this_pdata->microp_new_cmd &&
this_pdata->microp_new_cmd == 1) {
/*printk(KERN_DEBUG "%s: New MicroP command\n", __func__);*/
ret = microp_i2c_read(MICROP_I2C_RCMD_GSENSOR_DATA, buffer, 6);
rbuf[0] = buffer[0]<<2|buffer[1]>>6;
if (rbuf[0]&0x200)
rbuf[0] -= 1<<10;
rbuf[1] = buffer[2]<<2|buffer[3]>>6;
if (rbuf[1]&0x200)
rbuf[1] -= 1<<10;
rbuf[2] = buffer[4]<<2|buffer[5]>>6;
if (rbuf[2]&0x200)
rbuf[2] -= 1<<10;
} else {
/* For Passion with V01 ~ V05 Microp */
/*printk(KERN_DEBUG "%s: Old MicroP command\n", __func__);*/
ret = microp_i2c_read(MICROP_I2C_RCMD_GSENSOR_X_DATA,
buffer, 2);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_read_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
rbuf[0] = buffer[0]<<2|buffer[1]>>6;
if (rbuf[0]&0x200)
rbuf[0] -= 1<<10;
ret = microp_i2c_read(MICROP_I2C_RCMD_GSENSOR_Y_DATA,
buffer, 2);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_read_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
rbuf[1] = buffer[0]<<2|buffer[1]>>6;
if (rbuf[1]&0x200)
rbuf[1] -= 1<<10;
ret = microp_i2c_read(MICROP_I2C_RCMD_GSENSOR_Z_DATA,
buffer, 2);
if (ret < 0) {
printk(KERN_ERR "%s: i2c_read_block fail\n", __func__);
mutex_unlock(&gsensor_RW_mutex);
return ret;
}
rbuf[2] = buffer[0]<<2|buffer[1]>>6;
if (rbuf[2]&0x200)
rbuf[2] -= 1<<10;
}
/* printk("X=%d, Y=%d, Z=%d\n",rbuf[0],rbuf[1],rbuf[2]);*/
/* printk(KERN_DEBUG "%s: 0x%2.2X 0x%2.2X 0x%2.2X \
0x%2.2X 0x%2.2X 0x%2.2X\n",
__func__, buffer[0], buffer[1], buffer[2], \
buffer[3], buffer[4], buffer[5]);*/
mutex_unlock(&gsensor_RW_mutex);
return 1;
}
static int __spi_bma150_set_mode(char mode)
{
char buffer[2] = "";
int ret;
mutex_lock(&gsensor_set_mode_mutex);
if (mode == BMA_MODE_NORMAL) {
spi_microp_enable(1);
printk(KERN_INFO "%s: BMA get into NORMAL mode!\n",
__func__);
}
buffer[0] = SMB150_CTRL_REG;
ret = spi_gsensor_read(buffer);
if (ret < 0) {
mutex_unlock(&gsensor_set_mode_mutex);
return -1;
}
buffer[1] = (buffer[1]&0xfe)|mode;
buffer[0] = SMB150_CTRL_REG;
ret = spi_gsensor_write(buffer);
if (mode == BMA_MODE_SLEEP) {
spi_microp_enable(0);
printk(KERN_INFO "%s: BMA get into SLEEP mode!\n",
__func__);
}
mutex_unlock(&gsensor_set_mode_mutex);
return ret;
}
static int spi_bma150_open(struct inode *inode, struct file *file)
{
return nonseekable_open(inode, file);
}
static int spi_bma150_release(struct inode *inode, struct file *file)
{
return 0;
}
static int spi_bma150_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
void __user *argp = (void __user *)arg;
char rwbuf[8] = "";
char *toRbuf;
int ret = -1;
short buf[8], temp;
int kbuf = 0;
switch (cmd) {
case BMA_IOCTL_READ:
case BMA_IOCTL_WRITE:
case BMA_IOCTL_SET_MODE:
case BMA_IOCTL_SET_CALI_MODE:
if (copy_from_user(&rwbuf, argp, sizeof(rwbuf)))
return -EFAULT;
break;
case BMA_IOCTL_READ_ACCELERATION:
if (copy_from_user(&buf, argp, sizeof(buf)))
return -EFAULT;
break;
case BMA_IOCTL_WRITE_CALI_VALUE:
if (copy_from_user(&kbuf, argp, sizeof(kbuf)))
return -EFAULT;
break;
default:
break;
}
switch (cmd) {
case BMA_IOCTL_INIT:
ret = spi_gsensor_init_hw();
if (ret < 0)
return ret;
break;
case BMA_IOCTL_READ:
if (rwbuf[0] < 1)
return -EINVAL;
ret = spi_gsensor_read(&rwbuf[1]);
if (ret < 0)
return ret;
break;
case BMA_IOCTL_WRITE:
if (rwbuf[0] < 2)
return -EINVAL;
ret = spi_gsensor_write(&rwbuf[1]);
if (ret < 0)
return ret;
break;
case BMA_IOCTL_WRITE_CALI_VALUE:
this_pdata->gs_kvalue = kbuf;
break;
case BMA_IOCTL_READ_ACCELERATION:
ret = spi_bma150_TransRBuff(&buf[0]);
if (ret < 0)
return ret;
break;
case BMA_IOCTL_READ_CALI_VALUE:
if ((this_pdata->gs_kvalue & (0x67 << 24)) != (0x67 << 24)) {
rwbuf[0] = 0;
rwbuf[1] = 0;
rwbuf[2] = 0;
} else {
rwbuf[0] = (this_pdata->gs_kvalue >> 16) & 0xFF;
rwbuf[1] = (this_pdata->gs_kvalue >> 8) & 0xFF;
rwbuf[2] = this_pdata->gs_kvalue & 0xFF;
}
break;
case BMA_IOCTL_SET_MODE:
/*printk(KERN_DEBUG
"%s: BMA_IOCTL_SET_MODE by ioctl = %d\n",
__func__,rwbuf[0]);*/
ret = __spi_bma150_set_mode(rwbuf[0]);
if (ret < 0)
return ret;
break;
case BMA_IOCTL_GET_INT:
temp = 0;
break;
case BMA_IOCTL_GET_CHIP_LAYOUT:
if (this_pdata)
temp = this_pdata->chip_layout;
break;
case BMA_IOCTL_GET_CALI_MODE:
if (this_pdata)
temp = this_pdata->calibration_mode;
break;
case BMA_IOCTL_SET_CALI_MODE:
if (this_pdata)
this_pdata->calibration_mode = rwbuf[0];
break;
default:
return -ENOTTY;
}
switch (cmd) {
case BMA_IOCTL_READ:
toRbuf = &rwbuf[1];
if (copy_to_user(argp, toRbuf, sizeof(rwbuf)-1))
return -EFAULT;
break;
case BMA_IOCTL_READ_ACCELERATION:
if (copy_to_user(argp, &buf, sizeof(buf)))
return -EFAULT;
break;
case BMA_IOCTL_READ_CALI_VALUE:
if (copy_to_user(argp, &rwbuf, sizeof(rwbuf)))
return -EFAULT;
break;
case BMA_IOCTL_GET_INT:
if (copy_to_user(argp, &temp, sizeof(temp)))
return -EFAULT;
break;
case BMA_IOCTL_GET_CHIP_LAYOUT:
if (copy_to_user(argp, &temp, sizeof(temp)))
return -EFAULT;
break;
case BMA_IOCTL_GET_CALI_MODE:
if (copy_to_user(argp, &temp, sizeof(temp)))
return -EFAULT;
break;
default:
break;
}
return 0;
}
static struct file_operations spi_bma_fops = {
.owner = THIS_MODULE,
.open = spi_bma150_open,
.release = spi_bma150_release,
.ioctl = spi_bma150_ioctl,
};
static struct miscdevice spi_bma_device = {
.minor = MISC_DYNAMIC_MINOR,
.name = "bma150",
.fops = &spi_bma_fops,
};
static void bma150_early_suspend(struct early_suspend *handler)
{
int ret = 0;
if (!atomic_read(&PhoneOn_flag)) {
ret = __spi_bma150_set_mode(BMA_MODE_SLEEP);
} else
printk(KERN_DEBUG "bma150_early_suspend: PhoneOn_flag is set\n");
/*printk(KERN_DEBUG
"%s: spi_bma150_set_mode returned = %d!\n",
__func__, ret);*/
}
static void bma150_early_resume(struct early_suspend *handler)
{
/*printk(KERN_DEBUG
"%s: spi_bma150_set_mode returned = %d!\n",
__func__, ret);*/
}
static ssize_t spi_bma150_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
char *s = buf;
s += sprintf(s, "%d\n", atomic_read(&PhoneOn_flag));
return (s - buf);
}
static ssize_t spi_bma150_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
if (count == (strlen("enable") + 1) &&
strncmp(buf, "enable", strlen("enable")) == 0) {
atomic_set(&PhoneOn_flag, 1);
printk(KERN_DEBUG "spi_bma150_store: PhoneOn_flag=%d\n", atomic_read(&PhoneOn_flag));
return count;
}
if (count == (strlen("disable") + 1) &&
strncmp(buf, "disable", strlen("disable")) == 0) {
atomic_set(&PhoneOn_flag, 0);
printk(KERN_DEBUG "spi_bma150_store: PhoneOn_flag=%d\n", atomic_read(&PhoneOn_flag));
return count;
}
printk(KERN_ERR "spi_bma150_store: invalid argument\n");
return -EINVAL;
}
static DEVICE_ACCESSORY_ATTR(PhoneOnOffFlag, 0666, \
spi_bma150_show, spi_bma150_store);
int spi_bma150_registerAttr(void)
{
int ret;
struct class *htc_accelerometer_class;
struct device *accelerometer_dev;
htc_accelerometer_class = class_create(THIS_MODULE, "htc_accelerometer");
if (IS_ERR(htc_accelerometer_class)) {
ret = PTR_ERR(htc_accelerometer_class);
htc_accelerometer_class = NULL;
goto err_create_class;
}
accelerometer_dev = device_create(htc_accelerometer_class,
NULL, 0, "%s", "accelerometer");
if (unlikely(IS_ERR(accelerometer_dev))) {
ret = PTR_ERR(accelerometer_dev);
accelerometer_dev = NULL;
goto err_create_accelerometer_device;
}
/* register the attributes */
ret = device_create_file(accelerometer_dev, &dev_attr_PhoneOnOffFlag);
if (ret)
goto err_create_accelerometer_device_file;
return 0;
err_create_accelerometer_device_file:
device_unregister(accelerometer_dev);
err_create_accelerometer_device:
class_destroy(htc_accelerometer_class);
err_create_class:
return ret;
}
static int spi_gsensor_initial(void)
{
int ret;
/* ret = spi_microp_enable(1);
if (ret < 0) {
printk(KERN_ERR "%s: spi_microp_enable fail\n", __func__);
return ret;
}*/
/* ret = spi_gsensor_read_version();
if (ret < 0) {
printk(KERN_ERR "%s: get version fail\n", __func__);
return ret;
}*/
/* ret = microp_gsensor_init_hw(client);
if (ret < 0) {
printk(KERN_ERR "%s: init g-sensor fail\n", __func__);
return ret;
}
*/
ret = misc_register(&spi_bma_device);
if (ret < 0) {
printk(KERN_ERR "%s: init misc_register fail\n", __func__);
return ret;
}
mutex_init(&gsensor_RW_mutex);
mutex_init(&gsensor_set_mode_mutex);
ret = spi_microp_enable(1);
if (ret) {
printk(KERN_ERR "%s: spi_microp_enable(1) fail!\n", __func__);
goto err_spi_enable;
}
ret = __spi_bma150_set_mode(BMA_MODE_SLEEP);
if (ret) {
printk(KERN_ERR "%s: set BMA_MODE_SLEEP fail!\n", __func__);
goto err_set_mode;
}
bma_early_suspend.suspend = bma150_early_suspend;
bma_early_suspend.resume = bma150_early_resume;
register_early_suspend(&bma_early_suspend);
ret = spi_bma150_registerAttr();
if (ret) {
printk(KERN_ERR "%s: set spi_bma150_registerAttr fail!\n", __func__);
goto err_registerAttr;
}
return 0;
err_registerAttr:
err_set_mode:
spi_microp_enable(0);
err_spi_enable:
misc_deregister(&spi_bma_device);
return ret;
}
static int spi_bma150_probe(struct platform_device *pdev)
{
unsigned int gs_kvalue=0;
printk(KERN_INFO "%s: G-sensor connect with microP: "
"start initial, kvalue = 0x%x\n", __func__, gs_kvalue);
this_pdata = pdev->dev.platform_data;
this_pdata->gs_kvalue = gs_kvalue;
/*
printk(KERN_DEBUG "%s: this_pdata->microp_new_cmd = %d\n",
__func__, this_pdata->microp_new_cmd);
*/
spi_gsensor_initial();
return 0;
}
static int spi_bma150_remove(struct platform_device *pdev)
{
mutex_destroy(&gsensor_set_mode_mutex);
return 0;
}
static struct platform_driver spi_bma150_driver = {
.probe = spi_bma150_probe,
.remove = spi_bma150_remove,
.driver = {
.name = BMA150_G_SENSOR_NAME,
.owner = THIS_MODULE,
},
};
static int __init spi_bma150_init(void)
{
return platform_driver_register(&spi_bma150_driver);
}
static void __exit spi_bma150_exit(void)
{
platform_driver_unregister(&spi_bma150_driver);
}
module_init(spi_bma150_init);
module_exit(spi_bma150_exit);
MODULE_DESCRIPTION("BMA150 G-sensor driver");
MODULE_LICENSE("GPL");