487 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			487 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * @file cpu_buffer.c
 | |
|  *
 | |
|  * @remark Copyright 2002-2009 OProfile authors
 | |
|  * @remark Read the file COPYING
 | |
|  *
 | |
|  * @author John Levon <levon@movementarian.org>
 | |
|  * @author Barry Kasindorf <barry.kasindorf@amd.com>
 | |
|  * @author Robert Richter <robert.richter@amd.com>
 | |
|  *
 | |
|  * Each CPU has a local buffer that stores PC value/event
 | |
|  * pairs. We also log context switches when we notice them.
 | |
|  * Eventually each CPU's buffer is processed into the global
 | |
|  * event buffer by sync_buffer().
 | |
|  *
 | |
|  * We use a local buffer for two reasons: an NMI or similar
 | |
|  * interrupt cannot synchronise, and high sampling rates
 | |
|  * would lead to catastrophic global synchronisation if
 | |
|  * a global buffer was used.
 | |
|  */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/oprofile.h>
 | |
| #include <linux/errno.h>
 | |
| 
 | |
| #include "event_buffer.h"
 | |
| #include "cpu_buffer.h"
 | |
| #include "buffer_sync.h"
 | |
| #include "oprof.h"
 | |
| 
 | |
| #define OP_BUFFER_FLAGS	0
 | |
| 
 | |
| /*
 | |
|  * Read and write access is using spin locking. Thus, writing to the
 | |
|  * buffer by NMI handler (x86) could occur also during critical
 | |
|  * sections when reading the buffer. To avoid this, there are 2
 | |
|  * buffers for independent read and write access. Read access is in
 | |
|  * process context only, write access only in the NMI handler. If the
 | |
|  * read buffer runs empty, both buffers are swapped atomically. There
 | |
|  * is potentially a small window during swapping where the buffers are
 | |
|  * disabled and samples could be lost.
 | |
|  *
 | |
|  * Using 2 buffers is a little bit overhead, but the solution is clear
 | |
|  * and does not require changes in the ring buffer implementation. It
 | |
|  * can be changed to a single buffer solution when the ring buffer
 | |
|  * access is implemented as non-locking atomic code.
 | |
|  */
 | |
| static struct ring_buffer *op_ring_buffer_read;
 | |
| static struct ring_buffer *op_ring_buffer_write;
 | |
| DEFINE_PER_CPU(struct oprofile_cpu_buffer, cpu_buffer);
 | |
| 
 | |
| static void wq_sync_buffer(struct work_struct *work);
 | |
| 
 | |
| #define DEFAULT_TIMER_EXPIRE (HZ / 10)
 | |
| static int work_enabled;
 | |
| 
 | |
| unsigned long oprofile_get_cpu_buffer_size(void)
 | |
| {
 | |
| 	return oprofile_cpu_buffer_size;
 | |
| }
 | |
| 
 | |
| void oprofile_cpu_buffer_inc_smpl_lost(void)
 | |
| {
 | |
| 	struct oprofile_cpu_buffer *cpu_buf
 | |
| 		= &__get_cpu_var(cpu_buffer);
 | |
| 
 | |
| 	cpu_buf->sample_lost_overflow++;
 | |
| }
 | |
| 
 | |
| void free_cpu_buffers(void)
 | |
| {
 | |
| 	if (op_ring_buffer_read)
 | |
| 		ring_buffer_free(op_ring_buffer_read);
 | |
| 	op_ring_buffer_read = NULL;
 | |
| 	if (op_ring_buffer_write)
 | |
| 		ring_buffer_free(op_ring_buffer_write);
 | |
| 	op_ring_buffer_write = NULL;
 | |
| }
 | |
| 
 | |
| #define RB_EVENT_HDR_SIZE 4
 | |
| 
 | |
| int alloc_cpu_buffers(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	unsigned long buffer_size = oprofile_cpu_buffer_size;
 | |
| 	unsigned long byte_size = buffer_size * (sizeof(struct op_sample) +
 | |
| 						 RB_EVENT_HDR_SIZE);
 | |
| 
 | |
| 	op_ring_buffer_read = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
 | |
| 	if (!op_ring_buffer_read)
 | |
| 		goto fail;
 | |
| 	op_ring_buffer_write = ring_buffer_alloc(byte_size, OP_BUFFER_FLAGS);
 | |
| 	if (!op_ring_buffer_write)
 | |
| 		goto fail;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
 | |
| 
 | |
| 		b->last_task = NULL;
 | |
| 		b->last_is_kernel = -1;
 | |
| 		b->tracing = 0;
 | |
| 		b->buffer_size = buffer_size;
 | |
| 		b->sample_received = 0;
 | |
| 		b->sample_lost_overflow = 0;
 | |
| 		b->backtrace_aborted = 0;
 | |
| 		b->sample_invalid_eip = 0;
 | |
| 		b->cpu = i;
 | |
| 		INIT_DELAYED_WORK(&b->work, wq_sync_buffer);
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	free_cpu_buffers();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void start_cpu_work(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	work_enabled = 1;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
 | |
| 
 | |
| 		/*
 | |
| 		 * Spread the work by 1 jiffy per cpu so they dont all
 | |
| 		 * fire at once.
 | |
| 		 */
 | |
| 		schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void end_cpu_work(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	work_enabled = 0;
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		struct oprofile_cpu_buffer *b = &per_cpu(cpu_buffer, i);
 | |
| 
 | |
| 		cancel_delayed_work(&b->work);
 | |
| 	}
 | |
| 
 | |
| 	flush_scheduled_work();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function prepares the cpu buffer to write a sample.
 | |
|  *
 | |
|  * Struct op_entry is used during operations on the ring buffer while
 | |
|  * struct op_sample contains the data that is stored in the ring
 | |
|  * buffer. Struct entry can be uninitialized. The function reserves a
 | |
|  * data array that is specified by size. Use
 | |
|  * op_cpu_buffer_write_commit() after preparing the sample. In case of
 | |
|  * errors a null pointer is returned, otherwise the pointer to the
 | |
|  * sample.
 | |
|  *
 | |
|  */
 | |
| struct op_sample
 | |
| *op_cpu_buffer_write_reserve(struct op_entry *entry, unsigned long size)
 | |
| {
 | |
| 	entry->event = ring_buffer_lock_reserve
 | |
| 		(op_ring_buffer_write, sizeof(struct op_sample) +
 | |
| 		 size * sizeof(entry->sample->data[0]));
 | |
| 	if (entry->event)
 | |
| 		entry->sample = ring_buffer_event_data(entry->event);
 | |
| 	else
 | |
| 		entry->sample = NULL;
 | |
| 
 | |
| 	if (!entry->sample)
 | |
| 		return NULL;
 | |
| 
 | |
| 	entry->size = size;
 | |
| 	entry->data = entry->sample->data;
 | |
| 
 | |
| 	return entry->sample;
 | |
| }
 | |
| 
 | |
| int op_cpu_buffer_write_commit(struct op_entry *entry)
 | |
| {
 | |
| 	return ring_buffer_unlock_commit(op_ring_buffer_write, entry->event);
 | |
| }
 | |
| 
 | |
| struct op_sample *op_cpu_buffer_read_entry(struct op_entry *entry, int cpu)
 | |
| {
 | |
| 	struct ring_buffer_event *e;
 | |
| 	e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
 | |
| 	if (e)
 | |
| 		goto event;
 | |
| 	if (ring_buffer_swap_cpu(op_ring_buffer_read,
 | |
| 				 op_ring_buffer_write,
 | |
| 				 cpu))
 | |
| 		return NULL;
 | |
| 	e = ring_buffer_consume(op_ring_buffer_read, cpu, NULL);
 | |
| 	if (e)
 | |
| 		goto event;
 | |
| 	return NULL;
 | |
| 
 | |
| event:
 | |
| 	entry->event = e;
 | |
| 	entry->sample = ring_buffer_event_data(e);
 | |
| 	entry->size = (ring_buffer_event_length(e) - sizeof(struct op_sample))
 | |
| 		/ sizeof(entry->sample->data[0]);
 | |
| 	entry->data = entry->sample->data;
 | |
| 	return entry->sample;
 | |
| }
 | |
| 
 | |
| unsigned long op_cpu_buffer_entries(int cpu)
 | |
| {
 | |
| 	return ring_buffer_entries_cpu(op_ring_buffer_read, cpu)
 | |
| 		+ ring_buffer_entries_cpu(op_ring_buffer_write, cpu);
 | |
| }
 | |
| 
 | |
| static int
 | |
| op_add_code(struct oprofile_cpu_buffer *cpu_buf, unsigned long backtrace,
 | |
| 	    int is_kernel, struct task_struct *task)
 | |
| {
 | |
| 	struct op_entry entry;
 | |
| 	struct op_sample *sample;
 | |
| 	unsigned long flags;
 | |
| 	int size;
 | |
| 
 | |
| 	flags = 0;
 | |
| 
 | |
| 	if (backtrace)
 | |
| 		flags |= TRACE_BEGIN;
 | |
| 
 | |
| 	/* notice a switch from user->kernel or vice versa */
 | |
| 	is_kernel = !!is_kernel;
 | |
| 	if (cpu_buf->last_is_kernel != is_kernel) {
 | |
| 		cpu_buf->last_is_kernel = is_kernel;
 | |
| 		flags |= KERNEL_CTX_SWITCH;
 | |
| 		if (is_kernel)
 | |
| 			flags |= IS_KERNEL;
 | |
| 	}
 | |
| 
 | |
| 	/* notice a task switch */
 | |
| 	if (cpu_buf->last_task != task) {
 | |
| 		cpu_buf->last_task = task;
 | |
| 		flags |= USER_CTX_SWITCH;
 | |
| 	}
 | |
| 
 | |
| 	if (!flags)
 | |
| 		/* nothing to do */
 | |
| 		return 0;
 | |
| 
 | |
| 	if (flags & USER_CTX_SWITCH)
 | |
| 		size = 1;
 | |
| 	else
 | |
| 		size = 0;
 | |
| 
 | |
| 	sample = op_cpu_buffer_write_reserve(&entry, size);
 | |
| 	if (!sample)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sample->eip = ESCAPE_CODE;
 | |
| 	sample->event = flags;
 | |
| 
 | |
| 	if (size)
 | |
| 		op_cpu_buffer_add_data(&entry, (unsigned long)task);
 | |
| 
 | |
| 	op_cpu_buffer_write_commit(&entry);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| op_add_sample(struct oprofile_cpu_buffer *cpu_buf,
 | |
| 	      unsigned long pc, unsigned long event)
 | |
| {
 | |
| 	struct op_entry entry;
 | |
| 	struct op_sample *sample;
 | |
| 
 | |
| 	sample = op_cpu_buffer_write_reserve(&entry, 0);
 | |
| 	if (!sample)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	sample->eip = pc;
 | |
| 	sample->event = event;
 | |
| 
 | |
| 	return op_cpu_buffer_write_commit(&entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This must be safe from any context.
 | |
|  *
 | |
|  * is_kernel is needed because on some architectures you cannot
 | |
|  * tell if you are in kernel or user space simply by looking at
 | |
|  * pc. We tag this in the buffer by generating kernel enter/exit
 | |
|  * events whenever is_kernel changes
 | |
|  */
 | |
| static int
 | |
| log_sample(struct oprofile_cpu_buffer *cpu_buf, unsigned long pc,
 | |
| 	   unsigned long backtrace, int is_kernel, unsigned long event)
 | |
| {
 | |
| 	cpu_buf->sample_received++;
 | |
| 
 | |
| 	if (pc == ESCAPE_CODE) {
 | |
| 		cpu_buf->sample_invalid_eip++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (op_add_code(cpu_buf, backtrace, is_kernel, current))
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (op_add_sample(cpu_buf, pc, event))
 | |
| 		goto fail;
 | |
| 
 | |
| 	return 1;
 | |
| 
 | |
| fail:
 | |
| 	cpu_buf->sample_lost_overflow++;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void oprofile_begin_trace(struct oprofile_cpu_buffer *cpu_buf)
 | |
| {
 | |
| 	cpu_buf->tracing = 1;
 | |
| }
 | |
| 
 | |
| static inline void oprofile_end_trace(struct oprofile_cpu_buffer *cpu_buf)
 | |
| {
 | |
| 	cpu_buf->tracing = 0;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| __oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
 | |
| 			  unsigned long event, int is_kernel)
 | |
| {
 | |
| 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
 | |
| 	unsigned long backtrace = oprofile_backtrace_depth;
 | |
| 
 | |
| 	/*
 | |
| 	 * if log_sample() fail we can't backtrace since we lost the
 | |
| 	 * source of this event
 | |
| 	 */
 | |
| 	if (!log_sample(cpu_buf, pc, backtrace, is_kernel, event))
 | |
| 		/* failed */
 | |
| 		return;
 | |
| 
 | |
| 	if (!backtrace)
 | |
| 		return;
 | |
| 
 | |
| 	oprofile_begin_trace(cpu_buf);
 | |
| 	oprofile_ops.backtrace(regs, backtrace);
 | |
| 	oprofile_end_trace(cpu_buf);
 | |
| }
 | |
| 
 | |
| void oprofile_add_ext_sample(unsigned long pc, struct pt_regs * const regs,
 | |
| 			     unsigned long event, int is_kernel)
 | |
| {
 | |
| 	__oprofile_add_ext_sample(pc, regs, event, is_kernel);
 | |
| }
 | |
| 
 | |
| void oprofile_add_sample(struct pt_regs * const regs, unsigned long event)
 | |
| {
 | |
| 	int is_kernel = !user_mode(regs);
 | |
| 	unsigned long pc = profile_pc(regs);
 | |
| 
 | |
| 	__oprofile_add_ext_sample(pc, regs, event, is_kernel);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add samples with data to the ring buffer.
 | |
|  *
 | |
|  * Use oprofile_add_data(&entry, val) to add data and
 | |
|  * oprofile_write_commit(&entry) to commit the sample.
 | |
|  */
 | |
| void
 | |
| oprofile_write_reserve(struct op_entry *entry, struct pt_regs * const regs,
 | |
| 		       unsigned long pc, int code, int size)
 | |
| {
 | |
| 	struct op_sample *sample;
 | |
| 	int is_kernel = !user_mode(regs);
 | |
| 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
 | |
| 
 | |
| 	cpu_buf->sample_received++;
 | |
| 
 | |
| 	/* no backtraces for samples with data */
 | |
| 	if (op_add_code(cpu_buf, 0, is_kernel, current))
 | |
| 		goto fail;
 | |
| 
 | |
| 	sample = op_cpu_buffer_write_reserve(entry, size + 2);
 | |
| 	if (!sample)
 | |
| 		goto fail;
 | |
| 	sample->eip = ESCAPE_CODE;
 | |
| 	sample->event = 0;		/* no flags */
 | |
| 
 | |
| 	op_cpu_buffer_add_data(entry, code);
 | |
| 	op_cpu_buffer_add_data(entry, pc);
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| fail:
 | |
| 	entry->event = NULL;
 | |
| 	cpu_buf->sample_lost_overflow++;
 | |
| }
 | |
| 
 | |
| int oprofile_add_data(struct op_entry *entry, unsigned long val)
 | |
| {
 | |
| 	if (!entry->event)
 | |
| 		return 0;
 | |
| 	return op_cpu_buffer_add_data(entry, val);
 | |
| }
 | |
| 
 | |
| int oprofile_add_data64(struct op_entry *entry, u64 val)
 | |
| {
 | |
| 	if (!entry->event)
 | |
| 		return 0;
 | |
| 	if (op_cpu_buffer_get_size(entry) < 2)
 | |
| 		/*
 | |
| 		 * the function returns 0 to indicate a too small
 | |
| 		 * buffer, even if there is some space left
 | |
| 		 */
 | |
| 		return 0;
 | |
| 	if (!op_cpu_buffer_add_data(entry, (u32)val))
 | |
| 		return 0;
 | |
| 	return op_cpu_buffer_add_data(entry, (u32)(val >> 32));
 | |
| }
 | |
| 
 | |
| int oprofile_write_commit(struct op_entry *entry)
 | |
| {
 | |
| 	if (!entry->event)
 | |
| 		return -EINVAL;
 | |
| 	return op_cpu_buffer_write_commit(entry);
 | |
| }
 | |
| 
 | |
| void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event)
 | |
| {
 | |
| 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
 | |
| 	log_sample(cpu_buf, pc, 0, is_kernel, event);
 | |
| }
 | |
| 
 | |
| void oprofile_add_trace(unsigned long pc)
 | |
| {
 | |
| 	struct oprofile_cpu_buffer *cpu_buf = &__get_cpu_var(cpu_buffer);
 | |
| 
 | |
| 	if (!cpu_buf->tracing)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * broken frame can give an eip with the same value as an
 | |
| 	 * escape code, abort the trace if we get it
 | |
| 	 */
 | |
| 	if (pc == ESCAPE_CODE)
 | |
| 		goto fail;
 | |
| 
 | |
| 	if (op_add_sample(cpu_buf, pc, 0))
 | |
| 		goto fail;
 | |
| 
 | |
| 	return;
 | |
| fail:
 | |
| 	cpu_buf->tracing = 0;
 | |
| 	cpu_buf->backtrace_aborted++;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This serves to avoid cpu buffer overflow, and makes sure
 | |
|  * the task mortuary progresses
 | |
|  *
 | |
|  * By using schedule_delayed_work_on and then schedule_delayed_work
 | |
|  * we guarantee this will stay on the correct cpu
 | |
|  */
 | |
| static void wq_sync_buffer(struct work_struct *work)
 | |
| {
 | |
| 	struct oprofile_cpu_buffer *b =
 | |
| 		container_of(work, struct oprofile_cpu_buffer, work.work);
 | |
| 	if (b->cpu != smp_processor_id()) {
 | |
| 		printk(KERN_DEBUG "WQ on CPU%d, prefer CPU%d\n",
 | |
| 		       smp_processor_id(), b->cpu);
 | |
| 
 | |
| 		if (!cpu_online(b->cpu)) {
 | |
| 			cancel_delayed_work(&b->work);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	sync_buffer(b->cpu);
 | |
| 
 | |
| 	/* don't re-add the work if we're shutting down */
 | |
| 	if (work_enabled)
 | |
| 		schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE);
 | |
| }
 |