3254 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3254 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ipmi_si.c
 | |
|  *
 | |
|  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
 | |
|  * BT).
 | |
|  *
 | |
|  * Author: MontaVista Software, Inc.
 | |
|  *         Corey Minyard <minyard@mvista.com>
 | |
|  *         source@mvista.com
 | |
|  *
 | |
|  * Copyright 2002 MontaVista Software Inc.
 | |
|  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License as published by the
 | |
|  *  Free Software Foundation; either version 2 of the License, or (at your
 | |
|  *  option) any later version.
 | |
|  *
 | |
|  *
 | |
|  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 | |
|  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 | |
|  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 | |
|  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
|  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 | |
|  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 | |
|  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
 | |
|  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 | |
|  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file holds the "policy" for the interface to the SMI state
 | |
|  * machine.  It does the configuration, handles timers and interrupts,
 | |
|  * and drives the real SMI state machine.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/moduleparam.h>
 | |
| #include <asm/system.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <asm/irq.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/ipmi_smi.h>
 | |
| #include <asm/io.h>
 | |
| #include "ipmi_si_sm.h"
 | |
| #include <linux/init.h>
 | |
| #include <linux/dmi.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/ctype.h>
 | |
| 
 | |
| #ifdef CONFIG_PPC_OF
 | |
| #include <linux/of_device.h>
 | |
| #include <linux/of_platform.h>
 | |
| #endif
 | |
| 
 | |
| #define PFX "ipmi_si: "
 | |
| 
 | |
| /* Measure times between events in the driver. */
 | |
| #undef DEBUG_TIMING
 | |
| 
 | |
| /* Call every 10 ms. */
 | |
| #define SI_TIMEOUT_TIME_USEC	10000
 | |
| #define SI_USEC_PER_JIFFY	(1000000/HZ)
 | |
| #define SI_TIMEOUT_JIFFIES	(SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
 | |
| #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
 | |
| 				      short timeout */
 | |
| 
 | |
| enum si_intf_state {
 | |
| 	SI_NORMAL,
 | |
| 	SI_GETTING_FLAGS,
 | |
| 	SI_GETTING_EVENTS,
 | |
| 	SI_CLEARING_FLAGS,
 | |
| 	SI_CLEARING_FLAGS_THEN_SET_IRQ,
 | |
| 	SI_GETTING_MESSAGES,
 | |
| 	SI_ENABLE_INTERRUPTS1,
 | |
| 	SI_ENABLE_INTERRUPTS2,
 | |
| 	SI_DISABLE_INTERRUPTS1,
 | |
| 	SI_DISABLE_INTERRUPTS2
 | |
| 	/* FIXME - add watchdog stuff. */
 | |
| };
 | |
| 
 | |
| /* Some BT-specific defines we need here. */
 | |
| #define IPMI_BT_INTMASK_REG		2
 | |
| #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT	2
 | |
| #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT	1
 | |
| 
 | |
| enum si_type {
 | |
|     SI_KCS, SI_SMIC, SI_BT
 | |
| };
 | |
| static char *si_to_str[] = { "kcs", "smic", "bt" };
 | |
| 
 | |
| #define DEVICE_NAME "ipmi_si"
 | |
| 
 | |
| static struct platform_driver ipmi_driver = {
 | |
| 	.driver = {
 | |
| 		.name = DEVICE_NAME,
 | |
| 		.bus = &platform_bus_type
 | |
| 	}
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Indexes into stats[] in smi_info below.
 | |
|  */
 | |
| enum si_stat_indexes {
 | |
| 	/*
 | |
| 	 * Number of times the driver requested a timer while an operation
 | |
| 	 * was in progress.
 | |
| 	 */
 | |
| 	SI_STAT_short_timeouts = 0,
 | |
| 
 | |
| 	/*
 | |
| 	 * Number of times the driver requested a timer while nothing was in
 | |
| 	 * progress.
 | |
| 	 */
 | |
| 	SI_STAT_long_timeouts,
 | |
| 
 | |
| 	/* Number of times the interface was idle while being polled. */
 | |
| 	SI_STAT_idles,
 | |
| 
 | |
| 	/* Number of interrupts the driver handled. */
 | |
| 	SI_STAT_interrupts,
 | |
| 
 | |
| 	/* Number of time the driver got an ATTN from the hardware. */
 | |
| 	SI_STAT_attentions,
 | |
| 
 | |
| 	/* Number of times the driver requested flags from the hardware. */
 | |
| 	SI_STAT_flag_fetches,
 | |
| 
 | |
| 	/* Number of times the hardware didn't follow the state machine. */
 | |
| 	SI_STAT_hosed_count,
 | |
| 
 | |
| 	/* Number of completed messages. */
 | |
| 	SI_STAT_complete_transactions,
 | |
| 
 | |
| 	/* Number of IPMI events received from the hardware. */
 | |
| 	SI_STAT_events,
 | |
| 
 | |
| 	/* Number of watchdog pretimeouts. */
 | |
| 	SI_STAT_watchdog_pretimeouts,
 | |
| 
 | |
| 	/* Number of asyncronous messages received. */
 | |
| 	SI_STAT_incoming_messages,
 | |
| 
 | |
| 
 | |
| 	/* This *must* remain last, add new values above this. */
 | |
| 	SI_NUM_STATS
 | |
| };
 | |
| 
 | |
| struct smi_info {
 | |
| 	int                    intf_num;
 | |
| 	ipmi_smi_t             intf;
 | |
| 	struct si_sm_data      *si_sm;
 | |
| 	struct si_sm_handlers  *handlers;
 | |
| 	enum si_type           si_type;
 | |
| 	spinlock_t             si_lock;
 | |
| 	spinlock_t             msg_lock;
 | |
| 	struct list_head       xmit_msgs;
 | |
| 	struct list_head       hp_xmit_msgs;
 | |
| 	struct ipmi_smi_msg    *curr_msg;
 | |
| 	enum si_intf_state     si_state;
 | |
| 
 | |
| 	/*
 | |
| 	 * Used to handle the various types of I/O that can occur with
 | |
| 	 * IPMI
 | |
| 	 */
 | |
| 	struct si_sm_io io;
 | |
| 	int (*io_setup)(struct smi_info *info);
 | |
| 	void (*io_cleanup)(struct smi_info *info);
 | |
| 	int (*irq_setup)(struct smi_info *info);
 | |
| 	void (*irq_cleanup)(struct smi_info *info);
 | |
| 	unsigned int io_size;
 | |
| 	char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
 | |
| 	void (*addr_source_cleanup)(struct smi_info *info);
 | |
| 	void *addr_source_data;
 | |
| 
 | |
| 	/*
 | |
| 	 * Per-OEM handler, called from handle_flags().  Returns 1
 | |
| 	 * when handle_flags() needs to be re-run or 0 indicating it
 | |
| 	 * set si_state itself.
 | |
| 	 */
 | |
| 	int (*oem_data_avail_handler)(struct smi_info *smi_info);
 | |
| 
 | |
| 	/*
 | |
| 	 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
 | |
| 	 * is set to hold the flags until we are done handling everything
 | |
| 	 * from the flags.
 | |
| 	 */
 | |
| #define RECEIVE_MSG_AVAIL	0x01
 | |
| #define EVENT_MSG_BUFFER_FULL	0x02
 | |
| #define WDT_PRE_TIMEOUT_INT	0x08
 | |
| #define OEM0_DATA_AVAIL     0x20
 | |
| #define OEM1_DATA_AVAIL     0x40
 | |
| #define OEM2_DATA_AVAIL     0x80
 | |
| #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
 | |
| 			     OEM1_DATA_AVAIL | \
 | |
| 			     OEM2_DATA_AVAIL)
 | |
| 	unsigned char       msg_flags;
 | |
| 
 | |
| 	/* Does the BMC have an event buffer? */
 | |
| 	char		    has_event_buffer;
 | |
| 
 | |
| 	/*
 | |
| 	 * If set to true, this will request events the next time the
 | |
| 	 * state machine is idle.
 | |
| 	 */
 | |
| 	atomic_t            req_events;
 | |
| 
 | |
| 	/*
 | |
| 	 * If true, run the state machine to completion on every send
 | |
| 	 * call.  Generally used after a panic to make sure stuff goes
 | |
| 	 * out.
 | |
| 	 */
 | |
| 	int                 run_to_completion;
 | |
| 
 | |
| 	/* The I/O port of an SI interface. */
 | |
| 	int                 port;
 | |
| 
 | |
| 	/*
 | |
| 	 * The space between start addresses of the two ports.  For
 | |
| 	 * instance, if the first port is 0xca2 and the spacing is 4, then
 | |
| 	 * the second port is 0xca6.
 | |
| 	 */
 | |
| 	unsigned int        spacing;
 | |
| 
 | |
| 	/* zero if no irq; */
 | |
| 	int                 irq;
 | |
| 
 | |
| 	/* The timer for this si. */
 | |
| 	struct timer_list   si_timer;
 | |
| 
 | |
| 	/* The time (in jiffies) the last timeout occurred at. */
 | |
| 	unsigned long       last_timeout_jiffies;
 | |
| 
 | |
| 	/* Used to gracefully stop the timer without race conditions. */
 | |
| 	atomic_t            stop_operation;
 | |
| 
 | |
| 	/*
 | |
| 	 * The driver will disable interrupts when it gets into a
 | |
| 	 * situation where it cannot handle messages due to lack of
 | |
| 	 * memory.  Once that situation clears up, it will re-enable
 | |
| 	 * interrupts.
 | |
| 	 */
 | |
| 	int interrupt_disabled;
 | |
| 
 | |
| 	/* From the get device id response... */
 | |
| 	struct ipmi_device_id device_id;
 | |
| 
 | |
| 	/* Driver model stuff. */
 | |
| 	struct device *dev;
 | |
| 	struct platform_device *pdev;
 | |
| 
 | |
| 	/*
 | |
| 	 * True if we allocated the device, false if it came from
 | |
| 	 * someplace else (like PCI).
 | |
| 	 */
 | |
| 	int dev_registered;
 | |
| 
 | |
| 	/* Slave address, could be reported from DMI. */
 | |
| 	unsigned char slave_addr;
 | |
| 
 | |
| 	/* Counters and things for the proc filesystem. */
 | |
| 	atomic_t stats[SI_NUM_STATS];
 | |
| 
 | |
| 	struct task_struct *thread;
 | |
| 
 | |
| 	struct list_head link;
 | |
| };
 | |
| 
 | |
| #define smi_inc_stat(smi, stat) \
 | |
| 	atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
 | |
| #define smi_get_stat(smi, stat) \
 | |
| 	((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
 | |
| 
 | |
| #define SI_MAX_PARMS 4
 | |
| 
 | |
| static int force_kipmid[SI_MAX_PARMS];
 | |
| static int num_force_kipmid;
 | |
| 
 | |
| static int unload_when_empty = 1;
 | |
| 
 | |
| static int try_smi_init(struct smi_info *smi);
 | |
| static void cleanup_one_si(struct smi_info *to_clean);
 | |
| 
 | |
| static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
 | |
| static int register_xaction_notifier(struct notifier_block *nb)
 | |
| {
 | |
| 	return atomic_notifier_chain_register(&xaction_notifier_list, nb);
 | |
| }
 | |
| 
 | |
| static void deliver_recv_msg(struct smi_info *smi_info,
 | |
| 			     struct ipmi_smi_msg *msg)
 | |
| {
 | |
| 	/* Deliver the message to the upper layer with the lock
 | |
| 	   released. */
 | |
| 	spin_unlock(&(smi_info->si_lock));
 | |
| 	ipmi_smi_msg_received(smi_info->intf, msg);
 | |
| 	spin_lock(&(smi_info->si_lock));
 | |
| }
 | |
| 
 | |
| static void return_hosed_msg(struct smi_info *smi_info, int cCode)
 | |
| {
 | |
| 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
 | |
| 
 | |
| 	if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
 | |
| 		cCode = IPMI_ERR_UNSPECIFIED;
 | |
| 	/* else use it as is */
 | |
| 
 | |
| 	/* Make it a reponse */
 | |
| 	msg->rsp[0] = msg->data[0] | 4;
 | |
| 	msg->rsp[1] = msg->data[1];
 | |
| 	msg->rsp[2] = cCode;
 | |
| 	msg->rsp_size = 3;
 | |
| 
 | |
| 	smi_info->curr_msg = NULL;
 | |
| 	deliver_recv_msg(smi_info, msg);
 | |
| }
 | |
| 
 | |
| static enum si_sm_result start_next_msg(struct smi_info *smi_info)
 | |
| {
 | |
| 	int              rv;
 | |
| 	struct list_head *entry = NULL;
 | |
| #ifdef DEBUG_TIMING
 | |
| 	struct timeval t;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to save flags, we aleady have interrupts off and we
 | |
| 	 * already hold the SMI lock.
 | |
| 	 */
 | |
| 	if (!smi_info->run_to_completion)
 | |
| 		spin_lock(&(smi_info->msg_lock));
 | |
| 
 | |
| 	/* Pick the high priority queue first. */
 | |
| 	if (!list_empty(&(smi_info->hp_xmit_msgs))) {
 | |
| 		entry = smi_info->hp_xmit_msgs.next;
 | |
| 	} else if (!list_empty(&(smi_info->xmit_msgs))) {
 | |
| 		entry = smi_info->xmit_msgs.next;
 | |
| 	}
 | |
| 
 | |
| 	if (!entry) {
 | |
| 		smi_info->curr_msg = NULL;
 | |
| 		rv = SI_SM_IDLE;
 | |
| 	} else {
 | |
| 		int err;
 | |
| 
 | |
| 		list_del(entry);
 | |
| 		smi_info->curr_msg = list_entry(entry,
 | |
| 						struct ipmi_smi_msg,
 | |
| 						link);
 | |
| #ifdef DEBUG_TIMING
 | |
| 		do_gettimeofday(&t);
 | |
| 		printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 | |
| #endif
 | |
| 		err = atomic_notifier_call_chain(&xaction_notifier_list,
 | |
| 				0, smi_info);
 | |
| 		if (err & NOTIFY_STOP_MASK) {
 | |
| 			rv = SI_SM_CALL_WITHOUT_DELAY;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		err = smi_info->handlers->start_transaction(
 | |
| 			smi_info->si_sm,
 | |
| 			smi_info->curr_msg->data,
 | |
| 			smi_info->curr_msg->data_size);
 | |
| 		if (err)
 | |
| 			return_hosed_msg(smi_info, err);
 | |
| 
 | |
| 		rv = SI_SM_CALL_WITHOUT_DELAY;
 | |
| 	}
 | |
|  out:
 | |
| 	if (!smi_info->run_to_completion)
 | |
| 		spin_unlock(&(smi_info->msg_lock));
 | |
| 
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static void start_enable_irq(struct smi_info *smi_info)
 | |
| {
 | |
| 	unsigned char msg[2];
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are enabling interrupts, we have to tell the
 | |
| 	 * BMC to use them.
 | |
| 	 */
 | |
| 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 | |
| 
 | |
| 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 | |
| 	smi_info->si_state = SI_ENABLE_INTERRUPTS1;
 | |
| }
 | |
| 
 | |
| static void start_disable_irq(struct smi_info *smi_info)
 | |
| {
 | |
| 	unsigned char msg[2];
 | |
| 
 | |
| 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 | |
| 
 | |
| 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 | |
| 	smi_info->si_state = SI_DISABLE_INTERRUPTS1;
 | |
| }
 | |
| 
 | |
| static void start_clear_flags(struct smi_info *smi_info)
 | |
| {
 | |
| 	unsigned char msg[3];
 | |
| 
 | |
| 	/* Make sure the watchdog pre-timeout flag is not set at startup. */
 | |
| 	msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
 | |
| 	msg[2] = WDT_PRE_TIMEOUT_INT;
 | |
| 
 | |
| 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 | |
| 	smi_info->si_state = SI_CLEARING_FLAGS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When we have a situtaion where we run out of memory and cannot
 | |
|  * allocate messages, we just leave them in the BMC and run the system
 | |
|  * polled until we can allocate some memory.  Once we have some
 | |
|  * memory, we will re-enable the interrupt.
 | |
|  */
 | |
| static inline void disable_si_irq(struct smi_info *smi_info)
 | |
| {
 | |
| 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 | |
| 		start_disable_irq(smi_info);
 | |
| 		smi_info->interrupt_disabled = 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void enable_si_irq(struct smi_info *smi_info)
 | |
| {
 | |
| 	if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
 | |
| 		start_enable_irq(smi_info);
 | |
| 		smi_info->interrupt_disabled = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void handle_flags(struct smi_info *smi_info)
 | |
| {
 | |
|  retry:
 | |
| 	if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
 | |
| 		/* Watchdog pre-timeout */
 | |
| 		smi_inc_stat(smi_info, watchdog_pretimeouts);
 | |
| 
 | |
| 		start_clear_flags(smi_info);
 | |
| 		smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
 | |
| 		spin_unlock(&(smi_info->si_lock));
 | |
| 		ipmi_smi_watchdog_pretimeout(smi_info->intf);
 | |
| 		spin_lock(&(smi_info->si_lock));
 | |
| 	} else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
 | |
| 		/* Messages available. */
 | |
| 		smi_info->curr_msg = ipmi_alloc_smi_msg();
 | |
| 		if (!smi_info->curr_msg) {
 | |
| 			disable_si_irq(smi_info);
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 			return;
 | |
| 		}
 | |
| 		enable_si_irq(smi_info);
 | |
| 
 | |
| 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 		smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
 | |
| 		smi_info->curr_msg->data_size = 2;
 | |
| 
 | |
| 		smi_info->handlers->start_transaction(
 | |
| 			smi_info->si_sm,
 | |
| 			smi_info->curr_msg->data,
 | |
| 			smi_info->curr_msg->data_size);
 | |
| 		smi_info->si_state = SI_GETTING_MESSAGES;
 | |
| 	} else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
 | |
| 		/* Events available. */
 | |
| 		smi_info->curr_msg = ipmi_alloc_smi_msg();
 | |
| 		if (!smi_info->curr_msg) {
 | |
| 			disable_si_irq(smi_info);
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 			return;
 | |
| 		}
 | |
| 		enable_si_irq(smi_info);
 | |
| 
 | |
| 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 | |
| 		smi_info->curr_msg->data_size = 2;
 | |
| 
 | |
| 		smi_info->handlers->start_transaction(
 | |
| 			smi_info->si_sm,
 | |
| 			smi_info->curr_msg->data,
 | |
| 			smi_info->curr_msg->data_size);
 | |
| 		smi_info->si_state = SI_GETTING_EVENTS;
 | |
| 	} else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
 | |
| 		   smi_info->oem_data_avail_handler) {
 | |
| 		if (smi_info->oem_data_avail_handler(smi_info))
 | |
| 			goto retry;
 | |
| 	} else
 | |
| 		smi_info->si_state = SI_NORMAL;
 | |
| }
 | |
| 
 | |
| static void handle_transaction_done(struct smi_info *smi_info)
 | |
| {
 | |
| 	struct ipmi_smi_msg *msg;
 | |
| #ifdef DEBUG_TIMING
 | |
| 	struct timeval t;
 | |
| 
 | |
| 	do_gettimeofday(&t);
 | |
| 	printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 | |
| #endif
 | |
| 	switch (smi_info->si_state) {
 | |
| 	case SI_NORMAL:
 | |
| 		if (!smi_info->curr_msg)
 | |
| 			break;
 | |
| 
 | |
| 		smi_info->curr_msg->rsp_size
 | |
| 			= smi_info->handlers->get_result(
 | |
| 				smi_info->si_sm,
 | |
| 				smi_info->curr_msg->rsp,
 | |
| 				IPMI_MAX_MSG_LENGTH);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do this here becase deliver_recv_msg() releases the
 | |
| 		 * lock, and a new message can be put in during the
 | |
| 		 * time the lock is released.
 | |
| 		 */
 | |
| 		msg = smi_info->curr_msg;
 | |
| 		smi_info->curr_msg = NULL;
 | |
| 		deliver_recv_msg(smi_info, msg);
 | |
| 		break;
 | |
| 
 | |
| 	case SI_GETTING_FLAGS:
 | |
| 	{
 | |
| 		unsigned char msg[4];
 | |
| 		unsigned int  len;
 | |
| 
 | |
| 		/* We got the flags from the SMI, now handle them. */
 | |
| 		len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 | |
| 		if (msg[2] != 0) {
 | |
| 			/* Error fetching flags, just give up for now. */
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 		} else if (len < 4) {
 | |
| 			/*
 | |
| 			 * Hmm, no flags.  That's technically illegal, but
 | |
| 			 * don't use uninitialized data.
 | |
| 			 */
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 		} else {
 | |
| 			smi_info->msg_flags = msg[3];
 | |
| 			handle_flags(smi_info);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_CLEARING_FLAGS:
 | |
| 	case SI_CLEARING_FLAGS_THEN_SET_IRQ:
 | |
| 	{
 | |
| 		unsigned char msg[3];
 | |
| 
 | |
| 		/* We cleared the flags. */
 | |
| 		smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
 | |
| 		if (msg[2] != 0) {
 | |
| 			/* Error clearing flags */
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Error clearing flags: %2.2x\n",
 | |
| 			       msg[2]);
 | |
| 		}
 | |
| 		if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
 | |
| 			start_enable_irq(smi_info);
 | |
| 		else
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_GETTING_EVENTS:
 | |
| 	{
 | |
| 		smi_info->curr_msg->rsp_size
 | |
| 			= smi_info->handlers->get_result(
 | |
| 				smi_info->si_sm,
 | |
| 				smi_info->curr_msg->rsp,
 | |
| 				IPMI_MAX_MSG_LENGTH);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do this here becase deliver_recv_msg() releases the
 | |
| 		 * lock, and a new message can be put in during the
 | |
| 		 * time the lock is released.
 | |
| 		 */
 | |
| 		msg = smi_info->curr_msg;
 | |
| 		smi_info->curr_msg = NULL;
 | |
| 		if (msg->rsp[2] != 0) {
 | |
| 			/* Error getting event, probably done. */
 | |
| 			msg->done(msg);
 | |
| 
 | |
| 			/* Take off the event flag. */
 | |
| 			smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
 | |
| 			handle_flags(smi_info);
 | |
| 		} else {
 | |
| 			smi_inc_stat(smi_info, events);
 | |
| 
 | |
| 			/*
 | |
| 			 * Do this before we deliver the message
 | |
| 			 * because delivering the message releases the
 | |
| 			 * lock and something else can mess with the
 | |
| 			 * state.
 | |
| 			 */
 | |
| 			handle_flags(smi_info);
 | |
| 
 | |
| 			deliver_recv_msg(smi_info, msg);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_GETTING_MESSAGES:
 | |
| 	{
 | |
| 		smi_info->curr_msg->rsp_size
 | |
| 			= smi_info->handlers->get_result(
 | |
| 				smi_info->si_sm,
 | |
| 				smi_info->curr_msg->rsp,
 | |
| 				IPMI_MAX_MSG_LENGTH);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do this here becase deliver_recv_msg() releases the
 | |
| 		 * lock, and a new message can be put in during the
 | |
| 		 * time the lock is released.
 | |
| 		 */
 | |
| 		msg = smi_info->curr_msg;
 | |
| 		smi_info->curr_msg = NULL;
 | |
| 		if (msg->rsp[2] != 0) {
 | |
| 			/* Error getting event, probably done. */
 | |
| 			msg->done(msg);
 | |
| 
 | |
| 			/* Take off the msg flag. */
 | |
| 			smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
 | |
| 			handle_flags(smi_info);
 | |
| 		} else {
 | |
| 			smi_inc_stat(smi_info, incoming_messages);
 | |
| 
 | |
| 			/*
 | |
| 			 * Do this before we deliver the message
 | |
| 			 * because delivering the message releases the
 | |
| 			 * lock and something else can mess with the
 | |
| 			 * state.
 | |
| 			 */
 | |
| 			handle_flags(smi_info);
 | |
| 
 | |
| 			deliver_recv_msg(smi_info, msg);
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_ENABLE_INTERRUPTS1:
 | |
| 	{
 | |
| 		unsigned char msg[4];
 | |
| 
 | |
| 		/* We got the flags from the SMI, now handle them. */
 | |
| 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 | |
| 		if (msg[2] != 0) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Could not enable interrupts"
 | |
| 			       ", failed get, using polled mode.\n");
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 		} else {
 | |
| 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 | |
| 			msg[2] = (msg[3] |
 | |
| 				  IPMI_BMC_RCV_MSG_INTR |
 | |
| 				  IPMI_BMC_EVT_MSG_INTR);
 | |
| 			smi_info->handlers->start_transaction(
 | |
| 				smi_info->si_sm, msg, 3);
 | |
| 			smi_info->si_state = SI_ENABLE_INTERRUPTS2;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_ENABLE_INTERRUPTS2:
 | |
| 	{
 | |
| 		unsigned char msg[4];
 | |
| 
 | |
| 		/* We got the flags from the SMI, now handle them. */
 | |
| 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 | |
| 		if (msg[2] != 0) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Could not enable interrupts"
 | |
| 			       ", failed set, using polled mode.\n");
 | |
| 		}
 | |
| 		smi_info->si_state = SI_NORMAL;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_DISABLE_INTERRUPTS1:
 | |
| 	{
 | |
| 		unsigned char msg[4];
 | |
| 
 | |
| 		/* We got the flags from the SMI, now handle them. */
 | |
| 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 | |
| 		if (msg[2] != 0) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Could not disable interrupts"
 | |
| 			       ", failed get.\n");
 | |
| 			smi_info->si_state = SI_NORMAL;
 | |
| 		} else {
 | |
| 			msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 | |
| 			msg[2] = (msg[3] &
 | |
| 				  ~(IPMI_BMC_RCV_MSG_INTR |
 | |
| 				    IPMI_BMC_EVT_MSG_INTR));
 | |
| 			smi_info->handlers->start_transaction(
 | |
| 				smi_info->si_sm, msg, 3);
 | |
| 			smi_info->si_state = SI_DISABLE_INTERRUPTS2;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	case SI_DISABLE_INTERRUPTS2:
 | |
| 	{
 | |
| 		unsigned char msg[4];
 | |
| 
 | |
| 		/* We got the flags from the SMI, now handle them. */
 | |
| 		smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
 | |
| 		if (msg[2] != 0) {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Could not disable interrupts"
 | |
| 			       ", failed set.\n");
 | |
| 		}
 | |
| 		smi_info->si_state = SI_NORMAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called on timeouts and events.  Timeouts should pass the elapsed
 | |
|  * time, interrupts should pass in zero.  Must be called with
 | |
|  * si_lock held and interrupts disabled.
 | |
|  */
 | |
| static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
 | |
| 					   int time)
 | |
| {
 | |
| 	enum si_sm_result si_sm_result;
 | |
| 
 | |
|  restart:
 | |
| 	/*
 | |
| 	 * There used to be a loop here that waited a little while
 | |
| 	 * (around 25us) before giving up.  That turned out to be
 | |
| 	 * pointless, the minimum delays I was seeing were in the 300us
 | |
| 	 * range, which is far too long to wait in an interrupt.  So
 | |
| 	 * we just run until the state machine tells us something
 | |
| 	 * happened or it needs a delay.
 | |
| 	 */
 | |
| 	si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
 | |
| 	time = 0;
 | |
| 	while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
 | |
| 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 | |
| 
 | |
| 	if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
 | |
| 		smi_inc_stat(smi_info, complete_transactions);
 | |
| 
 | |
| 		handle_transaction_done(smi_info);
 | |
| 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 | |
| 	} else if (si_sm_result == SI_SM_HOSED) {
 | |
| 		smi_inc_stat(smi_info, hosed_count);
 | |
| 
 | |
| 		/*
 | |
| 		 * Do the before return_hosed_msg, because that
 | |
| 		 * releases the lock.
 | |
| 		 */
 | |
| 		smi_info->si_state = SI_NORMAL;
 | |
| 		if (smi_info->curr_msg != NULL) {
 | |
| 			/*
 | |
| 			 * If we were handling a user message, format
 | |
| 			 * a response to send to the upper layer to
 | |
| 			 * tell it about the error.
 | |
| 			 */
 | |
| 			return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
 | |
| 		}
 | |
| 		si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We prefer handling attn over new messages.  But don't do
 | |
| 	 * this if there is not yet an upper layer to handle anything.
 | |
| 	 */
 | |
| 	if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
 | |
| 		unsigned char msg[2];
 | |
| 
 | |
| 		smi_inc_stat(smi_info, attentions);
 | |
| 
 | |
| 		/*
 | |
| 		 * Got a attn, send down a get message flags to see
 | |
| 		 * what's causing it.  It would be better to handle
 | |
| 		 * this in the upper layer, but due to the way
 | |
| 		 * interrupts work with the SMI, that's not really
 | |
| 		 * possible.
 | |
| 		 */
 | |
| 		msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 		msg[1] = IPMI_GET_MSG_FLAGS_CMD;
 | |
| 
 | |
| 		smi_info->handlers->start_transaction(
 | |
| 			smi_info->si_sm, msg, 2);
 | |
| 		smi_info->si_state = SI_GETTING_FLAGS;
 | |
| 		goto restart;
 | |
| 	}
 | |
| 
 | |
| 	/* If we are currently idle, try to start the next message. */
 | |
| 	if (si_sm_result == SI_SM_IDLE) {
 | |
| 		smi_inc_stat(smi_info, idles);
 | |
| 
 | |
| 		si_sm_result = start_next_msg(smi_info);
 | |
| 		if (si_sm_result != SI_SM_IDLE)
 | |
| 			goto restart;
 | |
| 	}
 | |
| 
 | |
| 	if ((si_sm_result == SI_SM_IDLE)
 | |
| 	    && (atomic_read(&smi_info->req_events))) {
 | |
| 		/*
 | |
| 		 * We are idle and the upper layer requested that I fetch
 | |
| 		 * events, so do so.
 | |
| 		 */
 | |
| 		atomic_set(&smi_info->req_events, 0);
 | |
| 
 | |
| 		smi_info->curr_msg = ipmi_alloc_smi_msg();
 | |
| 		if (!smi_info->curr_msg)
 | |
| 			goto out;
 | |
| 
 | |
| 		smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
 | |
| 		smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
 | |
| 		smi_info->curr_msg->data_size = 2;
 | |
| 
 | |
| 		smi_info->handlers->start_transaction(
 | |
| 			smi_info->si_sm,
 | |
| 			smi_info->curr_msg->data,
 | |
| 			smi_info->curr_msg->data_size);
 | |
| 		smi_info->si_state = SI_GETTING_EVENTS;
 | |
| 		goto restart;
 | |
| 	}
 | |
|  out:
 | |
| 	return si_sm_result;
 | |
| }
 | |
| 
 | |
| static void sender(void                *send_info,
 | |
| 		   struct ipmi_smi_msg *msg,
 | |
| 		   int                 priority)
 | |
| {
 | |
| 	struct smi_info   *smi_info = send_info;
 | |
| 	enum si_sm_result result;
 | |
| 	unsigned long     flags;
 | |
| #ifdef DEBUG_TIMING
 | |
| 	struct timeval    t;
 | |
| #endif
 | |
| 
 | |
| 	if (atomic_read(&smi_info->stop_operation)) {
 | |
| 		msg->rsp[0] = msg->data[0] | 4;
 | |
| 		msg->rsp[1] = msg->data[1];
 | |
| 		msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
 | |
| 		msg->rsp_size = 3;
 | |
| 		deliver_recv_msg(smi_info, msg);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| #ifdef DEBUG_TIMING
 | |
| 	do_gettimeofday(&t);
 | |
| 	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 | |
| #endif
 | |
| 
 | |
| 	if (smi_info->run_to_completion) {
 | |
| 		/*
 | |
| 		 * If we are running to completion, then throw it in
 | |
| 		 * the list and run transactions until everything is
 | |
| 		 * clear.  Priority doesn't matter here.
 | |
| 		 */
 | |
| 
 | |
| 		/*
 | |
| 		 * Run to completion means we are single-threaded, no
 | |
| 		 * need for locks.
 | |
| 		 */
 | |
| 		list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
 | |
| 
 | |
| 		result = smi_event_handler(smi_info, 0);
 | |
| 		while (result != SI_SM_IDLE) {
 | |
| 			udelay(SI_SHORT_TIMEOUT_USEC);
 | |
| 			result = smi_event_handler(smi_info,
 | |
| 						   SI_SHORT_TIMEOUT_USEC);
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_irqsave(&smi_info->msg_lock, flags);
 | |
| 	if (priority > 0)
 | |
| 		list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
 | |
| 	else
 | |
| 		list_add_tail(&msg->link, &smi_info->xmit_msgs);
 | |
| 	spin_unlock_irqrestore(&smi_info->msg_lock, flags);
 | |
| 
 | |
| 	spin_lock_irqsave(&smi_info->si_lock, flags);
 | |
| 	if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
 | |
| 		start_next_msg(smi_info);
 | |
| 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
 | |
| }
 | |
| 
 | |
| static void set_run_to_completion(void *send_info, int i_run_to_completion)
 | |
| {
 | |
| 	struct smi_info   *smi_info = send_info;
 | |
| 	enum si_sm_result result;
 | |
| 
 | |
| 	smi_info->run_to_completion = i_run_to_completion;
 | |
| 	if (i_run_to_completion) {
 | |
| 		result = smi_event_handler(smi_info, 0);
 | |
| 		while (result != SI_SM_IDLE) {
 | |
| 			udelay(SI_SHORT_TIMEOUT_USEC);
 | |
| 			result = smi_event_handler(smi_info,
 | |
| 						   SI_SHORT_TIMEOUT_USEC);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int ipmi_thread(void *data)
 | |
| {
 | |
| 	struct smi_info *smi_info = data;
 | |
| 	unsigned long flags;
 | |
| 	enum si_sm_result smi_result;
 | |
| 
 | |
| 	set_user_nice(current, 19);
 | |
| 	while (!kthread_should_stop()) {
 | |
| 		spin_lock_irqsave(&(smi_info->si_lock), flags);
 | |
| 		smi_result = smi_event_handler(smi_info, 0);
 | |
| 		spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 | |
| 		if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
 | |
| 			; /* do nothing */
 | |
| 		else if (smi_result == SI_SM_CALL_WITH_DELAY)
 | |
| 			schedule();
 | |
| 		else
 | |
| 			schedule_timeout_interruptible(1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void poll(void *send_info)
 | |
| {
 | |
| 	struct smi_info *smi_info = send_info;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure there is some delay in the poll loop so we can
 | |
| 	 * drive time forward and timeout things.
 | |
| 	 */
 | |
| 	udelay(10);
 | |
| 	spin_lock_irqsave(&smi_info->si_lock, flags);
 | |
| 	smi_event_handler(smi_info, 10);
 | |
| 	spin_unlock_irqrestore(&smi_info->si_lock, flags);
 | |
| }
 | |
| 
 | |
| static void request_events(void *send_info)
 | |
| {
 | |
| 	struct smi_info *smi_info = send_info;
 | |
| 
 | |
| 	if (atomic_read(&smi_info->stop_operation) ||
 | |
| 				!smi_info->has_event_buffer)
 | |
| 		return;
 | |
| 
 | |
| 	atomic_set(&smi_info->req_events, 1);
 | |
| }
 | |
| 
 | |
| static int initialized;
 | |
| 
 | |
| static void smi_timeout(unsigned long data)
 | |
| {
 | |
| 	struct smi_info   *smi_info = (struct smi_info *) data;
 | |
| 	enum si_sm_result smi_result;
 | |
| 	unsigned long     flags;
 | |
| 	unsigned long     jiffies_now;
 | |
| 	long              time_diff;
 | |
| #ifdef DEBUG_TIMING
 | |
| 	struct timeval    t;
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave(&(smi_info->si_lock), flags);
 | |
| #ifdef DEBUG_TIMING
 | |
| 	do_gettimeofday(&t);
 | |
| 	printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 | |
| #endif
 | |
| 	jiffies_now = jiffies;
 | |
| 	time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
 | |
| 		     * SI_USEC_PER_JIFFY);
 | |
| 	smi_result = smi_event_handler(smi_info, time_diff);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 | |
| 
 | |
| 	smi_info->last_timeout_jiffies = jiffies_now;
 | |
| 
 | |
| 	if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
 | |
| 		/* Running with interrupts, only do long timeouts. */
 | |
| 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
 | |
| 		smi_inc_stat(smi_info, long_timeouts);
 | |
| 		goto do_add_timer;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If the state machine asks for a short delay, then shorten
 | |
| 	 * the timer timeout.
 | |
| 	 */
 | |
| 	if (smi_result == SI_SM_CALL_WITH_DELAY) {
 | |
| 		smi_inc_stat(smi_info, short_timeouts);
 | |
| 		smi_info->si_timer.expires = jiffies + 1;
 | |
| 	} else {
 | |
| 		smi_inc_stat(smi_info, long_timeouts);
 | |
| 		smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
 | |
| 	}
 | |
| 
 | |
|  do_add_timer:
 | |
| 	add_timer(&(smi_info->si_timer));
 | |
| }
 | |
| 
 | |
| static irqreturn_t si_irq_handler(int irq, void *data)
 | |
| {
 | |
| 	struct smi_info *smi_info = data;
 | |
| 	unsigned long   flags;
 | |
| #ifdef DEBUG_TIMING
 | |
| 	struct timeval  t;
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave(&(smi_info->si_lock), flags);
 | |
| 
 | |
| 	smi_inc_stat(smi_info, interrupts);
 | |
| 
 | |
| #ifdef DEBUG_TIMING
 | |
| 	do_gettimeofday(&t);
 | |
| 	printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 | |
| #endif
 | |
| 	smi_event_handler(smi_info, 0);
 | |
| 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| static irqreturn_t si_bt_irq_handler(int irq, void *data)
 | |
| {
 | |
| 	struct smi_info *smi_info = data;
 | |
| 	/* We need to clear the IRQ flag for the BT interface. */
 | |
| 	smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
 | |
| 			     IPMI_BT_INTMASK_CLEAR_IRQ_BIT
 | |
| 			     | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
 | |
| 	return si_irq_handler(irq, data);
 | |
| }
 | |
| 
 | |
| static int smi_start_processing(void       *send_info,
 | |
| 				ipmi_smi_t intf)
 | |
| {
 | |
| 	struct smi_info *new_smi = send_info;
 | |
| 	int             enable = 0;
 | |
| 
 | |
| 	new_smi->intf = intf;
 | |
| 
 | |
| 	/* Try to claim any interrupts. */
 | |
| 	if (new_smi->irq_setup)
 | |
| 		new_smi->irq_setup(new_smi);
 | |
| 
 | |
| 	/* Set up the timer that drives the interface. */
 | |
| 	setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
 | |
| 	new_smi->last_timeout_jiffies = jiffies;
 | |
| 	mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if the user forcefully enabled the daemon.
 | |
| 	 */
 | |
| 	if (new_smi->intf_num < num_force_kipmid)
 | |
| 		enable = force_kipmid[new_smi->intf_num];
 | |
| 	/*
 | |
| 	 * The BT interface is efficient enough to not need a thread,
 | |
| 	 * and there is no need for a thread if we have interrupts.
 | |
| 	 */
 | |
| 	else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
 | |
| 		enable = 1;
 | |
| 
 | |
| 	if (enable) {
 | |
| 		new_smi->thread = kthread_run(ipmi_thread, new_smi,
 | |
| 					      "kipmi%d", new_smi->intf_num);
 | |
| 		if (IS_ERR(new_smi->thread)) {
 | |
| 			printk(KERN_NOTICE "ipmi_si_intf: Could not start"
 | |
| 			       " kernel thread due to error %ld, only using"
 | |
| 			       " timers to drive the interface\n",
 | |
| 			       PTR_ERR(new_smi->thread));
 | |
| 			new_smi->thread = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void set_maintenance_mode(void *send_info, int enable)
 | |
| {
 | |
| 	struct smi_info   *smi_info = send_info;
 | |
| 
 | |
| 	if (!enable)
 | |
| 		atomic_set(&smi_info->req_events, 0);
 | |
| }
 | |
| 
 | |
| static struct ipmi_smi_handlers handlers = {
 | |
| 	.owner                  = THIS_MODULE,
 | |
| 	.start_processing       = smi_start_processing,
 | |
| 	.sender			= sender,
 | |
| 	.request_events		= request_events,
 | |
| 	.set_maintenance_mode   = set_maintenance_mode,
 | |
| 	.set_run_to_completion  = set_run_to_completion,
 | |
| 	.poll			= poll,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
 | |
|  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
 | |
|  */
 | |
| 
 | |
| static LIST_HEAD(smi_infos);
 | |
| static DEFINE_MUTEX(smi_infos_lock);
 | |
| static int smi_num; /* Used to sequence the SMIs */
 | |
| 
 | |
| #define DEFAULT_REGSPACING	1
 | |
| #define DEFAULT_REGSIZE		1
 | |
| 
 | |
| static int           si_trydefaults = 1;
 | |
| static char          *si_type[SI_MAX_PARMS];
 | |
| #define MAX_SI_TYPE_STR 30
 | |
| static char          si_type_str[MAX_SI_TYPE_STR];
 | |
| static unsigned long addrs[SI_MAX_PARMS];
 | |
| static unsigned int num_addrs;
 | |
| static unsigned int  ports[SI_MAX_PARMS];
 | |
| static unsigned int num_ports;
 | |
| static int           irqs[SI_MAX_PARMS];
 | |
| static unsigned int num_irqs;
 | |
| static int           regspacings[SI_MAX_PARMS];
 | |
| static unsigned int num_regspacings;
 | |
| static int           regsizes[SI_MAX_PARMS];
 | |
| static unsigned int num_regsizes;
 | |
| static int           regshifts[SI_MAX_PARMS];
 | |
| static unsigned int num_regshifts;
 | |
| static int slave_addrs[SI_MAX_PARMS];
 | |
| static unsigned int num_slave_addrs;
 | |
| 
 | |
| #define IPMI_IO_ADDR_SPACE  0
 | |
| #define IPMI_MEM_ADDR_SPACE 1
 | |
| static char *addr_space_to_str[] = { "i/o", "mem" };
 | |
| 
 | |
| static int hotmod_handler(const char *val, struct kernel_param *kp);
 | |
| 
 | |
| module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
 | |
| MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
 | |
| 		 " Documentation/IPMI.txt in the kernel sources for the"
 | |
| 		 " gory details.");
 | |
| 
 | |
| module_param_named(trydefaults, si_trydefaults, bool, 0);
 | |
| MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
 | |
| 		 " default scan of the KCS and SMIC interface at the standard"
 | |
| 		 " address");
 | |
| module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
 | |
| MODULE_PARM_DESC(type, "Defines the type of each interface, each"
 | |
| 		 " interface separated by commas.  The types are 'kcs',"
 | |
| 		 " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
 | |
| 		 " the first interface to kcs and the second to bt");
 | |
| module_param_array(addrs, ulong, &num_addrs, 0);
 | |
| MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
 | |
| 		 " addresses separated by commas.  Only use if an interface"
 | |
| 		 " is in memory.  Otherwise, set it to zero or leave"
 | |
| 		 " it blank.");
 | |
| module_param_array(ports, uint, &num_ports, 0);
 | |
| MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
 | |
| 		 " addresses separated by commas.  Only use if an interface"
 | |
| 		 " is a port.  Otherwise, set it to zero or leave"
 | |
| 		 " it blank.");
 | |
| module_param_array(irqs, int, &num_irqs, 0);
 | |
| MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
 | |
| 		 " addresses separated by commas.  Only use if an interface"
 | |
| 		 " has an interrupt.  Otherwise, set it to zero or leave"
 | |
| 		 " it blank.");
 | |
| module_param_array(regspacings, int, &num_regspacings, 0);
 | |
| MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
 | |
| 		 " and each successive register used by the interface.  For"
 | |
| 		 " instance, if the start address is 0xca2 and the spacing"
 | |
| 		 " is 2, then the second address is at 0xca4.  Defaults"
 | |
| 		 " to 1.");
 | |
| module_param_array(regsizes, int, &num_regsizes, 0);
 | |
| MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
 | |
| 		 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
 | |
| 		 " 16-bit, 32-bit, or 64-bit register.  Use this if you"
 | |
| 		 " the 8-bit IPMI register has to be read from a larger"
 | |
| 		 " register.");
 | |
| module_param_array(regshifts, int, &num_regshifts, 0);
 | |
| MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
 | |
| 		 " IPMI register, in bits.  For instance, if the data"
 | |
| 		 " is read from a 32-bit word and the IPMI data is in"
 | |
| 		 " bit 8-15, then the shift would be 8");
 | |
| module_param_array(slave_addrs, int, &num_slave_addrs, 0);
 | |
| MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
 | |
| 		 " the controller.  Normally this is 0x20, but can be"
 | |
| 		 " overridden by this parm.  This is an array indexed"
 | |
| 		 " by interface number.");
 | |
| module_param_array(force_kipmid, int, &num_force_kipmid, 0);
 | |
| MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
 | |
| 		 " disabled(0).  Normally the IPMI driver auto-detects"
 | |
| 		 " this, but the value may be overridden by this parm.");
 | |
| module_param(unload_when_empty, int, 0);
 | |
| MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
 | |
| 		 " specified or found, default is 1.  Setting to 0"
 | |
| 		 " is useful for hot add of devices using hotmod.");
 | |
| 
 | |
| 
 | |
| static void std_irq_cleanup(struct smi_info *info)
 | |
| {
 | |
| 	if (info->si_type == SI_BT)
 | |
| 		/* Disable the interrupt in the BT interface. */
 | |
| 		info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
 | |
| 	free_irq(info->irq, info);
 | |
| }
 | |
| 
 | |
| static int std_irq_setup(struct smi_info *info)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	if (!info->irq)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (info->si_type == SI_BT) {
 | |
| 		rv = request_irq(info->irq,
 | |
| 				 si_bt_irq_handler,
 | |
| 				 IRQF_SHARED | IRQF_DISABLED,
 | |
| 				 DEVICE_NAME,
 | |
| 				 info);
 | |
| 		if (!rv)
 | |
| 			/* Enable the interrupt in the BT interface. */
 | |
| 			info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
 | |
| 					 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
 | |
| 	} else
 | |
| 		rv = request_irq(info->irq,
 | |
| 				 si_irq_handler,
 | |
| 				 IRQF_SHARED | IRQF_DISABLED,
 | |
| 				 DEVICE_NAME,
 | |
| 				 info);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: %s unable to claim interrupt %d,"
 | |
| 		       " running polled\n",
 | |
| 		       DEVICE_NAME, info->irq);
 | |
| 		info->irq = 0;
 | |
| 	} else {
 | |
| 		info->irq_cleanup = std_irq_cleanup;
 | |
| 		printk("  Using irq %d\n", info->irq);
 | |
| 	}
 | |
| 
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	unsigned int addr = io->addr_data;
 | |
| 
 | |
| 	return inb(addr + (offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static void port_outb(struct si_sm_io *io, unsigned int offset,
 | |
| 		      unsigned char b)
 | |
| {
 | |
| 	unsigned int addr = io->addr_data;
 | |
| 
 | |
| 	outb(b, addr + (offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	unsigned int addr = io->addr_data;
 | |
| 
 | |
| 	return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
 | |
| }
 | |
| 
 | |
| static void port_outw(struct si_sm_io *io, unsigned int offset,
 | |
| 		      unsigned char b)
 | |
| {
 | |
| 	unsigned int addr = io->addr_data;
 | |
| 
 | |
| 	outw(b << io->regshift, addr + (offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	unsigned int addr = io->addr_data;
 | |
| 
 | |
| 	return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
 | |
| }
 | |
| 
 | |
| static void port_outl(struct si_sm_io *io, unsigned int offset,
 | |
| 		      unsigned char b)
 | |
| {
 | |
| 	unsigned int addr = io->addr_data;
 | |
| 
 | |
| 	outl(b << io->regshift, addr+(offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static void port_cleanup(struct smi_info *info)
 | |
| {
 | |
| 	unsigned int addr = info->io.addr_data;
 | |
| 	int          idx;
 | |
| 
 | |
| 	if (addr) {
 | |
| 		for (idx = 0; idx < info->io_size; idx++)
 | |
| 			release_region(addr + idx * info->io.regspacing,
 | |
| 				       info->io.regsize);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int port_setup(struct smi_info *info)
 | |
| {
 | |
| 	unsigned int addr = info->io.addr_data;
 | |
| 	int          idx;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	info->io_cleanup = port_cleanup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the actual inb/inw/inl/etc routine to use based
 | |
| 	 * upon the register size.
 | |
| 	 */
 | |
| 	switch (info->io.regsize) {
 | |
| 	case 1:
 | |
| 		info->io.inputb = port_inb;
 | |
| 		info->io.outputb = port_outb;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		info->io.inputb = port_inw;
 | |
| 		info->io.outputb = port_outw;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		info->io.inputb = port_inl;
 | |
| 		info->io.outputb = port_outl;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
 | |
| 		       info->io.regsize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Some BIOSes reserve disjoint I/O regions in their ACPI
 | |
| 	 * tables.  This causes problems when trying to register the
 | |
| 	 * entire I/O region.  Therefore we must register each I/O
 | |
| 	 * port separately.
 | |
| 	 */
 | |
| 	for (idx = 0; idx < info->io_size; idx++) {
 | |
| 		if (request_region(addr + idx * info->io.regspacing,
 | |
| 				   info->io.regsize, DEVICE_NAME) == NULL) {
 | |
| 			/* Undo allocations */
 | |
| 			while (idx--) {
 | |
| 				release_region(addr + idx * info->io.regspacing,
 | |
| 					       info->io.regsize);
 | |
| 			}
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	return readb((io->addr)+(offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
 | |
| 		     unsigned char b)
 | |
| {
 | |
| 	writeb(b, (io->addr)+(offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
 | |
| 		& 0xff;
 | |
| }
 | |
| 
 | |
| static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
 | |
| 		     unsigned char b)
 | |
| {
 | |
| 	writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
 | |
| 		& 0xff;
 | |
| }
 | |
| 
 | |
| static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
 | |
| 		     unsigned char b)
 | |
| {
 | |
| 	writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
 | |
| }
 | |
| 
 | |
| #ifdef readq
 | |
| static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
 | |
| {
 | |
| 	return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
 | |
| 		& 0xff;
 | |
| }
 | |
| 
 | |
| static void mem_outq(struct si_sm_io *io, unsigned int offset,
 | |
| 		     unsigned char b)
 | |
| {
 | |
| 	writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void mem_cleanup(struct smi_info *info)
 | |
| {
 | |
| 	unsigned long addr = info->io.addr_data;
 | |
| 	int           mapsize;
 | |
| 
 | |
| 	if (info->io.addr) {
 | |
| 		iounmap(info->io.addr);
 | |
| 
 | |
| 		mapsize = ((info->io_size * info->io.regspacing)
 | |
| 			   - (info->io.regspacing - info->io.regsize));
 | |
| 
 | |
| 		release_mem_region(addr, mapsize);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mem_setup(struct smi_info *info)
 | |
| {
 | |
| 	unsigned long addr = info->io.addr_data;
 | |
| 	int           mapsize;
 | |
| 
 | |
| 	if (!addr)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	info->io_cleanup = mem_cleanup;
 | |
| 
 | |
| 	/*
 | |
| 	 * Figure out the actual readb/readw/readl/etc routine to use based
 | |
| 	 * upon the register size.
 | |
| 	 */
 | |
| 	switch (info->io.regsize) {
 | |
| 	case 1:
 | |
| 		info->io.inputb = intf_mem_inb;
 | |
| 		info->io.outputb = intf_mem_outb;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		info->io.inputb = intf_mem_inw;
 | |
| 		info->io.outputb = intf_mem_outw;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		info->io.inputb = intf_mem_inl;
 | |
| 		info->io.outputb = intf_mem_outl;
 | |
| 		break;
 | |
| #ifdef readq
 | |
| 	case 8:
 | |
| 		info->io.inputb = mem_inq;
 | |
| 		info->io.outputb = mem_outq;
 | |
| 		break;
 | |
| #endif
 | |
| 	default:
 | |
| 		printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
 | |
| 		       info->io.regsize);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the total amount of memory to claim.  This is an
 | |
| 	 * unusual looking calculation, but it avoids claiming any
 | |
| 	 * more memory than it has to.  It will claim everything
 | |
| 	 * between the first address to the end of the last full
 | |
| 	 * register.
 | |
| 	 */
 | |
| 	mapsize = ((info->io_size * info->io.regspacing)
 | |
| 		   - (info->io.regspacing - info->io.regsize));
 | |
| 
 | |
| 	if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
 | |
| 		return -EIO;
 | |
| 
 | |
| 	info->io.addr = ioremap(addr, mapsize);
 | |
| 	if (info->io.addr == NULL) {
 | |
| 		release_mem_region(addr, mapsize);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parms come in as <op1>[:op2[:op3...]].  ops are:
 | |
|  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
 | |
|  * Options are:
 | |
|  *   rsp=<regspacing>
 | |
|  *   rsi=<regsize>
 | |
|  *   rsh=<regshift>
 | |
|  *   irq=<irq>
 | |
|  *   ipmb=<ipmb addr>
 | |
|  */
 | |
| enum hotmod_op { HM_ADD, HM_REMOVE };
 | |
| struct hotmod_vals {
 | |
| 	char *name;
 | |
| 	int  val;
 | |
| };
 | |
| static struct hotmod_vals hotmod_ops[] = {
 | |
| 	{ "add",	HM_ADD },
 | |
| 	{ "remove",	HM_REMOVE },
 | |
| 	{ NULL }
 | |
| };
 | |
| static struct hotmod_vals hotmod_si[] = {
 | |
| 	{ "kcs",	SI_KCS },
 | |
| 	{ "smic",	SI_SMIC },
 | |
| 	{ "bt",		SI_BT },
 | |
| 	{ NULL }
 | |
| };
 | |
| static struct hotmod_vals hotmod_as[] = {
 | |
| 	{ "mem",	IPMI_MEM_ADDR_SPACE },
 | |
| 	{ "i/o",	IPMI_IO_ADDR_SPACE },
 | |
| 	{ NULL }
 | |
| };
 | |
| 
 | |
| static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
 | |
| {
 | |
| 	char *s;
 | |
| 	int  i;
 | |
| 
 | |
| 	s = strchr(*curr, ',');
 | |
| 	if (!s) {
 | |
| 		printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	*s = '\0';
 | |
| 	s++;
 | |
| 	for (i = 0; hotmod_ops[i].name; i++) {
 | |
| 		if (strcmp(*curr, v[i].name) == 0) {
 | |
| 			*val = v[i].val;
 | |
| 			*curr = s;
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
 | |
| 	return -EINVAL;
 | |
| }
 | |
| 
 | |
| static int check_hotmod_int_op(const char *curr, const char *option,
 | |
| 			       const char *name, int *val)
 | |
| {
 | |
| 	char *n;
 | |
| 
 | |
| 	if (strcmp(curr, name) == 0) {
 | |
| 		if (!option) {
 | |
| 			printk(KERN_WARNING PFX
 | |
| 			       "No option given for '%s'\n",
 | |
| 			       curr);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		*val = simple_strtoul(option, &n, 0);
 | |
| 		if ((*n != '\0') || (*option == '\0')) {
 | |
| 			printk(KERN_WARNING PFX
 | |
| 			       "Bad option given for '%s'\n",
 | |
| 			       curr);
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int hotmod_handler(const char *val, struct kernel_param *kp)
 | |
| {
 | |
| 	char *str = kstrdup(val, GFP_KERNEL);
 | |
| 	int  rv;
 | |
| 	char *next, *curr, *s, *n, *o;
 | |
| 	enum hotmod_op op;
 | |
| 	enum si_type si_type;
 | |
| 	int  addr_space;
 | |
| 	unsigned long addr;
 | |
| 	int regspacing;
 | |
| 	int regsize;
 | |
| 	int regshift;
 | |
| 	int irq;
 | |
| 	int ipmb;
 | |
| 	int ival;
 | |
| 	int len;
 | |
| 	struct smi_info *info;
 | |
| 
 | |
| 	if (!str)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/* Kill any trailing spaces, as we can get a "\n" from echo. */
 | |
| 	len = strlen(str);
 | |
| 	ival = len - 1;
 | |
| 	while ((ival >= 0) && isspace(str[ival])) {
 | |
| 		str[ival] = '\0';
 | |
| 		ival--;
 | |
| 	}
 | |
| 
 | |
| 	for (curr = str; curr; curr = next) {
 | |
| 		regspacing = 1;
 | |
| 		regsize = 1;
 | |
| 		regshift = 0;
 | |
| 		irq = 0;
 | |
| 		ipmb = 0x20;
 | |
| 
 | |
| 		next = strchr(curr, ':');
 | |
| 		if (next) {
 | |
| 			*next = '\0';
 | |
| 			next++;
 | |
| 		}
 | |
| 
 | |
| 		rv = parse_str(hotmod_ops, &ival, "operation", &curr);
 | |
| 		if (rv)
 | |
| 			break;
 | |
| 		op = ival;
 | |
| 
 | |
| 		rv = parse_str(hotmod_si, &ival, "interface type", &curr);
 | |
| 		if (rv)
 | |
| 			break;
 | |
| 		si_type = ival;
 | |
| 
 | |
| 		rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
 | |
| 		if (rv)
 | |
| 			break;
 | |
| 
 | |
| 		s = strchr(curr, ',');
 | |
| 		if (s) {
 | |
| 			*s = '\0';
 | |
| 			s++;
 | |
| 		}
 | |
| 		addr = simple_strtoul(curr, &n, 0);
 | |
| 		if ((*n != '\0') || (*curr == '\0')) {
 | |
| 			printk(KERN_WARNING PFX "Invalid hotmod address"
 | |
| 			       " '%s'\n", curr);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		while (s) {
 | |
| 			curr = s;
 | |
| 			s = strchr(curr, ',');
 | |
| 			if (s) {
 | |
| 				*s = '\0';
 | |
| 				s++;
 | |
| 			}
 | |
| 			o = strchr(curr, '=');
 | |
| 			if (o) {
 | |
| 				*o = '\0';
 | |
| 				o++;
 | |
| 			}
 | |
| 			rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
 | |
| 			if (rv < 0)
 | |
| 				goto out;
 | |
| 			else if (rv)
 | |
| 				continue;
 | |
| 			rv = check_hotmod_int_op(curr, o, "rsi", ®size);
 | |
| 			if (rv < 0)
 | |
| 				goto out;
 | |
| 			else if (rv)
 | |
| 				continue;
 | |
| 			rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
 | |
| 			if (rv < 0)
 | |
| 				goto out;
 | |
| 			else if (rv)
 | |
| 				continue;
 | |
| 			rv = check_hotmod_int_op(curr, o, "irq", &irq);
 | |
| 			if (rv < 0)
 | |
| 				goto out;
 | |
| 			else if (rv)
 | |
| 				continue;
 | |
| 			rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
 | |
| 			if (rv < 0)
 | |
| 				goto out;
 | |
| 			else if (rv)
 | |
| 				continue;
 | |
| 
 | |
| 			rv = -EINVAL;
 | |
| 			printk(KERN_WARNING PFX
 | |
| 			       "Invalid hotmod option '%s'\n",
 | |
| 			       curr);
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		if (op == HM_ADD) {
 | |
| 			info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 			if (!info) {
 | |
| 				rv = -ENOMEM;
 | |
| 				goto out;
 | |
| 			}
 | |
| 
 | |
| 			info->addr_source = "hotmod";
 | |
| 			info->si_type = si_type;
 | |
| 			info->io.addr_data = addr;
 | |
| 			info->io.addr_type = addr_space;
 | |
| 			if (addr_space == IPMI_MEM_ADDR_SPACE)
 | |
| 				info->io_setup = mem_setup;
 | |
| 			else
 | |
| 				info->io_setup = port_setup;
 | |
| 
 | |
| 			info->io.addr = NULL;
 | |
| 			info->io.regspacing = regspacing;
 | |
| 			if (!info->io.regspacing)
 | |
| 				info->io.regspacing = DEFAULT_REGSPACING;
 | |
| 			info->io.regsize = regsize;
 | |
| 			if (!info->io.regsize)
 | |
| 				info->io.regsize = DEFAULT_REGSPACING;
 | |
| 			info->io.regshift = regshift;
 | |
| 			info->irq = irq;
 | |
| 			if (info->irq)
 | |
| 				info->irq_setup = std_irq_setup;
 | |
| 			info->slave_addr = ipmb;
 | |
| 
 | |
| 			try_smi_init(info);
 | |
| 		} else {
 | |
| 			/* remove */
 | |
| 			struct smi_info *e, *tmp_e;
 | |
| 
 | |
| 			mutex_lock(&smi_infos_lock);
 | |
| 			list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
 | |
| 				if (e->io.addr_type != addr_space)
 | |
| 					continue;
 | |
| 				if (e->si_type != si_type)
 | |
| 					continue;
 | |
| 				if (e->io.addr_data == addr)
 | |
| 					cleanup_one_si(e);
 | |
| 			}
 | |
| 			mutex_unlock(&smi_infos_lock);
 | |
| 		}
 | |
| 	}
 | |
| 	rv = len;
 | |
|  out:
 | |
| 	kfree(str);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static __devinit void hardcode_find_bmc(void)
 | |
| {
 | |
| 	int             i;
 | |
| 	struct smi_info *info;
 | |
| 
 | |
| 	for (i = 0; i < SI_MAX_PARMS; i++) {
 | |
| 		if (!ports[i] && !addrs[i])
 | |
| 			continue;
 | |
| 
 | |
| 		info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 		if (!info)
 | |
| 			return;
 | |
| 
 | |
| 		info->addr_source = "hardcoded";
 | |
| 
 | |
| 		if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
 | |
| 			info->si_type = SI_KCS;
 | |
| 		} else if (strcmp(si_type[i], "smic") == 0) {
 | |
| 			info->si_type = SI_SMIC;
 | |
| 		} else if (strcmp(si_type[i], "bt") == 0) {
 | |
| 			info->si_type = SI_BT;
 | |
| 		} else {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Interface type specified "
 | |
| 			       "for interface %d, was invalid: %s\n",
 | |
| 			       i, si_type[i]);
 | |
| 			kfree(info);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (ports[i]) {
 | |
| 			/* An I/O port */
 | |
| 			info->io_setup = port_setup;
 | |
| 			info->io.addr_data = ports[i];
 | |
| 			info->io.addr_type = IPMI_IO_ADDR_SPACE;
 | |
| 		} else if (addrs[i]) {
 | |
| 			/* A memory port */
 | |
| 			info->io_setup = mem_setup;
 | |
| 			info->io.addr_data = addrs[i];
 | |
| 			info->io.addr_type = IPMI_MEM_ADDR_SPACE;
 | |
| 		} else {
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ipmi_si: Interface type specified "
 | |
| 			       "for interface %d, "
 | |
| 			       "but port and address were not set or "
 | |
| 			       "set to zero.\n", i);
 | |
| 			kfree(info);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		info->io.addr = NULL;
 | |
| 		info->io.regspacing = regspacings[i];
 | |
| 		if (!info->io.regspacing)
 | |
| 			info->io.regspacing = DEFAULT_REGSPACING;
 | |
| 		info->io.regsize = regsizes[i];
 | |
| 		if (!info->io.regsize)
 | |
| 			info->io.regsize = DEFAULT_REGSPACING;
 | |
| 		info->io.regshift = regshifts[i];
 | |
| 		info->irq = irqs[i];
 | |
| 		if (info->irq)
 | |
| 			info->irq_setup = std_irq_setup;
 | |
| 
 | |
| 		try_smi_init(info);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 
 | |
| #include <linux/acpi.h>
 | |
| 
 | |
| /*
 | |
|  * Once we get an ACPI failure, we don't try any more, because we go
 | |
|  * through the tables sequentially.  Once we don't find a table, there
 | |
|  * are no more.
 | |
|  */
 | |
| static int acpi_failure;
 | |
| 
 | |
| /* For GPE-type interrupts. */
 | |
| static u32 ipmi_acpi_gpe(void *context)
 | |
| {
 | |
| 	struct smi_info *smi_info = context;
 | |
| 	unsigned long   flags;
 | |
| #ifdef DEBUG_TIMING
 | |
| 	struct timeval t;
 | |
| #endif
 | |
| 
 | |
| 	spin_lock_irqsave(&(smi_info->si_lock), flags);
 | |
| 
 | |
| 	smi_inc_stat(smi_info, interrupts);
 | |
| 
 | |
| #ifdef DEBUG_TIMING
 | |
| 	do_gettimeofday(&t);
 | |
| 	printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
 | |
| #endif
 | |
| 	smi_event_handler(smi_info, 0);
 | |
| 	spin_unlock_irqrestore(&(smi_info->si_lock), flags);
 | |
| 
 | |
| 	return ACPI_INTERRUPT_HANDLED;
 | |
| }
 | |
| 
 | |
| static void acpi_gpe_irq_cleanup(struct smi_info *info)
 | |
| {
 | |
| 	if (!info->irq)
 | |
| 		return;
 | |
| 
 | |
| 	acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
 | |
| }
 | |
| 
 | |
| static int acpi_gpe_irq_setup(struct smi_info *info)
 | |
| {
 | |
| 	acpi_status status;
 | |
| 
 | |
| 	if (!info->irq)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* FIXME - is level triggered right? */
 | |
| 	status = acpi_install_gpe_handler(NULL,
 | |
| 					  info->irq,
 | |
| 					  ACPI_GPE_LEVEL_TRIGGERED,
 | |
| 					  &ipmi_acpi_gpe,
 | |
| 					  info);
 | |
| 	if (status != AE_OK) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: %s unable to claim ACPI GPE %d,"
 | |
| 		       " running polled\n",
 | |
| 		       DEVICE_NAME, info->irq);
 | |
| 		info->irq = 0;
 | |
| 		return -EINVAL;
 | |
| 	} else {
 | |
| 		info->irq_cleanup = acpi_gpe_irq_cleanup;
 | |
| 		printk("  Using ACPI GPE %d\n", info->irq);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Defined at
 | |
|  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
 | |
|  * Docs/TechPapers/IA64/hpspmi.pdf
 | |
|  */
 | |
| struct SPMITable {
 | |
| 	s8	Signature[4];
 | |
| 	u32	Length;
 | |
| 	u8	Revision;
 | |
| 	u8	Checksum;
 | |
| 	s8	OEMID[6];
 | |
| 	s8	OEMTableID[8];
 | |
| 	s8	OEMRevision[4];
 | |
| 	s8	CreatorID[4];
 | |
| 	s8	CreatorRevision[4];
 | |
| 	u8	InterfaceType;
 | |
| 	u8	IPMIlegacy;
 | |
| 	s16	SpecificationRevision;
 | |
| 
 | |
| 	/*
 | |
| 	 * Bit 0 - SCI interrupt supported
 | |
| 	 * Bit 1 - I/O APIC/SAPIC
 | |
| 	 */
 | |
| 	u8	InterruptType;
 | |
| 
 | |
| 	/*
 | |
| 	 * If bit 0 of InterruptType is set, then this is the SCI
 | |
| 	 * interrupt in the GPEx_STS register.
 | |
| 	 */
 | |
| 	u8	GPE;
 | |
| 
 | |
| 	s16	Reserved;
 | |
| 
 | |
| 	/*
 | |
| 	 * If bit 1 of InterruptType is set, then this is the I/O
 | |
| 	 * APIC/SAPIC interrupt.
 | |
| 	 */
 | |
| 	u32	GlobalSystemInterrupt;
 | |
| 
 | |
| 	/* The actual register address. */
 | |
| 	struct acpi_generic_address addr;
 | |
| 
 | |
| 	u8	UID[4];
 | |
| 
 | |
| 	s8      spmi_id[1]; /* A '\0' terminated array starts here. */
 | |
| };
 | |
| 
 | |
| static __devinit int try_init_acpi(struct SPMITable *spmi)
 | |
| {
 | |
| 	struct smi_info  *info;
 | |
| 	u8 		 addr_space;
 | |
| 
 | |
| 	if (spmi->IPMIlegacy != 1) {
 | |
| 	    printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
 | |
| 	    return -ENODEV;
 | |
| 	}
 | |
| 
 | |
| 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
 | |
| 		addr_space = IPMI_MEM_ADDR_SPACE;
 | |
| 	else
 | |
| 		addr_space = IPMI_IO_ADDR_SPACE;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info) {
 | |
| 		printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	info->addr_source = "ACPI";
 | |
| 
 | |
| 	/* Figure out the interface type. */
 | |
| 	switch (spmi->InterfaceType) {
 | |
| 	case 1:	/* KCS */
 | |
| 		info->si_type = SI_KCS;
 | |
| 		break;
 | |
| 	case 2:	/* SMIC */
 | |
| 		info->si_type = SI_SMIC;
 | |
| 		break;
 | |
| 	case 3:	/* BT */
 | |
| 		info->si_type = SI_BT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
 | |
| 			spmi->InterfaceType);
 | |
| 		kfree(info);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (spmi->InterruptType & 1) {
 | |
| 		/* We've got a GPE interrupt. */
 | |
| 		info->irq = spmi->GPE;
 | |
| 		info->irq_setup = acpi_gpe_irq_setup;
 | |
| 	} else if (spmi->InterruptType & 2) {
 | |
| 		/* We've got an APIC/SAPIC interrupt. */
 | |
| 		info->irq = spmi->GlobalSystemInterrupt;
 | |
| 		info->irq_setup = std_irq_setup;
 | |
| 	} else {
 | |
| 		/* Use the default interrupt setting. */
 | |
| 		info->irq = 0;
 | |
| 		info->irq_setup = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (spmi->addr.bit_width) {
 | |
| 		/* A (hopefully) properly formed register bit width. */
 | |
| 		info->io.regspacing = spmi->addr.bit_width / 8;
 | |
| 	} else {
 | |
| 		info->io.regspacing = DEFAULT_REGSPACING;
 | |
| 	}
 | |
| 	info->io.regsize = info->io.regspacing;
 | |
| 	info->io.regshift = spmi->addr.bit_offset;
 | |
| 
 | |
| 	if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
 | |
| 		info->io_setup = mem_setup;
 | |
| 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
 | |
| 	} else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
 | |
| 		info->io_setup = port_setup;
 | |
| 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
 | |
| 	} else {
 | |
| 		kfree(info);
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Unknown ACPI I/O Address type\n");
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	info->io.addr_data = spmi->addr.address;
 | |
| 
 | |
| 	try_smi_init(info);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __devinit void acpi_find_bmc(void)
 | |
| {
 | |
| 	acpi_status      status;
 | |
| 	struct SPMITable *spmi;
 | |
| 	int              i;
 | |
| 
 | |
| 	if (acpi_disabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (acpi_failure)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; ; i++) {
 | |
| 		status = acpi_get_table(ACPI_SIG_SPMI, i+1,
 | |
| 					(struct acpi_table_header **)&spmi);
 | |
| 		if (status != AE_OK)
 | |
| 			return;
 | |
| 
 | |
| 		try_init_acpi(spmi);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_DMI
 | |
| struct dmi_ipmi_data {
 | |
| 	u8   		type;
 | |
| 	u8   		addr_space;
 | |
| 	unsigned long	base_addr;
 | |
| 	u8   		irq;
 | |
| 	u8              offset;
 | |
| 	u8              slave_addr;
 | |
| };
 | |
| 
 | |
| static int __devinit decode_dmi(const struct dmi_header *dm,
 | |
| 				struct dmi_ipmi_data *dmi)
 | |
| {
 | |
| 	const u8	*data = (const u8 *)dm;
 | |
| 	unsigned long  	base_addr;
 | |
| 	u8		reg_spacing;
 | |
| 	u8              len = dm->length;
 | |
| 
 | |
| 	dmi->type = data[4];
 | |
| 
 | |
| 	memcpy(&base_addr, data+8, sizeof(unsigned long));
 | |
| 	if (len >= 0x11) {
 | |
| 		if (base_addr & 1) {
 | |
| 			/* I/O */
 | |
| 			base_addr &= 0xFFFE;
 | |
| 			dmi->addr_space = IPMI_IO_ADDR_SPACE;
 | |
| 		} else
 | |
| 			/* Memory */
 | |
| 			dmi->addr_space = IPMI_MEM_ADDR_SPACE;
 | |
| 
 | |
| 		/* If bit 4 of byte 0x10 is set, then the lsb for the address
 | |
| 		   is odd. */
 | |
| 		dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
 | |
| 
 | |
| 		dmi->irq = data[0x11];
 | |
| 
 | |
| 		/* The top two bits of byte 0x10 hold the register spacing. */
 | |
| 		reg_spacing = (data[0x10] & 0xC0) >> 6;
 | |
| 		switch (reg_spacing) {
 | |
| 		case 0x00: /* Byte boundaries */
 | |
| 		    dmi->offset = 1;
 | |
| 		    break;
 | |
| 		case 0x01: /* 32-bit boundaries */
 | |
| 		    dmi->offset = 4;
 | |
| 		    break;
 | |
| 		case 0x02: /* 16-byte boundaries */
 | |
| 		    dmi->offset = 16;
 | |
| 		    break;
 | |
| 		default:
 | |
| 		    /* Some other interface, just ignore it. */
 | |
| 		    return -EIO;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Old DMI spec. */
 | |
| 		/*
 | |
| 		 * Note that technically, the lower bit of the base
 | |
| 		 * address should be 1 if the address is I/O and 0 if
 | |
| 		 * the address is in memory.  So many systems get that
 | |
| 		 * wrong (and all that I have seen are I/O) so we just
 | |
| 		 * ignore that bit and assume I/O.  Systems that use
 | |
| 		 * memory should use the newer spec, anyway.
 | |
| 		 */
 | |
| 		dmi->base_addr = base_addr & 0xfffe;
 | |
| 		dmi->addr_space = IPMI_IO_ADDR_SPACE;
 | |
| 		dmi->offset = 1;
 | |
| 	}
 | |
| 
 | |
| 	dmi->slave_addr = data[6];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
 | |
| {
 | |
| 	struct smi_info *info;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ipmi_si: Could not allocate SI data\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	info->addr_source = "SMBIOS";
 | |
| 
 | |
| 	switch (ipmi_data->type) {
 | |
| 	case 0x01: /* KCS */
 | |
| 		info->si_type = SI_KCS;
 | |
| 		break;
 | |
| 	case 0x02: /* SMIC */
 | |
| 		info->si_type = SI_SMIC;
 | |
| 		break;
 | |
| 	case 0x03: /* BT */
 | |
| 		info->si_type = SI_BT;
 | |
| 		break;
 | |
| 	default:
 | |
| 		kfree(info);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	switch (ipmi_data->addr_space) {
 | |
| 	case IPMI_MEM_ADDR_SPACE:
 | |
| 		info->io_setup = mem_setup;
 | |
| 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
 | |
| 		break;
 | |
| 
 | |
| 	case IPMI_IO_ADDR_SPACE:
 | |
| 		info->io_setup = port_setup;
 | |
| 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		kfree(info);
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
 | |
| 		       ipmi_data->addr_space);
 | |
| 		return;
 | |
| 	}
 | |
| 	info->io.addr_data = ipmi_data->base_addr;
 | |
| 
 | |
| 	info->io.regspacing = ipmi_data->offset;
 | |
| 	if (!info->io.regspacing)
 | |
| 		info->io.regspacing = DEFAULT_REGSPACING;
 | |
| 	info->io.regsize = DEFAULT_REGSPACING;
 | |
| 	info->io.regshift = 0;
 | |
| 
 | |
| 	info->slave_addr = ipmi_data->slave_addr;
 | |
| 
 | |
| 	info->irq = ipmi_data->irq;
 | |
| 	if (info->irq)
 | |
| 		info->irq_setup = std_irq_setup;
 | |
| 
 | |
| 	try_smi_init(info);
 | |
| }
 | |
| 
 | |
| static void __devinit dmi_find_bmc(void)
 | |
| {
 | |
| 	const struct dmi_device *dev = NULL;
 | |
| 	struct dmi_ipmi_data data;
 | |
| 	int                  rv;
 | |
| 
 | |
| 	while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
 | |
| 		memset(&data, 0, sizeof(data));
 | |
| 		rv = decode_dmi((const struct dmi_header *) dev->device_data,
 | |
| 				&data);
 | |
| 		if (!rv)
 | |
| 			try_init_dmi(&data);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_DMI */
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 
 | |
| #define PCI_ERMC_CLASSCODE		0x0C0700
 | |
| #define PCI_ERMC_CLASSCODE_MASK		0xffffff00
 | |
| #define PCI_ERMC_CLASSCODE_TYPE_MASK	0xff
 | |
| #define PCI_ERMC_CLASSCODE_TYPE_SMIC	0x00
 | |
| #define PCI_ERMC_CLASSCODE_TYPE_KCS	0x01
 | |
| #define PCI_ERMC_CLASSCODE_TYPE_BT	0x02
 | |
| 
 | |
| #define PCI_HP_VENDOR_ID    0x103C
 | |
| #define PCI_MMC_DEVICE_ID   0x121A
 | |
| #define PCI_MMC_ADDR_CW     0x10
 | |
| 
 | |
| static void ipmi_pci_cleanup(struct smi_info *info)
 | |
| {
 | |
| 	struct pci_dev *pdev = info->addr_source_data;
 | |
| 
 | |
| 	pci_disable_device(pdev);
 | |
| }
 | |
| 
 | |
| static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
 | |
| 				    const struct pci_device_id *ent)
 | |
| {
 | |
| 	int rv;
 | |
| 	int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
 | |
| 	struct smi_info *info;
 | |
| 	int first_reg_offset = 0;
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 	if (!info)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	info->addr_source = "PCI";
 | |
| 
 | |
| 	switch (class_type) {
 | |
| 	case PCI_ERMC_CLASSCODE_TYPE_SMIC:
 | |
| 		info->si_type = SI_SMIC;
 | |
| 		break;
 | |
| 
 | |
| 	case PCI_ERMC_CLASSCODE_TYPE_KCS:
 | |
| 		info->si_type = SI_KCS;
 | |
| 		break;
 | |
| 
 | |
| 	case PCI_ERMC_CLASSCODE_TYPE_BT:
 | |
| 		info->si_type = SI_BT;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		kfree(info);
 | |
| 		printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
 | |
| 		       pci_name(pdev), class_type);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	rv = pci_enable_device(pdev);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
 | |
| 		       pci_name(pdev));
 | |
| 		kfree(info);
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	info->addr_source_cleanup = ipmi_pci_cleanup;
 | |
| 	info->addr_source_data = pdev;
 | |
| 
 | |
| 	if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
 | |
| 		first_reg_offset = 1;
 | |
| 
 | |
| 	if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
 | |
| 		info->io_setup = port_setup;
 | |
| 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
 | |
| 	} else {
 | |
| 		info->io_setup = mem_setup;
 | |
| 		info->io.addr_type = IPMI_MEM_ADDR_SPACE;
 | |
| 	}
 | |
| 	info->io.addr_data = pci_resource_start(pdev, 0);
 | |
| 
 | |
| 	info->io.regspacing = DEFAULT_REGSPACING;
 | |
| 	info->io.regsize = DEFAULT_REGSPACING;
 | |
| 	info->io.regshift = 0;
 | |
| 
 | |
| 	info->irq = pdev->irq;
 | |
| 	if (info->irq)
 | |
| 		info->irq_setup = std_irq_setup;
 | |
| 
 | |
| 	info->dev = &pdev->dev;
 | |
| 	pci_set_drvdata(pdev, info);
 | |
| 
 | |
| 	return try_smi_init(info);
 | |
| }
 | |
| 
 | |
| static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
 | |
| {
 | |
| 	struct smi_info *info = pci_get_drvdata(pdev);
 | |
| 	cleanup_one_si(info);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PM
 | |
| static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int ipmi_pci_resume(struct pci_dev *pdev)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static struct pci_device_id ipmi_pci_devices[] = {
 | |
| 	{ PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
 | |
| 	{ PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
 | |
| 	{ 0, }
 | |
| };
 | |
| MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
 | |
| 
 | |
| static struct pci_driver ipmi_pci_driver = {
 | |
| 	.name =         DEVICE_NAME,
 | |
| 	.id_table =     ipmi_pci_devices,
 | |
| 	.probe =        ipmi_pci_probe,
 | |
| 	.remove =       __devexit_p(ipmi_pci_remove),
 | |
| #ifdef CONFIG_PM
 | |
| 	.suspend =      ipmi_pci_suspend,
 | |
| 	.resume =       ipmi_pci_resume,
 | |
| #endif
 | |
| };
 | |
| #endif /* CONFIG_PCI */
 | |
| 
 | |
| 
 | |
| #ifdef CONFIG_PPC_OF
 | |
| static int __devinit ipmi_of_probe(struct of_device *dev,
 | |
| 			 const struct of_device_id *match)
 | |
| {
 | |
| 	struct smi_info *info;
 | |
| 	struct resource resource;
 | |
| 	const int *regsize, *regspacing, *regshift;
 | |
| 	struct device_node *np = dev->node;
 | |
| 	int ret;
 | |
| 	int proplen;
 | |
| 
 | |
| 	dev_info(&dev->dev, PFX "probing via device tree\n");
 | |
| 
 | |
| 	ret = of_address_to_resource(np, 0, &resource);
 | |
| 	if (ret) {
 | |
| 		dev_warn(&dev->dev, PFX "invalid address from OF\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	regsize = of_get_property(np, "reg-size", &proplen);
 | |
| 	if (regsize && proplen != 4) {
 | |
| 		dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	regspacing = of_get_property(np, "reg-spacing", &proplen);
 | |
| 	if (regspacing && proplen != 4) {
 | |
| 		dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	regshift = of_get_property(np, "reg-shift", &proplen);
 | |
| 	if (regshift && proplen != 4) {
 | |
| 		dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 
 | |
| 	if (!info) {
 | |
| 		dev_err(&dev->dev,
 | |
| 			PFX "could not allocate memory for OF probe\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	info->si_type		= (enum si_type) match->data;
 | |
| 	info->addr_source	= "device-tree";
 | |
| 	info->irq_setup		= std_irq_setup;
 | |
| 
 | |
| 	if (resource.flags & IORESOURCE_IO) {
 | |
| 		info->io_setup		= port_setup;
 | |
| 		info->io.addr_type	= IPMI_IO_ADDR_SPACE;
 | |
| 	} else {
 | |
| 		info->io_setup		= mem_setup;
 | |
| 		info->io.addr_type	= IPMI_MEM_ADDR_SPACE;
 | |
| 	}
 | |
| 
 | |
| 	info->io.addr_data	= resource.start;
 | |
| 
 | |
| 	info->io.regsize	= regsize ? *regsize : DEFAULT_REGSIZE;
 | |
| 	info->io.regspacing	= regspacing ? *regspacing : DEFAULT_REGSPACING;
 | |
| 	info->io.regshift	= regshift ? *regshift : 0;
 | |
| 
 | |
| 	info->irq		= irq_of_parse_and_map(dev->node, 0);
 | |
| 	info->dev		= &dev->dev;
 | |
| 
 | |
| 	dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
 | |
| 		info->io.addr_data, info->io.regsize, info->io.regspacing,
 | |
| 		info->irq);
 | |
| 
 | |
| 	dev_set_drvdata(&dev->dev, info);
 | |
| 
 | |
| 	return try_smi_init(info);
 | |
| }
 | |
| 
 | |
| static int __devexit ipmi_of_remove(struct of_device *dev)
 | |
| {
 | |
| 	cleanup_one_si(dev_get_drvdata(&dev->dev));
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct of_device_id ipmi_match[] =
 | |
| {
 | |
| 	{ .type = "ipmi", .compatible = "ipmi-kcs",
 | |
| 	  .data = (void *)(unsigned long) SI_KCS },
 | |
| 	{ .type = "ipmi", .compatible = "ipmi-smic",
 | |
| 	  .data = (void *)(unsigned long) SI_SMIC },
 | |
| 	{ .type = "ipmi", .compatible = "ipmi-bt",
 | |
| 	  .data = (void *)(unsigned long) SI_BT },
 | |
| 	{},
 | |
| };
 | |
| 
 | |
| static struct of_platform_driver ipmi_of_platform_driver = {
 | |
| 	.name		= "ipmi",
 | |
| 	.match_table	= ipmi_match,
 | |
| 	.probe		= ipmi_of_probe,
 | |
| 	.remove		= __devexit_p(ipmi_of_remove),
 | |
| };
 | |
| #endif /* CONFIG_PPC_OF */
 | |
| 
 | |
| static int wait_for_msg_done(struct smi_info *smi_info)
 | |
| {
 | |
| 	enum si_sm_result     smi_result;
 | |
| 
 | |
| 	smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
 | |
| 	for (;;) {
 | |
| 		if (smi_result == SI_SM_CALL_WITH_DELAY ||
 | |
| 		    smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
 | |
| 			schedule_timeout_uninterruptible(1);
 | |
| 			smi_result = smi_info->handlers->event(
 | |
| 				smi_info->si_sm, 100);
 | |
| 		} else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
 | |
| 			smi_result = smi_info->handlers->event(
 | |
| 				smi_info->si_sm, 0);
 | |
| 		} else
 | |
| 			break;
 | |
| 	}
 | |
| 	if (smi_result == SI_SM_HOSED)
 | |
| 		/*
 | |
| 		 * We couldn't get the state machine to run, so whatever's at
 | |
| 		 * the port is probably not an IPMI SMI interface.
 | |
| 		 */
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int try_get_dev_id(struct smi_info *smi_info)
 | |
| {
 | |
| 	unsigned char         msg[2];
 | |
| 	unsigned char         *resp;
 | |
| 	unsigned long         resp_len;
 | |
| 	int                   rv = 0;
 | |
| 
 | |
| 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
 | |
| 	if (!resp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	/*
 | |
| 	 * Do a Get Device ID command, since it comes back with some
 | |
| 	 * useful info.
 | |
| 	 */
 | |
| 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
 | |
| 	msg[1] = IPMI_GET_DEVICE_ID_CMD;
 | |
| 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 | |
| 
 | |
| 	rv = wait_for_msg_done(smi_info);
 | |
| 	if (rv)
 | |
| 		goto out;
 | |
| 
 | |
| 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
 | |
| 						  resp, IPMI_MAX_MSG_LENGTH);
 | |
| 
 | |
| 	/* Check and record info from the get device id, in case we need it. */
 | |
| 	rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
 | |
| 
 | |
|  out:
 | |
| 	kfree(resp);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static int try_enable_event_buffer(struct smi_info *smi_info)
 | |
| {
 | |
| 	unsigned char         msg[3];
 | |
| 	unsigned char         *resp;
 | |
| 	unsigned long         resp_len;
 | |
| 	int                   rv = 0;
 | |
| 
 | |
| 	resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
 | |
| 	if (!resp)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
 | |
| 	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
 | |
| 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
 | |
| 
 | |
| 	rv = wait_for_msg_done(smi_info);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Error getting response from get global,"
 | |
| 		       " enables command, the event buffer is not"
 | |
| 		       " enabled.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
 | |
| 						  resp, IPMI_MAX_MSG_LENGTH);
 | |
| 
 | |
| 	if (resp_len < 4 ||
 | |
| 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
 | |
| 			resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
 | |
| 			resp[2] != 0) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Invalid return from get global"
 | |
| 		       " enables command, cannot enable the event"
 | |
| 		       " buffer.\n");
 | |
| 		rv = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
 | |
| 		/* buffer is already enabled, nothing to do. */
 | |
| 		goto out;
 | |
| 
 | |
| 	msg[0] = IPMI_NETFN_APP_REQUEST << 2;
 | |
| 	msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
 | |
| 	msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
 | |
| 	smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
 | |
| 
 | |
| 	rv = wait_for_msg_done(smi_info);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Error getting response from set global,"
 | |
| 		       " enables command, the event buffer is not"
 | |
| 		       " enabled.\n");
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	resp_len = smi_info->handlers->get_result(smi_info->si_sm,
 | |
| 						  resp, IPMI_MAX_MSG_LENGTH);
 | |
| 
 | |
| 	if (resp_len < 3 ||
 | |
| 			resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
 | |
| 			resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Invalid return from get global,"
 | |
| 		       "enables command, not enable the event"
 | |
| 		       " buffer.\n");
 | |
| 		rv = -EINVAL;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (resp[2] != 0)
 | |
| 		/*
 | |
| 		 * An error when setting the event buffer bit means
 | |
| 		 * that the event buffer is not supported.
 | |
| 		 */
 | |
| 		rv = -ENOENT;
 | |
|  out:
 | |
| 	kfree(resp);
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static int type_file_read_proc(char *page, char **start, off_t off,
 | |
| 			       int count, int *eof, void *data)
 | |
| {
 | |
| 	struct smi_info *smi = data;
 | |
| 
 | |
| 	return sprintf(page, "%s\n", si_to_str[smi->si_type]);
 | |
| }
 | |
| 
 | |
| static int stat_file_read_proc(char *page, char **start, off_t off,
 | |
| 			       int count, int *eof, void *data)
 | |
| {
 | |
| 	char            *out = (char *) page;
 | |
| 	struct smi_info *smi = data;
 | |
| 
 | |
| 	out += sprintf(out, "interrupts_enabled:    %d\n",
 | |
| 		       smi->irq && !smi->interrupt_disabled);
 | |
| 	out += sprintf(out, "short_timeouts:        %u\n",
 | |
| 		       smi_get_stat(smi, short_timeouts));
 | |
| 	out += sprintf(out, "long_timeouts:         %u\n",
 | |
| 		       smi_get_stat(smi, long_timeouts));
 | |
| 	out += sprintf(out, "idles:                 %u\n",
 | |
| 		       smi_get_stat(smi, idles));
 | |
| 	out += sprintf(out, "interrupts:            %u\n",
 | |
| 		       smi_get_stat(smi, interrupts));
 | |
| 	out += sprintf(out, "attentions:            %u\n",
 | |
| 		       smi_get_stat(smi, attentions));
 | |
| 	out += sprintf(out, "flag_fetches:          %u\n",
 | |
| 		       smi_get_stat(smi, flag_fetches));
 | |
| 	out += sprintf(out, "hosed_count:           %u\n",
 | |
| 		       smi_get_stat(smi, hosed_count));
 | |
| 	out += sprintf(out, "complete_transactions: %u\n",
 | |
| 		       smi_get_stat(smi, complete_transactions));
 | |
| 	out += sprintf(out, "events:                %u\n",
 | |
| 		       smi_get_stat(smi, events));
 | |
| 	out += sprintf(out, "watchdog_pretimeouts:  %u\n",
 | |
| 		       smi_get_stat(smi, watchdog_pretimeouts));
 | |
| 	out += sprintf(out, "incoming_messages:     %u\n",
 | |
| 		       smi_get_stat(smi, incoming_messages));
 | |
| 
 | |
| 	return out - page;
 | |
| }
 | |
| 
 | |
| static int param_read_proc(char *page, char **start, off_t off,
 | |
| 			   int count, int *eof, void *data)
 | |
| {
 | |
| 	struct smi_info *smi = data;
 | |
| 
 | |
| 	return sprintf(page,
 | |
| 		       "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
 | |
| 		       si_to_str[smi->si_type],
 | |
| 		       addr_space_to_str[smi->io.addr_type],
 | |
| 		       smi->io.addr_data,
 | |
| 		       smi->io.regspacing,
 | |
| 		       smi->io.regsize,
 | |
| 		       smi->io.regshift,
 | |
| 		       smi->irq,
 | |
| 		       smi->slave_addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * oem_data_avail_to_receive_msg_avail
 | |
|  * @info - smi_info structure with msg_flags set
 | |
|  *
 | |
|  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
 | |
|  * Returns 1 indicating need to re-run handle_flags().
 | |
|  */
 | |
| static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
 | |
| {
 | |
| 	smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
 | |
| 			       RECEIVE_MSG_AVAIL);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_dell_poweredge_oem_data_handler
 | |
|  * @info - smi_info.device_id must be populated
 | |
|  *
 | |
|  * Systems that match, but have firmware version < 1.40 may assert
 | |
|  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
 | |
|  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
 | |
|  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
 | |
|  * as RECEIVE_MSG_AVAIL instead.
 | |
|  *
 | |
|  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
 | |
|  * assert the OEM[012] bits, and if it did, the driver would have to
 | |
|  * change to handle that properly, we don't actually check for the
 | |
|  * firmware version.
 | |
|  * Device ID = 0x20                BMC on PowerEdge 8G servers
 | |
|  * Device Revision = 0x80
 | |
|  * Firmware Revision1 = 0x01       BMC version 1.40
 | |
|  * Firmware Revision2 = 0x40       BCD encoded
 | |
|  * IPMI Version = 0x51             IPMI 1.5
 | |
|  * Manufacturer ID = A2 02 00      Dell IANA
 | |
|  *
 | |
|  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
 | |
|  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
 | |
|  *
 | |
|  */
 | |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
 | |
| #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
 | |
| #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
 | |
| #define DELL_IANA_MFR_ID 0x0002a2
 | |
| static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
 | |
| {
 | |
| 	struct ipmi_device_id *id = &smi_info->device_id;
 | |
| 	if (id->manufacturer_id == DELL_IANA_MFR_ID) {
 | |
| 		if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
 | |
| 		    id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
 | |
| 		    id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
 | |
| 			smi_info->oem_data_avail_handler =
 | |
| 				oem_data_avail_to_receive_msg_avail;
 | |
| 		} else if (ipmi_version_major(id) < 1 ||
 | |
| 			   (ipmi_version_major(id) == 1 &&
 | |
| 			    ipmi_version_minor(id) < 5)) {
 | |
| 			smi_info->oem_data_avail_handler =
 | |
| 				oem_data_avail_to_receive_msg_avail;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
 | |
| static void return_hosed_msg_badsize(struct smi_info *smi_info)
 | |
| {
 | |
| 	struct ipmi_smi_msg *msg = smi_info->curr_msg;
 | |
| 
 | |
| 	/* Make it a reponse */
 | |
| 	msg->rsp[0] = msg->data[0] | 4;
 | |
| 	msg->rsp[1] = msg->data[1];
 | |
| 	msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
 | |
| 	msg->rsp_size = 3;
 | |
| 	smi_info->curr_msg = NULL;
 | |
| 	deliver_recv_msg(smi_info, msg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dell_poweredge_bt_xaction_handler
 | |
|  * @info - smi_info.device_id must be populated
 | |
|  *
 | |
|  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
 | |
|  * not respond to a Get SDR command if the length of the data
 | |
|  * requested is exactly 0x3A, which leads to command timeouts and no
 | |
|  * data returned.  This intercepts such commands, and causes userspace
 | |
|  * callers to try again with a different-sized buffer, which succeeds.
 | |
|  */
 | |
| 
 | |
| #define STORAGE_NETFN 0x0A
 | |
| #define STORAGE_CMD_GET_SDR 0x23
 | |
| static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
 | |
| 					     unsigned long unused,
 | |
| 					     void *in)
 | |
| {
 | |
| 	struct smi_info *smi_info = in;
 | |
| 	unsigned char *data = smi_info->curr_msg->data;
 | |
| 	unsigned int size   = smi_info->curr_msg->data_size;
 | |
| 	if (size >= 8 &&
 | |
| 	    (data[0]>>2) == STORAGE_NETFN &&
 | |
| 	    data[1] == STORAGE_CMD_GET_SDR &&
 | |
| 	    data[7] == 0x3A) {
 | |
| 		return_hosed_msg_badsize(smi_info);
 | |
| 		return NOTIFY_STOP;
 | |
| 	}
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block dell_poweredge_bt_xaction_notifier = {
 | |
| 	.notifier_call	= dell_poweredge_bt_xaction_handler,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * setup_dell_poweredge_bt_xaction_handler
 | |
|  * @info - smi_info.device_id must be filled in already
 | |
|  *
 | |
|  * Fills in smi_info.device_id.start_transaction_pre_hook
 | |
|  * when we know what function to use there.
 | |
|  */
 | |
| static void
 | |
| setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
 | |
| {
 | |
| 	struct ipmi_device_id *id = &smi_info->device_id;
 | |
| 	if (id->manufacturer_id == DELL_IANA_MFR_ID &&
 | |
| 	    smi_info->si_type == SI_BT)
 | |
| 		register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * setup_oem_data_handler
 | |
|  * @info - smi_info.device_id must be filled in already
 | |
|  *
 | |
|  * Fills in smi_info.device_id.oem_data_available_handler
 | |
|  * when we know what function to use there.
 | |
|  */
 | |
| 
 | |
| static void setup_oem_data_handler(struct smi_info *smi_info)
 | |
| {
 | |
| 	setup_dell_poweredge_oem_data_handler(smi_info);
 | |
| }
 | |
| 
 | |
| static void setup_xaction_handlers(struct smi_info *smi_info)
 | |
| {
 | |
| 	setup_dell_poweredge_bt_xaction_handler(smi_info);
 | |
| }
 | |
| 
 | |
| static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
 | |
| {
 | |
| 	if (smi_info->intf) {
 | |
| 		/*
 | |
| 		 * The timer and thread are only running if the
 | |
| 		 * interface has been started up and registered.
 | |
| 		 */
 | |
| 		if (smi_info->thread != NULL)
 | |
| 			kthread_stop(smi_info->thread);
 | |
| 		del_timer_sync(&smi_info->si_timer);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __devinitdata struct ipmi_default_vals
 | |
| {
 | |
| 	int type;
 | |
| 	int port;
 | |
| } ipmi_defaults[] =
 | |
| {
 | |
| 	{ .type = SI_KCS, .port = 0xca2 },
 | |
| 	{ .type = SI_SMIC, .port = 0xca9 },
 | |
| 	{ .type = SI_BT, .port = 0xe4 },
 | |
| 	{ .port = 0 }
 | |
| };
 | |
| 
 | |
| static __devinit void default_find_bmc(void)
 | |
| {
 | |
| 	struct smi_info *info;
 | |
| 	int             i;
 | |
| 
 | |
| 	for (i = 0; ; i++) {
 | |
| 		if (!ipmi_defaults[i].port)
 | |
| 			break;
 | |
| #ifdef CONFIG_PPC
 | |
| 		if (check_legacy_ioport(ipmi_defaults[i].port))
 | |
| 			continue;
 | |
| #endif
 | |
| 		info = kzalloc(sizeof(*info), GFP_KERNEL);
 | |
| 		if (!info)
 | |
| 			return;
 | |
| 
 | |
| 		info->addr_source = NULL;
 | |
| 
 | |
| 		info->si_type = ipmi_defaults[i].type;
 | |
| 		info->io_setup = port_setup;
 | |
| 		info->io.addr_data = ipmi_defaults[i].port;
 | |
| 		info->io.addr_type = IPMI_IO_ADDR_SPACE;
 | |
| 
 | |
| 		info->io.addr = NULL;
 | |
| 		info->io.regspacing = DEFAULT_REGSPACING;
 | |
| 		info->io.regsize = DEFAULT_REGSPACING;
 | |
| 		info->io.regshift = 0;
 | |
| 
 | |
| 		if (try_smi_init(info) == 0) {
 | |
| 			/* Found one... */
 | |
| 			printk(KERN_INFO "ipmi_si: Found default %s state"
 | |
| 			       " machine at %s address 0x%lx\n",
 | |
| 			       si_to_str[info->si_type],
 | |
| 			       addr_space_to_str[info->io.addr_type],
 | |
| 			       info->io.addr_data);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int is_new_interface(struct smi_info *info)
 | |
| {
 | |
| 	struct smi_info *e;
 | |
| 
 | |
| 	list_for_each_entry(e, &smi_infos, link) {
 | |
| 		if (e->io.addr_type != info->io.addr_type)
 | |
| 			continue;
 | |
| 		if (e->io.addr_data == info->io.addr_data)
 | |
| 			return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int try_smi_init(struct smi_info *new_smi)
 | |
| {
 | |
| 	int rv;
 | |
| 	int i;
 | |
| 
 | |
| 	if (new_smi->addr_source) {
 | |
| 		printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
 | |
| 		       " machine at %s address 0x%lx, slave address 0x%x,"
 | |
| 		       " irq %d\n",
 | |
| 		       new_smi->addr_source,
 | |
| 		       si_to_str[new_smi->si_type],
 | |
| 		       addr_space_to_str[new_smi->io.addr_type],
 | |
| 		       new_smi->io.addr_data,
 | |
| 		       new_smi->slave_addr, new_smi->irq);
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&smi_infos_lock);
 | |
| 	if (!is_new_interface(new_smi)) {
 | |
| 		printk(KERN_WARNING "ipmi_si: duplicate interface\n");
 | |
| 		rv = -EBUSY;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/* So we know not to free it unless we have allocated one. */
 | |
| 	new_smi->intf = NULL;
 | |
| 	new_smi->si_sm = NULL;
 | |
| 	new_smi->handlers = NULL;
 | |
| 
 | |
| 	switch (new_smi->si_type) {
 | |
| 	case SI_KCS:
 | |
| 		new_smi->handlers = &kcs_smi_handlers;
 | |
| 		break;
 | |
| 
 | |
| 	case SI_SMIC:
 | |
| 		new_smi->handlers = &smic_smi_handlers;
 | |
| 		break;
 | |
| 
 | |
| 	case SI_BT:
 | |
| 		new_smi->handlers = &bt_smi_handlers;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		/* No support for anything else yet. */
 | |
| 		rv = -EIO;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate the state machine's data and initialize it. */
 | |
| 	new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
 | |
| 	if (!new_smi->si_sm) {
 | |
| 		printk(KERN_ERR "Could not allocate state machine memory\n");
 | |
| 		rv = -ENOMEM;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 	new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
 | |
| 							&new_smi->io);
 | |
| 
 | |
| 	/* Now that we know the I/O size, we can set up the I/O. */
 | |
| 	rv = new_smi->io_setup(new_smi);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR "Could not set up I/O space\n");
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock_init(&(new_smi->si_lock));
 | |
| 	spin_lock_init(&(new_smi->msg_lock));
 | |
| 
 | |
| 	/* Do low-level detection first. */
 | |
| 	if (new_smi->handlers->detect(new_smi->si_sm)) {
 | |
| 		if (new_smi->addr_source)
 | |
| 			printk(KERN_INFO "ipmi_si: Interface detection"
 | |
| 			       " failed\n");
 | |
| 		rv = -ENODEV;
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Attempt a get device id command.  If it fails, we probably
 | |
| 	 * don't have a BMC here.
 | |
| 	 */
 | |
| 	rv = try_get_dev_id(new_smi);
 | |
| 	if (rv) {
 | |
| 		if (new_smi->addr_source)
 | |
| 			printk(KERN_INFO "ipmi_si: There appears to be no BMC"
 | |
| 			       " at this location\n");
 | |
| 		goto out_err;
 | |
| 	}
 | |
| 
 | |
| 	setup_oem_data_handler(new_smi);
 | |
| 	setup_xaction_handlers(new_smi);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&(new_smi->xmit_msgs));
 | |
| 	INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
 | |
| 	new_smi->curr_msg = NULL;
 | |
| 	atomic_set(&new_smi->req_events, 0);
 | |
| 	new_smi->run_to_completion = 0;
 | |
| 	for (i = 0; i < SI_NUM_STATS; i++)
 | |
| 		atomic_set(&new_smi->stats[i], 0);
 | |
| 
 | |
| 	new_smi->interrupt_disabled = 0;
 | |
| 	atomic_set(&new_smi->stop_operation, 0);
 | |
| 	new_smi->intf_num = smi_num;
 | |
| 	smi_num++;
 | |
| 
 | |
| 	rv = try_enable_event_buffer(new_smi);
 | |
| 	if (rv == 0)
 | |
| 		new_smi->has_event_buffer = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start clearing the flags before we enable interrupts or the
 | |
| 	 * timer to avoid racing with the timer.
 | |
| 	 */
 | |
| 	start_clear_flags(new_smi);
 | |
| 	/* IRQ is defined to be set when non-zero. */
 | |
| 	if (new_smi->irq)
 | |
| 		new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
 | |
| 
 | |
| 	if (!new_smi->dev) {
 | |
| 		/*
 | |
| 		 * If we don't already have a device from something
 | |
| 		 * else (like PCI), then register a new one.
 | |
| 		 */
 | |
| 		new_smi->pdev = platform_device_alloc("ipmi_si",
 | |
| 						      new_smi->intf_num);
 | |
| 		if (!new_smi->pdev) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "ipmi_si_intf:"
 | |
| 			       " Unable to allocate platform device\n");
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 		new_smi->dev = &new_smi->pdev->dev;
 | |
| 		new_smi->dev->driver = &ipmi_driver.driver;
 | |
| 
 | |
| 		rv = platform_device_add(new_smi->pdev);
 | |
| 		if (rv) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "ipmi_si_intf:"
 | |
| 			       " Unable to register system interface device:"
 | |
| 			       " %d\n",
 | |
| 			       rv);
 | |
| 			goto out_err;
 | |
| 		}
 | |
| 		new_smi->dev_registered = 1;
 | |
| 	}
 | |
| 
 | |
| 	rv = ipmi_register_smi(&handlers,
 | |
| 			       new_smi,
 | |
| 			       &new_smi->device_id,
 | |
| 			       new_smi->dev,
 | |
| 			       "bmc",
 | |
| 			       new_smi->slave_addr);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ipmi_si: Unable to register device: error %d\n",
 | |
| 		       rv);
 | |
| 		goto out_err_stop_timer;
 | |
| 	}
 | |
| 
 | |
| 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
 | |
| 				     type_file_read_proc,
 | |
| 				     new_smi);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ipmi_si: Unable to create proc entry: %d\n",
 | |
| 		       rv);
 | |
| 		goto out_err_stop_timer;
 | |
| 	}
 | |
| 
 | |
| 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
 | |
| 				     stat_file_read_proc,
 | |
| 				     new_smi);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ipmi_si: Unable to create proc entry: %d\n",
 | |
| 		       rv);
 | |
| 		goto out_err_stop_timer;
 | |
| 	}
 | |
| 
 | |
| 	rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
 | |
| 				     param_read_proc,
 | |
| 				     new_smi);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ipmi_si: Unable to create proc entry: %d\n",
 | |
| 		       rv);
 | |
| 		goto out_err_stop_timer;
 | |
| 	}
 | |
| 
 | |
| 	list_add_tail(&new_smi->link, &smi_infos);
 | |
| 
 | |
| 	mutex_unlock(&smi_infos_lock);
 | |
| 
 | |
| 	printk(KERN_INFO "IPMI %s interface initialized\n",
 | |
| 	       si_to_str[new_smi->si_type]);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
|  out_err_stop_timer:
 | |
| 	atomic_inc(&new_smi->stop_operation);
 | |
| 	wait_for_timer_and_thread(new_smi);
 | |
| 
 | |
|  out_err:
 | |
| 	if (new_smi->intf)
 | |
| 		ipmi_unregister_smi(new_smi->intf);
 | |
| 
 | |
| 	if (new_smi->irq_cleanup)
 | |
| 		new_smi->irq_cleanup(new_smi);
 | |
| 
 | |
| 	/*
 | |
| 	 * Wait until we know that we are out of any interrupt
 | |
| 	 * handlers might have been running before we freed the
 | |
| 	 * interrupt.
 | |
| 	 */
 | |
| 	synchronize_sched();
 | |
| 
 | |
| 	if (new_smi->si_sm) {
 | |
| 		if (new_smi->handlers)
 | |
| 			new_smi->handlers->cleanup(new_smi->si_sm);
 | |
| 		kfree(new_smi->si_sm);
 | |
| 	}
 | |
| 	if (new_smi->addr_source_cleanup)
 | |
| 		new_smi->addr_source_cleanup(new_smi);
 | |
| 	if (new_smi->io_cleanup)
 | |
| 		new_smi->io_cleanup(new_smi);
 | |
| 
 | |
| 	if (new_smi->dev_registered)
 | |
| 		platform_device_unregister(new_smi->pdev);
 | |
| 
 | |
| 	kfree(new_smi);
 | |
| 
 | |
| 	mutex_unlock(&smi_infos_lock);
 | |
| 
 | |
| 	return rv;
 | |
| }
 | |
| 
 | |
| static __devinit int init_ipmi_si(void)
 | |
| {
 | |
| 	int  i;
 | |
| 	char *str;
 | |
| 	int  rv;
 | |
| 
 | |
| 	if (initialized)
 | |
| 		return 0;
 | |
| 	initialized = 1;
 | |
| 
 | |
| 	/* Register the device drivers. */
 | |
| 	rv = driver_register(&ipmi_driver.driver);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "init_ipmi_si: Unable to register driver: %d\n",
 | |
| 		       rv);
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Parse out the si_type string into its components. */
 | |
| 	str = si_type_str;
 | |
| 	if (*str != '\0') {
 | |
| 		for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
 | |
| 			si_type[i] = str;
 | |
| 			str = strchr(str, ',');
 | |
| 			if (str) {
 | |
| 				*str = '\0';
 | |
| 				str++;
 | |
| 			} else {
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "IPMI System Interface driver.\n");
 | |
| 
 | |
| 	hardcode_find_bmc();
 | |
| 
 | |
| #ifdef CONFIG_DMI
 | |
| 	dmi_find_bmc();
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ACPI
 | |
| 	acpi_find_bmc();
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	rv = pci_register_driver(&ipmi_pci_driver);
 | |
| 	if (rv)
 | |
| 		printk(KERN_ERR
 | |
| 		       "init_ipmi_si: Unable to register PCI driver: %d\n",
 | |
| 		       rv);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_OF
 | |
| 	of_register_platform_driver(&ipmi_of_platform_driver);
 | |
| #endif
 | |
| 
 | |
| 	if (si_trydefaults) {
 | |
| 		mutex_lock(&smi_infos_lock);
 | |
| 		if (list_empty(&smi_infos)) {
 | |
| 			/* No BMC was found, try defaults. */
 | |
| 			mutex_unlock(&smi_infos_lock);
 | |
| 			default_find_bmc();
 | |
| 		} else {
 | |
| 			mutex_unlock(&smi_infos_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_lock(&smi_infos_lock);
 | |
| 	if (unload_when_empty && list_empty(&smi_infos)) {
 | |
| 		mutex_unlock(&smi_infos_lock);
 | |
| #ifdef CONFIG_PCI
 | |
| 		pci_unregister_driver(&ipmi_pci_driver);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_OF
 | |
| 		of_unregister_platform_driver(&ipmi_of_platform_driver);
 | |
| #endif
 | |
| 		driver_unregister(&ipmi_driver.driver);
 | |
| 		printk(KERN_WARNING
 | |
| 		       "ipmi_si: Unable to find any System Interface(s)\n");
 | |
| 		return -ENODEV;
 | |
| 	} else {
 | |
| 		mutex_unlock(&smi_infos_lock);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| module_init(init_ipmi_si);
 | |
| 
 | |
| static void cleanup_one_si(struct smi_info *to_clean)
 | |
| {
 | |
| 	int           rv;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!to_clean)
 | |
| 		return;
 | |
| 
 | |
| 	list_del(&to_clean->link);
 | |
| 
 | |
| 	/* Tell the driver that we are shutting down. */
 | |
| 	atomic_inc(&to_clean->stop_operation);
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure the timer and thread are stopped and will not run
 | |
| 	 * again.
 | |
| 	 */
 | |
| 	wait_for_timer_and_thread(to_clean);
 | |
| 
 | |
| 	/*
 | |
| 	 * Timeouts are stopped, now make sure the interrupts are off
 | |
| 	 * for the device.  A little tricky with locks to make sure
 | |
| 	 * there are no races.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&to_clean->si_lock, flags);
 | |
| 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
 | |
| 		spin_unlock_irqrestore(&to_clean->si_lock, flags);
 | |
| 		poll(to_clean);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 		spin_lock_irqsave(&to_clean->si_lock, flags);
 | |
| 	}
 | |
| 	disable_si_irq(to_clean);
 | |
| 	spin_unlock_irqrestore(&to_clean->si_lock, flags);
 | |
| 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
 | |
| 		poll(to_clean);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 	}
 | |
| 
 | |
| 	/* Clean up interrupts and make sure that everything is done. */
 | |
| 	if (to_clean->irq_cleanup)
 | |
| 		to_clean->irq_cleanup(to_clean);
 | |
| 	while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
 | |
| 		poll(to_clean);
 | |
| 		schedule_timeout_uninterruptible(1);
 | |
| 	}
 | |
| 
 | |
| 	rv = ipmi_unregister_smi(to_clean->intf);
 | |
| 	if (rv) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "ipmi_si: Unable to unregister device: errno=%d\n",
 | |
| 		       rv);
 | |
| 	}
 | |
| 
 | |
| 	to_clean->handlers->cleanup(to_clean->si_sm);
 | |
| 
 | |
| 	kfree(to_clean->si_sm);
 | |
| 
 | |
| 	if (to_clean->addr_source_cleanup)
 | |
| 		to_clean->addr_source_cleanup(to_clean);
 | |
| 	if (to_clean->io_cleanup)
 | |
| 		to_clean->io_cleanup(to_clean);
 | |
| 
 | |
| 	if (to_clean->dev_registered)
 | |
| 		platform_device_unregister(to_clean->pdev);
 | |
| 
 | |
| 	kfree(to_clean);
 | |
| }
 | |
| 
 | |
| static __exit void cleanup_ipmi_si(void)
 | |
| {
 | |
| 	struct smi_info *e, *tmp_e;
 | |
| 
 | |
| 	if (!initialized)
 | |
| 		return;
 | |
| 
 | |
| #ifdef CONFIG_PCI
 | |
| 	pci_unregister_driver(&ipmi_pci_driver);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_OF
 | |
| 	of_unregister_platform_driver(&ipmi_of_platform_driver);
 | |
| #endif
 | |
| 
 | |
| 	mutex_lock(&smi_infos_lock);
 | |
| 	list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
 | |
| 		cleanup_one_si(e);
 | |
| 	mutex_unlock(&smi_infos_lock);
 | |
| 
 | |
| 	driver_unregister(&ipmi_driver.driver);
 | |
| }
 | |
| module_exit(cleanup_ipmi_si);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
 | |
| MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
 | |
| 		   " system interfaces.");
 |