815 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			815 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * acpi-cpufreq.c - ACPI Processor P-States Driver
 | |
|  *
 | |
|  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
 | |
|  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
 | |
|  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
 | |
|  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
 | |
|  *
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or (at
 | |
|  *  your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful, but
 | |
|  *  WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  *  General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 | |
|  *
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/compiler.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <trace/events/power.h>
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| #include <linux/io.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/uaccess.h>
 | |
| 
 | |
| #include <acpi/processor.h>
 | |
| 
 | |
| #include <asm/msr.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/cpufeature.h>
 | |
| 
 | |
| #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_DRIVER, \
 | |
| 		"acpi-cpufreq", msg)
 | |
| 
 | |
| MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
 | |
| MODULE_DESCRIPTION("ACPI Processor P-States Driver");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 | |
| enum {
 | |
| 	UNDEFINED_CAPABLE = 0,
 | |
| 	SYSTEM_INTEL_MSR_CAPABLE,
 | |
| 	SYSTEM_IO_CAPABLE,
 | |
| };
 | |
| 
 | |
| #define INTEL_MSR_RANGE		(0xffff)
 | |
| 
 | |
| struct acpi_cpufreq_data {
 | |
| 	struct acpi_processor_performance *acpi_data;
 | |
| 	struct cpufreq_frequency_table *freq_table;
 | |
| 	unsigned int resume;
 | |
| 	unsigned int cpu_feature;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
 | |
| 
 | |
| static DEFINE_PER_CPU(struct aperfmperf, old_perf);
 | |
| 
 | |
| /* acpi_perf_data is a pointer to percpu data. */
 | |
| static struct acpi_processor_performance *acpi_perf_data;
 | |
| 
 | |
| static struct cpufreq_driver acpi_cpufreq_driver;
 | |
| 
 | |
| static unsigned int acpi_pstate_strict;
 | |
| 
 | |
| static int check_est_cpu(unsigned int cpuid)
 | |
| {
 | |
| 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
 | |
| 
 | |
| 	return cpu_has(cpu, X86_FEATURE_EST);
 | |
| }
 | |
| 
 | |
| static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
 | |
| {
 | |
| 	struct acpi_processor_performance *perf;
 | |
| 	int i;
 | |
| 
 | |
| 	perf = data->acpi_data;
 | |
| 
 | |
| 	for (i = 0; i < perf->state_count; i++) {
 | |
| 		if (value == perf->states[i].status)
 | |
| 			return data->freq_table[i].frequency;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
 | |
| {
 | |
| 	int i;
 | |
| 	struct acpi_processor_performance *perf;
 | |
| 
 | |
| 	msr &= INTEL_MSR_RANGE;
 | |
| 	perf = data->acpi_data;
 | |
| 
 | |
| 	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
 | |
| 		if (msr == perf->states[data->freq_table[i].index].status)
 | |
| 			return data->freq_table[i].frequency;
 | |
| 	}
 | |
| 	return data->freq_table[0].frequency;
 | |
| }
 | |
| 
 | |
| static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
 | |
| {
 | |
| 	switch (data->cpu_feature) {
 | |
| 	case SYSTEM_INTEL_MSR_CAPABLE:
 | |
| 		return extract_msr(val, data);
 | |
| 	case SYSTEM_IO_CAPABLE:
 | |
| 		return extract_io(val, data);
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct msr_addr {
 | |
| 	u32 reg;
 | |
| };
 | |
| 
 | |
| struct io_addr {
 | |
| 	u16 port;
 | |
| 	u8 bit_width;
 | |
| };
 | |
| 
 | |
| struct drv_cmd {
 | |
| 	unsigned int type;
 | |
| 	const struct cpumask *mask;
 | |
| 	union {
 | |
| 		struct msr_addr msr;
 | |
| 		struct io_addr io;
 | |
| 	} addr;
 | |
| 	u32 val;
 | |
| };
 | |
| 
 | |
| /* Called via smp_call_function_single(), on the target CPU */
 | |
| static void do_drv_read(void *_cmd)
 | |
| {
 | |
| 	struct drv_cmd *cmd = _cmd;
 | |
| 	u32 h;
 | |
| 
 | |
| 	switch (cmd->type) {
 | |
| 	case SYSTEM_INTEL_MSR_CAPABLE:
 | |
| 		rdmsr(cmd->addr.msr.reg, cmd->val, h);
 | |
| 		break;
 | |
| 	case SYSTEM_IO_CAPABLE:
 | |
| 		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
 | |
| 				&cmd->val,
 | |
| 				(u32)cmd->addr.io.bit_width);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Called via smp_call_function_many(), on the target CPUs */
 | |
| static void do_drv_write(void *_cmd)
 | |
| {
 | |
| 	struct drv_cmd *cmd = _cmd;
 | |
| 	u32 lo, hi;
 | |
| 
 | |
| 	switch (cmd->type) {
 | |
| 	case SYSTEM_INTEL_MSR_CAPABLE:
 | |
| 		rdmsr(cmd->addr.msr.reg, lo, hi);
 | |
| 		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
 | |
| 		wrmsr(cmd->addr.msr.reg, lo, hi);
 | |
| 		break;
 | |
| 	case SYSTEM_IO_CAPABLE:
 | |
| 		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
 | |
| 				cmd->val,
 | |
| 				(u32)cmd->addr.io.bit_width);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void drv_read(struct drv_cmd *cmd)
 | |
| {
 | |
| 	cmd->val = 0;
 | |
| 
 | |
| 	smp_call_function_single(cpumask_any(cmd->mask), do_drv_read, cmd, 1);
 | |
| }
 | |
| 
 | |
| static void drv_write(struct drv_cmd *cmd)
 | |
| {
 | |
| 	int this_cpu;
 | |
| 
 | |
| 	this_cpu = get_cpu();
 | |
| 	if (cpumask_test_cpu(this_cpu, cmd->mask))
 | |
| 		do_drv_write(cmd);
 | |
| 	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| static u32 get_cur_val(const struct cpumask *mask)
 | |
| {
 | |
| 	struct acpi_processor_performance *perf;
 | |
| 	struct drv_cmd cmd;
 | |
| 
 | |
| 	if (unlikely(cpumask_empty(mask)))
 | |
| 		return 0;
 | |
| 
 | |
| 	switch (per_cpu(drv_data, cpumask_first(mask))->cpu_feature) {
 | |
| 	case SYSTEM_INTEL_MSR_CAPABLE:
 | |
| 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
 | |
| 		cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
 | |
| 		break;
 | |
| 	case SYSTEM_IO_CAPABLE:
 | |
| 		cmd.type = SYSTEM_IO_CAPABLE;
 | |
| 		perf = per_cpu(drv_data, cpumask_first(mask))->acpi_data;
 | |
| 		cmd.addr.io.port = perf->control_register.address;
 | |
| 		cmd.addr.io.bit_width = perf->control_register.bit_width;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	cmd.mask = mask;
 | |
| 	drv_read(&cmd);
 | |
| 
 | |
| 	dprintk("get_cur_val = %u\n", cmd.val);
 | |
| 
 | |
| 	return cmd.val;
 | |
| }
 | |
| 
 | |
| /* Called via smp_call_function_single(), on the target CPU */
 | |
| static void read_measured_perf_ctrs(void *_cur)
 | |
| {
 | |
| 	struct aperfmperf *am = _cur;
 | |
| 
 | |
| 	get_aperfmperf(am);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the measured active (C0) frequency on this CPU since last call
 | |
|  * to this function.
 | |
|  * Input: cpu number
 | |
|  * Return: Average CPU frequency in terms of max frequency (zero on error)
 | |
|  *
 | |
|  * We use IA32_MPERF and IA32_APERF MSRs to get the measured performance
 | |
|  * over a period of time, while CPU is in C0 state.
 | |
|  * IA32_MPERF counts at the rate of max advertised frequency
 | |
|  * IA32_APERF counts at the rate of actual CPU frequency
 | |
|  * Only IA32_APERF/IA32_MPERF ratio is architecturally defined and
 | |
|  * no meaning should be associated with absolute values of these MSRs.
 | |
|  */
 | |
| static unsigned int get_measured_perf(struct cpufreq_policy *policy,
 | |
| 				      unsigned int cpu)
 | |
| {
 | |
| 	struct aperfmperf perf;
 | |
| 	unsigned long ratio;
 | |
| 	unsigned int retval;
 | |
| 
 | |
| 	if (smp_call_function_single(cpu, read_measured_perf_ctrs, &perf, 1))
 | |
| 		return 0;
 | |
| 
 | |
| 	ratio = calc_aperfmperf_ratio(&per_cpu(old_perf, cpu), &perf);
 | |
| 	per_cpu(old_perf, cpu) = perf;
 | |
| 
 | |
| 	retval = (policy->cpuinfo.max_freq * ratio) >> APERFMPERF_SHIFT;
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
 | |
| {
 | |
| 	struct acpi_cpufreq_data *data = per_cpu(drv_data, cpu);
 | |
| 	unsigned int freq;
 | |
| 	unsigned int cached_freq;
 | |
| 
 | |
| 	dprintk("get_cur_freq_on_cpu (%d)\n", cpu);
 | |
| 
 | |
| 	if (unlikely(data == NULL ||
 | |
| 		     data->acpi_data == NULL || data->freq_table == NULL)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	cached_freq = data->freq_table[data->acpi_data->state].frequency;
 | |
| 	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
 | |
| 	if (freq != cached_freq) {
 | |
| 		/*
 | |
| 		 * The dreaded BIOS frequency change behind our back.
 | |
| 		 * Force set the frequency on next target call.
 | |
| 		 */
 | |
| 		data->resume = 1;
 | |
| 	}
 | |
| 
 | |
| 	dprintk("cur freq = %u\n", freq);
 | |
| 
 | |
| 	return freq;
 | |
| }
 | |
| 
 | |
| static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
 | |
| 				struct acpi_cpufreq_data *data)
 | |
| {
 | |
| 	unsigned int cur_freq;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		cur_freq = extract_freq(get_cur_val(mask), data);
 | |
| 		if (cur_freq == freq)
 | |
| 			return 1;
 | |
| 		udelay(10);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_cpufreq_target(struct cpufreq_policy *policy,
 | |
| 			       unsigned int target_freq, unsigned int relation)
 | |
| {
 | |
| 	struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
 | |
| 	struct acpi_processor_performance *perf;
 | |
| 	struct cpufreq_freqs freqs;
 | |
| 	struct drv_cmd cmd;
 | |
| 	unsigned int next_state = 0; /* Index into freq_table */
 | |
| 	unsigned int next_perf_state = 0; /* Index into perf table */
 | |
| 	unsigned int i;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	dprintk("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
 | |
| 
 | |
| 	if (unlikely(data == NULL ||
 | |
| 	     data->acpi_data == NULL || data->freq_table == NULL)) {
 | |
| 		return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	perf = data->acpi_data;
 | |
| 	result = cpufreq_frequency_table_target(policy,
 | |
| 						data->freq_table,
 | |
| 						target_freq,
 | |
| 						relation, &next_state);
 | |
| 	if (unlikely(result)) {
 | |
| 		result = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	next_perf_state = data->freq_table[next_state].index;
 | |
| 	if (perf->state == next_perf_state) {
 | |
| 		if (unlikely(data->resume)) {
 | |
| 			dprintk("Called after resume, resetting to P%d\n",
 | |
| 				next_perf_state);
 | |
| 			data->resume = 0;
 | |
| 		} else {
 | |
| 			dprintk("Already at target state (P%d)\n",
 | |
| 				next_perf_state);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	trace_power_frequency(POWER_PSTATE, data->freq_table[next_state].frequency);
 | |
| 
 | |
| 	switch (data->cpu_feature) {
 | |
| 	case SYSTEM_INTEL_MSR_CAPABLE:
 | |
| 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
 | |
| 		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
 | |
| 		cmd.val = (u32) perf->states[next_perf_state].control;
 | |
| 		break;
 | |
| 	case SYSTEM_IO_CAPABLE:
 | |
| 		cmd.type = SYSTEM_IO_CAPABLE;
 | |
| 		cmd.addr.io.port = perf->control_register.address;
 | |
| 		cmd.addr.io.bit_width = perf->control_register.bit_width;
 | |
| 		cmd.val = (u32) perf->states[next_perf_state].control;
 | |
| 		break;
 | |
| 	default:
 | |
| 		result = -ENODEV;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* cpufreq holds the hotplug lock, so we are safe from here on */
 | |
| 	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
 | |
| 		cmd.mask = policy->cpus;
 | |
| 	else
 | |
| 		cmd.mask = cpumask_of(policy->cpu);
 | |
| 
 | |
| 	freqs.old = perf->states[perf->state].core_frequency * 1000;
 | |
| 	freqs.new = data->freq_table[next_state].frequency;
 | |
| 	for_each_cpu(i, cmd.mask) {
 | |
| 		freqs.cpu = i;
 | |
| 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
 | |
| 	}
 | |
| 
 | |
| 	drv_write(&cmd);
 | |
| 
 | |
| 	if (acpi_pstate_strict) {
 | |
| 		if (!check_freqs(cmd.mask, freqs.new, data)) {
 | |
| 			dprintk("acpi_cpufreq_target failed (%d)\n",
 | |
| 				policy->cpu);
 | |
| 			result = -EAGAIN;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for_each_cpu(i, cmd.mask) {
 | |
| 		freqs.cpu = i;
 | |
| 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 | |
| 	}
 | |
| 	perf->state = next_perf_state;
 | |
| 
 | |
| out:
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
 | |
| 
 | |
| 	dprintk("acpi_cpufreq_verify\n");
 | |
| 
 | |
| 	return cpufreq_frequency_table_verify(policy, data->freq_table);
 | |
| }
 | |
| 
 | |
| static unsigned long
 | |
| acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
 | |
| {
 | |
| 	struct acpi_processor_performance *perf = data->acpi_data;
 | |
| 
 | |
| 	if (cpu_khz) {
 | |
| 		/* search the closest match to cpu_khz */
 | |
| 		unsigned int i;
 | |
| 		unsigned long freq;
 | |
| 		unsigned long freqn = perf->states[0].core_frequency * 1000;
 | |
| 
 | |
| 		for (i = 0; i < (perf->state_count-1); i++) {
 | |
| 			freq = freqn;
 | |
| 			freqn = perf->states[i+1].core_frequency * 1000;
 | |
| 			if ((2 * cpu_khz) > (freqn + freq)) {
 | |
| 				perf->state = i;
 | |
| 				return freq;
 | |
| 			}
 | |
| 		}
 | |
| 		perf->state = perf->state_count-1;
 | |
| 		return freqn;
 | |
| 	} else {
 | |
| 		/* assume CPU is at P0... */
 | |
| 		perf->state = 0;
 | |
| 		return perf->states[0].core_frequency * 1000;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void free_acpi_perf_data(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
 | |
| 	for_each_possible_cpu(i)
 | |
| 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
 | |
| 				 ->shared_cpu_map);
 | |
| 	free_percpu(acpi_perf_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * acpi_cpufreq_early_init - initialize ACPI P-States library
 | |
|  *
 | |
|  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
 | |
|  * in order to determine correct frequency and voltage pairings. We can
 | |
|  * do _PDC and _PSD and find out the processor dependency for the
 | |
|  * actual init that will happen later...
 | |
|  */
 | |
| static int __init acpi_cpufreq_early_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	dprintk("acpi_cpufreq_early_init\n");
 | |
| 
 | |
| 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
 | |
| 	if (!acpi_perf_data) {
 | |
| 		dprintk("Memory allocation error for acpi_perf_data.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (!zalloc_cpumask_var_node(
 | |
| 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
 | |
| 			GFP_KERNEL, cpu_to_node(i))) {
 | |
| 
 | |
| 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
 | |
| 			free_acpi_perf_data();
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Do initialization in ACPI core */
 | |
| 	acpi_processor_preregister_performance(acpi_perf_data);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| /*
 | |
|  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
 | |
|  * or do it in BIOS firmware and won't inform about it to OS. If not
 | |
|  * detected, this has a side effect of making CPU run at a different speed
 | |
|  * than OS intended it to run at. Detect it and handle it cleanly.
 | |
|  */
 | |
| static int bios_with_sw_any_bug;
 | |
| 
 | |
| static int sw_any_bug_found(const struct dmi_system_id *d)
 | |
| {
 | |
| 	bios_with_sw_any_bug = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct dmi_system_id sw_any_bug_dmi_table[] = {
 | |
| 	{
 | |
| 		.callback = sw_any_bug_found,
 | |
| 		.ident = "Supermicro Server X6DLP",
 | |
| 		.matches = {
 | |
| 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
 | |
| 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
 | |
| 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
 | |
| 		},
 | |
| 	},
 | |
| 	{ }
 | |
| };
 | |
| 
 | |
| static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
 | |
| {
 | |
| 	/* Intel Xeon Processor 7100 Series Specification Update
 | |
| 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
 | |
| 	 * AL30: A Machine Check Exception (MCE) Occurring during an
 | |
| 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
 | |
| 	 * Both Processor Cores to Lock Up. */
 | |
| 	if (c->x86_vendor == X86_VENDOR_INTEL) {
 | |
| 		if ((c->x86 == 15) &&
 | |
| 		    (c->x86_model == 6) &&
 | |
| 		    (c->x86_mask == 8)) {
 | |
| 			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
 | |
| 			    "Xeon(R) 7100 Errata AL30, processors may "
 | |
| 			    "lock up on frequency changes: disabling "
 | |
| 			    "acpi-cpufreq.\n");
 | |
| 			return -ENODEV;
 | |
| 		    }
 | |
| 		}
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	unsigned int valid_states = 0;
 | |
| 	unsigned int cpu = policy->cpu;
 | |
| 	struct acpi_cpufreq_data *data;
 | |
| 	unsigned int result = 0;
 | |
| 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
 | |
| 	struct acpi_processor_performance *perf;
 | |
| #ifdef CONFIG_SMP
 | |
| 	static int blacklisted;
 | |
| #endif
 | |
| 
 | |
| 	dprintk("acpi_cpufreq_cpu_init\n");
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (blacklisted)
 | |
| 		return blacklisted;
 | |
| 	blacklisted = acpi_cpufreq_blacklist(c);
 | |
| 	if (blacklisted)
 | |
| 		return blacklisted;
 | |
| #endif
 | |
| 
 | |
| 	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
 | |
| 	if (!data)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
 | |
| 	per_cpu(drv_data, cpu) = data;
 | |
| 
 | |
| 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
 | |
| 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
 | |
| 
 | |
| 	result = acpi_processor_register_performance(data->acpi_data, cpu);
 | |
| 	if (result)
 | |
| 		goto err_free;
 | |
| 
 | |
| 	perf = data->acpi_data;
 | |
| 	policy->shared_type = perf->shared_type;
 | |
| 
 | |
| 	/*
 | |
| 	 * Will let policy->cpus know about dependency only when software
 | |
| 	 * coordination is required.
 | |
| 	 */
 | |
| 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
 | |
| 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
 | |
| 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
 | |
| 	}
 | |
| 	cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	dmi_check_system(sw_any_bug_dmi_table);
 | |
| 	if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
 | |
| 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
 | |
| 		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	/* capability check */
 | |
| 	if (perf->state_count <= 1) {
 | |
| 		dprintk("No P-States\n");
 | |
| 		result = -ENODEV;
 | |
| 		goto err_unreg;
 | |
| 	}
 | |
| 
 | |
| 	if (perf->control_register.space_id != perf->status_register.space_id) {
 | |
| 		result = -ENODEV;
 | |
| 		goto err_unreg;
 | |
| 	}
 | |
| 
 | |
| 	switch (perf->control_register.space_id) {
 | |
| 	case ACPI_ADR_SPACE_SYSTEM_IO:
 | |
| 		dprintk("SYSTEM IO addr space\n");
 | |
| 		data->cpu_feature = SYSTEM_IO_CAPABLE;
 | |
| 		break;
 | |
| 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 | |
| 		dprintk("HARDWARE addr space\n");
 | |
| 		if (!check_est_cpu(cpu)) {
 | |
| 			result = -ENODEV;
 | |
| 			goto err_unreg;
 | |
| 		}
 | |
| 		data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
 | |
| 		break;
 | |
| 	default:
 | |
| 		dprintk("Unknown addr space %d\n",
 | |
| 			(u32) (perf->control_register.space_id));
 | |
| 		result = -ENODEV;
 | |
| 		goto err_unreg;
 | |
| 	}
 | |
| 
 | |
| 	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
 | |
| 		    (perf->state_count+1), GFP_KERNEL);
 | |
| 	if (!data->freq_table) {
 | |
| 		result = -ENOMEM;
 | |
| 		goto err_unreg;
 | |
| 	}
 | |
| 
 | |
| 	/* detect transition latency */
 | |
| 	policy->cpuinfo.transition_latency = 0;
 | |
| 	for (i = 0; i < perf->state_count; i++) {
 | |
| 		if ((perf->states[i].transition_latency * 1000) >
 | |
| 		    policy->cpuinfo.transition_latency)
 | |
| 			policy->cpuinfo.transition_latency =
 | |
| 			    perf->states[i].transition_latency * 1000;
 | |
| 	}
 | |
| 
 | |
| 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
 | |
| 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
 | |
| 	    policy->cpuinfo.transition_latency > 20 * 1000) {
 | |
| 		policy->cpuinfo.transition_latency = 20 * 1000;
 | |
| 		printk_once(KERN_INFO
 | |
| 			    "P-state transition latency capped at 20 uS\n");
 | |
| 	}
 | |
| 
 | |
| 	/* table init */
 | |
| 	for (i = 0; i < perf->state_count; i++) {
 | |
| 		if (i > 0 && perf->states[i].core_frequency >=
 | |
| 		    data->freq_table[valid_states-1].frequency / 1000)
 | |
| 			continue;
 | |
| 
 | |
| 		data->freq_table[valid_states].index = i;
 | |
| 		data->freq_table[valid_states].frequency =
 | |
| 		    perf->states[i].core_frequency * 1000;
 | |
| 		valid_states++;
 | |
| 	}
 | |
| 	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
 | |
| 	perf->state = 0;
 | |
| 
 | |
| 	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
 | |
| 	if (result)
 | |
| 		goto err_freqfree;
 | |
| 
 | |
| 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
 | |
| 		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
 | |
| 
 | |
| 	switch (perf->control_register.space_id) {
 | |
| 	case ACPI_ADR_SPACE_SYSTEM_IO:
 | |
| 		/* Current speed is unknown and not detectable by IO port */
 | |
| 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
 | |
| 		break;
 | |
| 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
 | |
| 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
 | |
| 		policy->cur = get_cur_freq_on_cpu(cpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* notify BIOS that we exist */
 | |
| 	acpi_processor_notify_smm(THIS_MODULE);
 | |
| 
 | |
| 	/* Check for APERF/MPERF support in hardware */
 | |
| 	if (cpu_has(c, X86_FEATURE_APERFMPERF))
 | |
| 		acpi_cpufreq_driver.getavg = get_measured_perf;
 | |
| 
 | |
| 	dprintk("CPU%u - ACPI performance management activated.\n", cpu);
 | |
| 	for (i = 0; i < perf->state_count; i++)
 | |
| 		dprintk("     %cP%d: %d MHz, %d mW, %d uS\n",
 | |
| 			(i == perf->state ? '*' : ' '), i,
 | |
| 			(u32) perf->states[i].core_frequency,
 | |
| 			(u32) perf->states[i].power,
 | |
| 			(u32) perf->states[i].transition_latency);
 | |
| 
 | |
| 	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * the first call to ->target() should result in us actually
 | |
| 	 * writing something to the appropriate registers.
 | |
| 	 */
 | |
| 	data->resume = 1;
 | |
| 
 | |
| 	return result;
 | |
| 
 | |
| err_freqfree:
 | |
| 	kfree(data->freq_table);
 | |
| err_unreg:
 | |
| 	acpi_processor_unregister_performance(perf, cpu);
 | |
| err_free:
 | |
| 	kfree(data);
 | |
| 	per_cpu(drv_data, cpu) = NULL;
 | |
| 
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
 | |
| 
 | |
| 	dprintk("acpi_cpufreq_cpu_exit\n");
 | |
| 
 | |
| 	if (data) {
 | |
| 		cpufreq_frequency_table_put_attr(policy->cpu);
 | |
| 		per_cpu(drv_data, policy->cpu) = NULL;
 | |
| 		acpi_processor_unregister_performance(data->acpi_data,
 | |
| 						      policy->cpu);
 | |
| 		kfree(data);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
 | |
| {
 | |
| 	struct acpi_cpufreq_data *data = per_cpu(drv_data, policy->cpu);
 | |
| 
 | |
| 	dprintk("acpi_cpufreq_resume\n");
 | |
| 
 | |
| 	data->resume = 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct freq_attr *acpi_cpufreq_attr[] = {
 | |
| 	&cpufreq_freq_attr_scaling_available_freqs,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct cpufreq_driver acpi_cpufreq_driver = {
 | |
| 	.verify = acpi_cpufreq_verify,
 | |
| 	.target = acpi_cpufreq_target,
 | |
| 	.init = acpi_cpufreq_cpu_init,
 | |
| 	.exit = acpi_cpufreq_cpu_exit,
 | |
| 	.resume = acpi_cpufreq_resume,
 | |
| 	.name = "acpi-cpufreq",
 | |
| 	.owner = THIS_MODULE,
 | |
| 	.attr = acpi_cpufreq_attr,
 | |
| };
 | |
| 
 | |
| static int __init acpi_cpufreq_init(void)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (acpi_disabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	dprintk("acpi_cpufreq_init\n");
 | |
| 
 | |
| 	ret = acpi_cpufreq_early_init();
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
 | |
| 	if (ret)
 | |
| 		free_acpi_perf_data();
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __exit acpi_cpufreq_exit(void)
 | |
| {
 | |
| 	dprintk("acpi_cpufreq_exit\n");
 | |
| 
 | |
| 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
 | |
| 
 | |
| 	free_percpu(acpi_perf_data);
 | |
| }
 | |
| 
 | |
| module_param(acpi_pstate_strict, uint, 0644);
 | |
| MODULE_PARM_DESC(acpi_pstate_strict,
 | |
| 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
 | |
| 	"performed during frequency changes.");
 | |
| 
 | |
| late_initcall(acpi_cpufreq_init);
 | |
| module_exit(acpi_cpufreq_exit);
 | |
| 
 | |
| MODULE_ALIAS("acpi");
 |