978 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			978 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is part of UBIFS.
 | |
|  *
 | |
|  * Copyright (C) 2006-2008 Nokia Corporation.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License version 2 as published by
 | |
|  * the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, write to the Free Software Foundation, Inc., 51
 | |
|  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 | |
|  *
 | |
|  * Authors: Artem Bityutskiy (Битюцкий Артём)
 | |
|  *          Adrian Hunter
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This file contains functions for finding LEBs for various purposes e.g.
 | |
|  * garbage collection. In general, lprops category heaps and lists are used
 | |
|  * for fast access, falling back on scanning the LPT as a last resort.
 | |
|  */
 | |
| 
 | |
| #include <linux/sort.h>
 | |
| #include "ubifs.h"
 | |
| 
 | |
| /**
 | |
|  * struct scan_data - data provided to scan callback functions
 | |
|  * @min_space: minimum number of bytes for which to scan
 | |
|  * @pick_free: whether it is OK to scan for empty LEBs
 | |
|  * @lnum: LEB number found is returned here
 | |
|  * @exclude_index: whether to exclude index LEBs
 | |
|  */
 | |
| struct scan_data {
 | |
| 	int min_space;
 | |
| 	int pick_free;
 | |
| 	int lnum;
 | |
| 	int exclude_index;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * valuable - determine whether LEB properties are valuable.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @lprops: LEB properties
 | |
|  *
 | |
|  * This function return %1 if the LEB properties should be added to the LEB
 | |
|  * properties tree in memory. Otherwise %0 is returned.
 | |
|  */
 | |
| static int valuable(struct ubifs_info *c, const struct ubifs_lprops *lprops)
 | |
| {
 | |
| 	int n, cat = lprops->flags & LPROPS_CAT_MASK;
 | |
| 	struct ubifs_lpt_heap *heap;
 | |
| 
 | |
| 	switch (cat) {
 | |
| 	case LPROPS_DIRTY:
 | |
| 	case LPROPS_DIRTY_IDX:
 | |
| 	case LPROPS_FREE:
 | |
| 		heap = &c->lpt_heap[cat - 1];
 | |
| 		if (heap->cnt < heap->max_cnt)
 | |
| 			return 1;
 | |
| 		if (lprops->free + lprops->dirty >= c->dark_wm)
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	case LPROPS_EMPTY:
 | |
| 		n = c->lst.empty_lebs + c->freeable_cnt -
 | |
| 		    c->lst.taken_empty_lebs;
 | |
| 		if (n < c->lsave_cnt)
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	case LPROPS_FREEABLE:
 | |
| 		return 1;
 | |
| 	case LPROPS_FRDI_IDX:
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_for_dirty_cb - dirty space scan callback.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @lprops: LEB properties to scan
 | |
|  * @in_tree: whether the LEB properties are in main memory
 | |
|  * @data: information passed to and from the caller of the scan
 | |
|  *
 | |
|  * This function returns a code that indicates whether the scan should continue
 | |
|  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | |
|  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | |
|  * (%LPT_SCAN_STOP).
 | |
|  */
 | |
| static int scan_for_dirty_cb(struct ubifs_info *c,
 | |
| 			     const struct ubifs_lprops *lprops, int in_tree,
 | |
| 			     struct scan_data *data)
 | |
| {
 | |
| 	int ret = LPT_SCAN_CONTINUE;
 | |
| 
 | |
| 	/* Exclude LEBs that are currently in use */
 | |
| 	if (lprops->flags & LPROPS_TAKEN)
 | |
| 		return LPT_SCAN_CONTINUE;
 | |
| 	/* Determine whether to add these LEB properties to the tree */
 | |
| 	if (!in_tree && valuable(c, lprops))
 | |
| 		ret |= LPT_SCAN_ADD;
 | |
| 	/* Exclude LEBs with too little space */
 | |
| 	if (lprops->free + lprops->dirty < data->min_space)
 | |
| 		return ret;
 | |
| 	/* If specified, exclude index LEBs */
 | |
| 	if (data->exclude_index && lprops->flags & LPROPS_INDEX)
 | |
| 		return ret;
 | |
| 	/* If specified, exclude empty or freeable LEBs */
 | |
| 	if (lprops->free + lprops->dirty == c->leb_size) {
 | |
| 		if (!data->pick_free)
 | |
| 			return ret;
 | |
| 	/* Exclude LEBs with too little dirty space (unless it is empty) */
 | |
| 	} else if (lprops->dirty < c->dead_wm)
 | |
| 		return ret;
 | |
| 	/* Finally we found space */
 | |
| 	data->lnum = lprops->lnum;
 | |
| 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_for_dirty - find a data LEB with free space.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @min_space: minimum amount free plus dirty space the returned LEB has to
 | |
|  *             have
 | |
|  * @pick_free: if it is OK to return a free or freeable LEB
 | |
|  * @exclude_index: whether to exclude index LEBs
 | |
|  *
 | |
|  * This function returns a pointer to the LEB properties found or a negative
 | |
|  * error code.
 | |
|  */
 | |
| static const struct ubifs_lprops *scan_for_dirty(struct ubifs_info *c,
 | |
| 						 int min_space, int pick_free,
 | |
| 						 int exclude_index)
 | |
| {
 | |
| 	const struct ubifs_lprops *lprops;
 | |
| 	struct ubifs_lpt_heap *heap;
 | |
| 	struct scan_data data;
 | |
| 	int err, i;
 | |
| 
 | |
| 	/* There may be an LEB with enough dirty space on the free heap */
 | |
| 	heap = &c->lpt_heap[LPROPS_FREE - 1];
 | |
| 	for (i = 0; i < heap->cnt; i++) {
 | |
| 		lprops = heap->arr[i];
 | |
| 		if (lprops->free + lprops->dirty < min_space)
 | |
| 			continue;
 | |
| 		if (lprops->dirty < c->dead_wm)
 | |
| 			continue;
 | |
| 		return lprops;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * A LEB may have fallen off of the bottom of the dirty heap, and ended
 | |
| 	 * up as uncategorized even though it has enough dirty space for us now,
 | |
| 	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
 | |
| 	 * can end up as uncategorized because they are kept on lists not
 | |
| 	 * finite-sized heaps.
 | |
| 	 */
 | |
| 	list_for_each_entry(lprops, &c->uncat_list, list) {
 | |
| 		if (lprops->flags & LPROPS_TAKEN)
 | |
| 			continue;
 | |
| 		if (lprops->free + lprops->dirty < min_space)
 | |
| 			continue;
 | |
| 		if (exclude_index && (lprops->flags & LPROPS_INDEX))
 | |
| 			continue;
 | |
| 		if (lprops->dirty < c->dead_wm)
 | |
| 			continue;
 | |
| 		return lprops;
 | |
| 	}
 | |
| 	/* We have looked everywhere in main memory, now scan the flash */
 | |
| 	if (c->pnodes_have >= c->pnode_cnt)
 | |
| 		/* All pnodes are in memory, so skip scan */
 | |
| 		return ERR_PTR(-ENOSPC);
 | |
| 	data.min_space = min_space;
 | |
| 	data.pick_free = pick_free;
 | |
| 	data.lnum = -1;
 | |
| 	data.exclude_index = exclude_index;
 | |
| 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | |
| 				    (ubifs_lpt_scan_callback)scan_for_dirty_cb,
 | |
| 				    &data);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | |
| 	c->lscan_lnum = data.lnum;
 | |
| 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | |
| 	if (IS_ERR(lprops))
 | |
| 		return lprops;
 | |
| 	ubifs_assert(lprops->lnum == data.lnum);
 | |
| 	ubifs_assert(lprops->free + lprops->dirty >= min_space);
 | |
| 	ubifs_assert(lprops->dirty >= c->dead_wm ||
 | |
| 		     (pick_free &&
 | |
| 		      lprops->free + lprops->dirty == c->leb_size));
 | |
| 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | |
| 	ubifs_assert(!exclude_index || !(lprops->flags & LPROPS_INDEX));
 | |
| 	return lprops;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @ret_lp: LEB properties are returned here on exit
 | |
|  * @min_space: minimum amount free plus dirty space the returned LEB has to
 | |
|  *             have
 | |
|  * @pick_free: controls whether it is OK to pick empty or index LEBs
 | |
|  *
 | |
|  * This function tries to find a dirty logical eraseblock which has at least
 | |
|  * @min_space free and dirty space. It prefers to take an LEB from the dirty or
 | |
|  * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
 | |
|  * or do not have an LEB which satisfies the @min_space criteria.
 | |
|  *
 | |
|  * Note, LEBs which have less than dead watermark of free + dirty space are
 | |
|  * never picked by this function.
 | |
|  *
 | |
|  * The additional @pick_free argument controls if this function has to return a
 | |
|  * free or freeable LEB if one is present. For example, GC must to set it to %1,
 | |
|  * when called from the journal space reservation function, because the
 | |
|  * appearance of free space may coincide with the loss of enough dirty space
 | |
|  * for GC to succeed anyway.
 | |
|  *
 | |
|  * In contrast, if the Garbage Collector is called from budgeting, it should
 | |
|  * just make free space, not return LEBs which are already free or freeable.
 | |
|  *
 | |
|  * In addition @pick_free is set to %2 by the recovery process in order to
 | |
|  * recover gc_lnum in which case an index LEB must not be returned.
 | |
|  *
 | |
|  * This function returns zero and the LEB properties of found dirty LEB in case
 | |
|  * of success, %-ENOSPC if no dirty LEB was found and a negative error code in
 | |
|  * case of other failures. The returned LEB is marked as "taken".
 | |
|  */
 | |
| int ubifs_find_dirty_leb(struct ubifs_info *c, struct ubifs_lprops *ret_lp,
 | |
| 			 int min_space, int pick_free)
 | |
| {
 | |
| 	int err = 0, sum, exclude_index = pick_free == 2 ? 1 : 0;
 | |
| 	const struct ubifs_lprops *lp = NULL, *idx_lp = NULL;
 | |
| 	struct ubifs_lpt_heap *heap, *idx_heap;
 | |
| 
 | |
| 	ubifs_get_lprops(c);
 | |
| 
 | |
| 	if (pick_free) {
 | |
| 		int lebs, rsvd_idx_lebs = 0;
 | |
| 
 | |
| 		spin_lock(&c->space_lock);
 | |
| 		lebs = c->lst.empty_lebs + c->idx_gc_cnt;
 | |
| 		lebs += c->freeable_cnt - c->lst.taken_empty_lebs;
 | |
| 
 | |
| 		/*
 | |
| 		 * Note, the index may consume more LEBs than have been reserved
 | |
| 		 * for it. It is OK because it might be consolidated by GC.
 | |
| 		 * But if the index takes fewer LEBs than it is reserved for it,
 | |
| 		 * this function must avoid picking those reserved LEBs.
 | |
| 		 */
 | |
| 		if (c->min_idx_lebs >= c->lst.idx_lebs) {
 | |
| 			rsvd_idx_lebs = c->min_idx_lebs -  c->lst.idx_lebs;
 | |
| 			exclude_index = 1;
 | |
| 		}
 | |
| 		spin_unlock(&c->space_lock);
 | |
| 
 | |
| 		/* Check if there are enough free LEBs for the index */
 | |
| 		if (rsvd_idx_lebs < lebs) {
 | |
| 			/* OK, try to find an empty LEB */
 | |
| 			lp = ubifs_fast_find_empty(c);
 | |
| 			if (lp)
 | |
| 				goto found;
 | |
| 
 | |
| 			/* Or a freeable LEB */
 | |
| 			lp = ubifs_fast_find_freeable(c);
 | |
| 			if (lp)
 | |
| 				goto found;
 | |
| 		} else
 | |
| 			/*
 | |
| 			 * We cannot pick free/freeable LEBs in the below code.
 | |
| 			 */
 | |
| 			pick_free = 0;
 | |
| 	} else {
 | |
| 		spin_lock(&c->space_lock);
 | |
| 		exclude_index = (c->min_idx_lebs >= c->lst.idx_lebs);
 | |
| 		spin_unlock(&c->space_lock);
 | |
| 	}
 | |
| 
 | |
| 	/* Look on the dirty and dirty index heaps */
 | |
| 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 | |
| 	idx_heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 | |
| 
 | |
| 	if (idx_heap->cnt && !exclude_index) {
 | |
| 		idx_lp = idx_heap->arr[0];
 | |
| 		sum = idx_lp->free + idx_lp->dirty;
 | |
| 		/*
 | |
| 		 * Since we reserve thrice as much space for the index than it
 | |
| 		 * actually takes, it does not make sense to pick indexing LEBs
 | |
| 		 * with less than, say, half LEB of dirty space. May be half is
 | |
| 		 * not the optimal boundary - this should be tested and
 | |
| 		 * checked. This boundary should determine how much we use
 | |
| 		 * in-the-gaps to consolidate the index comparing to how much
 | |
| 		 * we use garbage collector to consolidate it. The "half"
 | |
| 		 * criteria just feels to be fine.
 | |
| 		 */
 | |
| 		if (sum < min_space || sum < c->half_leb_size)
 | |
| 			idx_lp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (heap->cnt) {
 | |
| 		lp = heap->arr[0];
 | |
| 		if (lp->dirty + lp->free < min_space)
 | |
| 			lp = NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* Pick the LEB with most space */
 | |
| 	if (idx_lp && lp) {
 | |
| 		if (idx_lp->free + idx_lp->dirty >= lp->free + lp->dirty)
 | |
| 			lp = idx_lp;
 | |
| 	} else if (idx_lp && !lp)
 | |
| 		lp = idx_lp;
 | |
| 
 | |
| 	if (lp) {
 | |
| 		ubifs_assert(lp->free + lp->dirty >= c->dead_wm);
 | |
| 		goto found;
 | |
| 	}
 | |
| 
 | |
| 	/* Did not find a dirty LEB on the dirty heaps, have to scan */
 | |
| 	dbg_find("scanning LPT for a dirty LEB");
 | |
| 	lp = scan_for_dirty(c, min_space, pick_free, exclude_index);
 | |
| 	if (IS_ERR(lp)) {
 | |
| 		err = PTR_ERR(lp);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	ubifs_assert(lp->dirty >= c->dead_wm ||
 | |
| 		     (pick_free && lp->free + lp->dirty == c->leb_size));
 | |
| 
 | |
| found:
 | |
| 	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
 | |
| 		 lp->lnum, lp->free, lp->dirty, lp->flags);
 | |
| 
 | |
| 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 | |
| 			     lp->flags | LPROPS_TAKEN, 0);
 | |
| 	if (IS_ERR(lp)) {
 | |
| 		err = PTR_ERR(lp);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	memcpy(ret_lp, lp, sizeof(struct ubifs_lprops));
 | |
| 
 | |
| out:
 | |
| 	ubifs_release_lprops(c);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_for_free_cb - free space scan callback.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @lprops: LEB properties to scan
 | |
|  * @in_tree: whether the LEB properties are in main memory
 | |
|  * @data: information passed to and from the caller of the scan
 | |
|  *
 | |
|  * This function returns a code that indicates whether the scan should continue
 | |
|  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | |
|  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | |
|  * (%LPT_SCAN_STOP).
 | |
|  */
 | |
| static int scan_for_free_cb(struct ubifs_info *c,
 | |
| 			    const struct ubifs_lprops *lprops, int in_tree,
 | |
| 			    struct scan_data *data)
 | |
| {
 | |
| 	int ret = LPT_SCAN_CONTINUE;
 | |
| 
 | |
| 	/* Exclude LEBs that are currently in use */
 | |
| 	if (lprops->flags & LPROPS_TAKEN)
 | |
| 		return LPT_SCAN_CONTINUE;
 | |
| 	/* Determine whether to add these LEB properties to the tree */
 | |
| 	if (!in_tree && valuable(c, lprops))
 | |
| 		ret |= LPT_SCAN_ADD;
 | |
| 	/* Exclude index LEBs */
 | |
| 	if (lprops->flags & LPROPS_INDEX)
 | |
| 		return ret;
 | |
| 	/* Exclude LEBs with too little space */
 | |
| 	if (lprops->free < data->min_space)
 | |
| 		return ret;
 | |
| 	/* If specified, exclude empty LEBs */
 | |
| 	if (!data->pick_free && lprops->free == c->leb_size)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * LEBs that have only free and dirty space must not be allocated
 | |
| 	 * because they may have been unmapped already or they may have data
 | |
| 	 * that is obsolete only because of nodes that are still sitting in a
 | |
| 	 * wbuf.
 | |
| 	 */
 | |
| 	if (lprops->free + lprops->dirty == c->leb_size && lprops->dirty > 0)
 | |
| 		return ret;
 | |
| 	/* Finally we found space */
 | |
| 	data->lnum = lprops->lnum;
 | |
| 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * do_find_free_space - find a data LEB with free space.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @min_space: minimum amount of free space required
 | |
|  * @pick_free: whether it is OK to scan for empty LEBs
 | |
|  * @squeeze: whether to try to find space in a non-empty LEB first
 | |
|  *
 | |
|  * This function returns a pointer to the LEB properties found or a negative
 | |
|  * error code.
 | |
|  */
 | |
| static
 | |
| const struct ubifs_lprops *do_find_free_space(struct ubifs_info *c,
 | |
| 					      int min_space, int pick_free,
 | |
| 					      int squeeze)
 | |
| {
 | |
| 	const struct ubifs_lprops *lprops;
 | |
| 	struct ubifs_lpt_heap *heap;
 | |
| 	struct scan_data data;
 | |
| 	int err, i;
 | |
| 
 | |
| 	if (squeeze) {
 | |
| 		lprops = ubifs_fast_find_free(c);
 | |
| 		if (lprops && lprops->free >= min_space)
 | |
| 			return lprops;
 | |
| 	}
 | |
| 	if (pick_free) {
 | |
| 		lprops = ubifs_fast_find_empty(c);
 | |
| 		if (lprops)
 | |
| 			return lprops;
 | |
| 	}
 | |
| 	if (!squeeze) {
 | |
| 		lprops = ubifs_fast_find_free(c);
 | |
| 		if (lprops && lprops->free >= min_space)
 | |
| 			return lprops;
 | |
| 	}
 | |
| 	/* There may be an LEB with enough free space on the dirty heap */
 | |
| 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
 | |
| 	for (i = 0; i < heap->cnt; i++) {
 | |
| 		lprops = heap->arr[i];
 | |
| 		if (lprops->free >= min_space)
 | |
| 			return lprops;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * A LEB may have fallen off of the bottom of the free heap, and ended
 | |
| 	 * up as uncategorized even though it has enough free space for us now,
 | |
| 	 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
 | |
| 	 * can end up as uncategorized because they are kept on lists not
 | |
| 	 * finite-sized heaps.
 | |
| 	 */
 | |
| 	list_for_each_entry(lprops, &c->uncat_list, list) {
 | |
| 		if (lprops->flags & LPROPS_TAKEN)
 | |
| 			continue;
 | |
| 		if (lprops->flags & LPROPS_INDEX)
 | |
| 			continue;
 | |
| 		if (lprops->free >= min_space)
 | |
| 			return lprops;
 | |
| 	}
 | |
| 	/* We have looked everywhere in main memory, now scan the flash */
 | |
| 	if (c->pnodes_have >= c->pnode_cnt)
 | |
| 		/* All pnodes are in memory, so skip scan */
 | |
| 		return ERR_PTR(-ENOSPC);
 | |
| 	data.min_space = min_space;
 | |
| 	data.pick_free = pick_free;
 | |
| 	data.lnum = -1;
 | |
| 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | |
| 				    (ubifs_lpt_scan_callback)scan_for_free_cb,
 | |
| 				    &data);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | |
| 	c->lscan_lnum = data.lnum;
 | |
| 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | |
| 	if (IS_ERR(lprops))
 | |
| 		return lprops;
 | |
| 	ubifs_assert(lprops->lnum == data.lnum);
 | |
| 	ubifs_assert(lprops->free >= min_space);
 | |
| 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | |
| 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 | |
| 	return lprops;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_find_free_space - find a data LEB with free space.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @min_space: minimum amount of required free space
 | |
|  * @offs: contains offset of where free space starts on exit
 | |
|  * @squeeze: whether to try to find space in a non-empty LEB first
 | |
|  *
 | |
|  * This function looks for an LEB with at least @min_space bytes of free space.
 | |
|  * It tries to find an empty LEB if possible. If no empty LEBs are available,
 | |
|  * this function searches for a non-empty data LEB. The returned LEB is marked
 | |
|  * as "taken".
 | |
|  *
 | |
|  * This function returns found LEB number in case of success, %-ENOSPC if it
 | |
|  * failed to find a LEB with @min_space bytes of free space and other a negative
 | |
|  * error codes in case of failure.
 | |
|  */
 | |
| int ubifs_find_free_space(struct ubifs_info *c, int min_space, int *offs,
 | |
| 			  int squeeze)
 | |
| {
 | |
| 	const struct ubifs_lprops *lprops;
 | |
| 	int lebs, rsvd_idx_lebs, pick_free = 0, err, lnum, flags;
 | |
| 
 | |
| 	dbg_find("min_space %d", min_space);
 | |
| 	ubifs_get_lprops(c);
 | |
| 
 | |
| 	/* Check if there are enough empty LEBs for commit */
 | |
| 	spin_lock(&c->space_lock);
 | |
| 	if (c->min_idx_lebs > c->lst.idx_lebs)
 | |
| 		rsvd_idx_lebs = c->min_idx_lebs -  c->lst.idx_lebs;
 | |
| 	else
 | |
| 		rsvd_idx_lebs = 0;
 | |
| 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
 | |
| 	       c->lst.taken_empty_lebs;
 | |
| 	if (rsvd_idx_lebs < lebs)
 | |
| 		/*
 | |
| 		 * OK to allocate an empty LEB, but we still don't want to go
 | |
| 		 * looking for one if there aren't any.
 | |
| 		 */
 | |
| 		if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
 | |
| 			pick_free = 1;
 | |
| 			/*
 | |
| 			 * Because we release the space lock, we must account
 | |
| 			 * for this allocation here. After the LEB properties
 | |
| 			 * flags have been updated, we subtract one. Note, the
 | |
| 			 * result of this is that lprops also decreases
 | |
| 			 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
 | |
| 			 * off by one for a short period of time which may
 | |
| 			 * introduce a small disturbance to budgeting
 | |
| 			 * calculations, but this is harmless because at the
 | |
| 			 * worst case this would make the budgeting subsystem
 | |
| 			 * be more pessimistic than needed.
 | |
| 			 *
 | |
| 			 * Fundamentally, this is about serialization of the
 | |
| 			 * budgeting and lprops subsystems. We could make the
 | |
| 			 * @space_lock a mutex and avoid dropping it before
 | |
| 			 * calling 'ubifs_change_lp()', but mutex is more
 | |
| 			 * heavy-weight, and we want budgeting to be as fast as
 | |
| 			 * possible.
 | |
| 			 */
 | |
| 			c->lst.taken_empty_lebs += 1;
 | |
| 		}
 | |
| 	spin_unlock(&c->space_lock);
 | |
| 
 | |
| 	lprops = do_find_free_space(c, min_space, pick_free, squeeze);
 | |
| 	if (IS_ERR(lprops)) {
 | |
| 		err = PTR_ERR(lprops);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	lnum = lprops->lnum;
 | |
| 	flags = lprops->flags | LPROPS_TAKEN;
 | |
| 
 | |
| 	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC, flags, 0);
 | |
| 	if (IS_ERR(lprops)) {
 | |
| 		err = PTR_ERR(lprops);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (pick_free) {
 | |
| 		spin_lock(&c->space_lock);
 | |
| 		c->lst.taken_empty_lebs -= 1;
 | |
| 		spin_unlock(&c->space_lock);
 | |
| 	}
 | |
| 
 | |
| 	*offs = c->leb_size - lprops->free;
 | |
| 	ubifs_release_lprops(c);
 | |
| 
 | |
| 	if (*offs == 0) {
 | |
| 		/*
 | |
| 		 * Ensure that empty LEBs have been unmapped. They may not have
 | |
| 		 * been, for example, because of an unclean unmount.  Also
 | |
| 		 * LEBs that were freeable LEBs (free + dirty == leb_size) will
 | |
| 		 * not have been unmapped.
 | |
| 		 */
 | |
| 		err = ubifs_leb_unmap(c, lnum);
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	dbg_find("found LEB %d, free %d", lnum, c->leb_size - *offs);
 | |
| 	ubifs_assert(*offs <= c->leb_size - min_space);
 | |
| 	return lnum;
 | |
| 
 | |
| out:
 | |
| 	if (pick_free) {
 | |
| 		spin_lock(&c->space_lock);
 | |
| 		c->lst.taken_empty_lebs -= 1;
 | |
| 		spin_unlock(&c->space_lock);
 | |
| 	}
 | |
| 	ubifs_release_lprops(c);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @lprops: LEB properties to scan
 | |
|  * @in_tree: whether the LEB properties are in main memory
 | |
|  * @data: information passed to and from the caller of the scan
 | |
|  *
 | |
|  * This function returns a code that indicates whether the scan should continue
 | |
|  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | |
|  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | |
|  * (%LPT_SCAN_STOP).
 | |
|  */
 | |
| static int scan_for_idx_cb(struct ubifs_info *c,
 | |
| 			   const struct ubifs_lprops *lprops, int in_tree,
 | |
| 			   struct scan_data *data)
 | |
| {
 | |
| 	int ret = LPT_SCAN_CONTINUE;
 | |
| 
 | |
| 	/* Exclude LEBs that are currently in use */
 | |
| 	if (lprops->flags & LPROPS_TAKEN)
 | |
| 		return LPT_SCAN_CONTINUE;
 | |
| 	/* Determine whether to add these LEB properties to the tree */
 | |
| 	if (!in_tree && valuable(c, lprops))
 | |
| 		ret |= LPT_SCAN_ADD;
 | |
| 	/* Exclude index LEBS */
 | |
| 	if (lprops->flags & LPROPS_INDEX)
 | |
| 		return ret;
 | |
| 	/* Exclude LEBs that cannot be made empty */
 | |
| 	if (lprops->free + lprops->dirty != c->leb_size)
 | |
| 		return ret;
 | |
| 	/*
 | |
| 	 * We are allocating for the index so it is safe to allocate LEBs with
 | |
| 	 * only free and dirty space, because write buffers are sync'd at commit
 | |
| 	 * start.
 | |
| 	 */
 | |
| 	data->lnum = lprops->lnum;
 | |
| 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_for_leb_for_idx - scan for a free LEB for the index.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  */
 | |
| static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c)
 | |
| {
 | |
| 	struct ubifs_lprops *lprops;
 | |
| 	struct scan_data data;
 | |
| 	int err;
 | |
| 
 | |
| 	data.lnum = -1;
 | |
| 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | |
| 				    (ubifs_lpt_scan_callback)scan_for_idx_cb,
 | |
| 				    &data);
 | |
| 	if (err)
 | |
| 		return ERR_PTR(err);
 | |
| 	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | |
| 	c->lscan_lnum = data.lnum;
 | |
| 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | |
| 	if (IS_ERR(lprops))
 | |
| 		return lprops;
 | |
| 	ubifs_assert(lprops->lnum == data.lnum);
 | |
| 	ubifs_assert(lprops->free + lprops->dirty == c->leb_size);
 | |
| 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | |
| 	ubifs_assert(!(lprops->flags & LPROPS_INDEX));
 | |
| 	return lprops;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_find_free_leb_for_idx - find a free LEB for the index.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  *
 | |
|  * This function looks for a free LEB and returns that LEB number. The returned
 | |
|  * LEB is marked as "taken", "index".
 | |
|  *
 | |
|  * Only empty LEBs are allocated. This is for two reasons. First, the commit
 | |
|  * calculates the number of LEBs to allocate based on the assumption that they
 | |
|  * will be empty. Secondly, free space at the end of an index LEB is not
 | |
|  * guaranteed to be empty because it may have been used by the in-the-gaps
 | |
|  * method prior to an unclean unmount.
 | |
|  *
 | |
|  * If no LEB is found %-ENOSPC is returned. For other failures another negative
 | |
|  * error code is returned.
 | |
|  */
 | |
| int ubifs_find_free_leb_for_idx(struct ubifs_info *c)
 | |
| {
 | |
| 	const struct ubifs_lprops *lprops;
 | |
| 	int lnum = -1, err, flags;
 | |
| 
 | |
| 	ubifs_get_lprops(c);
 | |
| 
 | |
| 	lprops = ubifs_fast_find_empty(c);
 | |
| 	if (!lprops) {
 | |
| 		lprops = ubifs_fast_find_freeable(c);
 | |
| 		if (!lprops) {
 | |
| 			ubifs_assert(c->freeable_cnt == 0);
 | |
| 			if (c->lst.empty_lebs - c->lst.taken_empty_lebs > 0) {
 | |
| 				lprops = scan_for_leb_for_idx(c);
 | |
| 				if (IS_ERR(lprops)) {
 | |
| 					err = PTR_ERR(lprops);
 | |
| 					goto out;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!lprops) {
 | |
| 		err = -ENOSPC;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	lnum = lprops->lnum;
 | |
| 
 | |
| 	dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
 | |
| 		 lnum, lprops->free, lprops->dirty, lprops->flags);
 | |
| 
 | |
| 	flags = lprops->flags | LPROPS_TAKEN | LPROPS_INDEX;
 | |
| 	lprops = ubifs_change_lp(c, lprops, c->leb_size, 0, flags, 0);
 | |
| 	if (IS_ERR(lprops)) {
 | |
| 		err = PTR_ERR(lprops);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	ubifs_release_lprops(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that empty LEBs have been unmapped. They may not have been,
 | |
| 	 * for example, because of an unclean unmount. Also LEBs that were
 | |
| 	 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
 | |
| 	 */
 | |
| 	err = ubifs_leb_unmap(c, lnum);
 | |
| 	if (err) {
 | |
| 		ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
 | |
| 				    LPROPS_TAKEN | LPROPS_INDEX, 0);
 | |
| 		return err;
 | |
| 	}
 | |
| 
 | |
| 	return lnum;
 | |
| 
 | |
| out:
 | |
| 	ubifs_release_lprops(c);
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int cmp_dirty_idx(const struct ubifs_lprops **a,
 | |
| 			 const struct ubifs_lprops **b)
 | |
| {
 | |
| 	const struct ubifs_lprops *lpa = *a;
 | |
| 	const struct ubifs_lprops *lpb = *b;
 | |
| 
 | |
| 	return lpa->dirty + lpa->free - lpb->dirty - lpb->free;
 | |
| }
 | |
| 
 | |
| static void swap_dirty_idx(struct ubifs_lprops **a, struct ubifs_lprops **b,
 | |
| 			   int size)
 | |
| {
 | |
| 	struct ubifs_lprops *t = *a;
 | |
| 
 | |
| 	*a = *b;
 | |
| 	*b = t;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  *
 | |
|  * This function is called each commit to create an array of LEB numbers of
 | |
|  * dirty index LEBs sorted in order of dirty and free space.  This is used by
 | |
|  * the in-the-gaps method of TNC commit.
 | |
|  */
 | |
| int ubifs_save_dirty_idx_lnums(struct ubifs_info *c)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	ubifs_get_lprops(c);
 | |
| 	/* Copy the LPROPS_DIRTY_IDX heap */
 | |
| 	c->dirty_idx.cnt = c->lpt_heap[LPROPS_DIRTY_IDX - 1].cnt;
 | |
| 	memcpy(c->dirty_idx.arr, c->lpt_heap[LPROPS_DIRTY_IDX - 1].arr,
 | |
| 	       sizeof(void *) * c->dirty_idx.cnt);
 | |
| 	/* Sort it so that the dirtiest is now at the end */
 | |
| 	sort(c->dirty_idx.arr, c->dirty_idx.cnt, sizeof(void *),
 | |
| 	     (int (*)(const void *, const void *))cmp_dirty_idx,
 | |
| 	     (void (*)(void *, void *, int))swap_dirty_idx);
 | |
| 	dbg_find("found %d dirty index LEBs", c->dirty_idx.cnt);
 | |
| 	if (c->dirty_idx.cnt)
 | |
| 		dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
 | |
| 			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->lnum,
 | |
| 			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->dirty,
 | |
| 			 c->dirty_idx.arr[c->dirty_idx.cnt - 1]->free);
 | |
| 	/* Replace the lprops pointers with LEB numbers */
 | |
| 	for (i = 0; i < c->dirty_idx.cnt; i++)
 | |
| 		c->dirty_idx.arr[i] = (void *)(size_t)c->dirty_idx.arr[i]->lnum;
 | |
| 	ubifs_release_lprops(c);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  * @lprops: LEB properties to scan
 | |
|  * @in_tree: whether the LEB properties are in main memory
 | |
|  * @data: information passed to and from the caller of the scan
 | |
|  *
 | |
|  * This function returns a code that indicates whether the scan should continue
 | |
|  * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
 | |
|  * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
 | |
|  * (%LPT_SCAN_STOP).
 | |
|  */
 | |
| static int scan_dirty_idx_cb(struct ubifs_info *c,
 | |
| 			   const struct ubifs_lprops *lprops, int in_tree,
 | |
| 			   struct scan_data *data)
 | |
| {
 | |
| 	int ret = LPT_SCAN_CONTINUE;
 | |
| 
 | |
| 	/* Exclude LEBs that are currently in use */
 | |
| 	if (lprops->flags & LPROPS_TAKEN)
 | |
| 		return LPT_SCAN_CONTINUE;
 | |
| 	/* Determine whether to add these LEB properties to the tree */
 | |
| 	if (!in_tree && valuable(c, lprops))
 | |
| 		ret |= LPT_SCAN_ADD;
 | |
| 	/* Exclude non-index LEBs */
 | |
| 	if (!(lprops->flags & LPROPS_INDEX))
 | |
| 		return ret;
 | |
| 	/* Exclude LEBs with too little space */
 | |
| 	if (lprops->free + lprops->dirty < c->min_idx_node_sz)
 | |
| 		return ret;
 | |
| 	/* Finally we found space */
 | |
| 	data->lnum = lprops->lnum;
 | |
| 	return LPT_SCAN_ADD | LPT_SCAN_STOP;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_dirty_idx_leb - find a dirty index LEB.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  *
 | |
|  * This function returns LEB number upon success and a negative error code upon
 | |
|  * failure.  In particular, -ENOSPC is returned if a dirty index LEB is not
 | |
|  * found.
 | |
|  *
 | |
|  * Note that this function scans the entire LPT but it is called very rarely.
 | |
|  */
 | |
| static int find_dirty_idx_leb(struct ubifs_info *c)
 | |
| {
 | |
| 	const struct ubifs_lprops *lprops;
 | |
| 	struct ubifs_lpt_heap *heap;
 | |
| 	struct scan_data data;
 | |
| 	int err, i, ret;
 | |
| 
 | |
| 	/* Check all structures in memory first */
 | |
| 	data.lnum = -1;
 | |
| 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
 | |
| 	for (i = 0; i < heap->cnt; i++) {
 | |
| 		lprops = heap->arr[i];
 | |
| 		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
 | |
| 		if (ret & LPT_SCAN_STOP)
 | |
| 			goto found;
 | |
| 	}
 | |
| 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
 | |
| 		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
 | |
| 		if (ret & LPT_SCAN_STOP)
 | |
| 			goto found;
 | |
| 	}
 | |
| 	list_for_each_entry(lprops, &c->uncat_list, list) {
 | |
| 		ret = scan_dirty_idx_cb(c, lprops, 1, &data);
 | |
| 		if (ret & LPT_SCAN_STOP)
 | |
| 			goto found;
 | |
| 	}
 | |
| 	if (c->pnodes_have >= c->pnode_cnt)
 | |
| 		/* All pnodes are in memory, so skip scan */
 | |
| 		return -ENOSPC;
 | |
| 	err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum,
 | |
| 				    (ubifs_lpt_scan_callback)scan_dirty_idx_cb,
 | |
| 				    &data);
 | |
| 	if (err)
 | |
| 		return err;
 | |
| found:
 | |
| 	ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt);
 | |
| 	c->lscan_lnum = data.lnum;
 | |
| 	lprops = ubifs_lpt_lookup_dirty(c, data.lnum);
 | |
| 	if (IS_ERR(lprops))
 | |
| 		return PTR_ERR(lprops);
 | |
| 	ubifs_assert(lprops->lnum == data.lnum);
 | |
| 	ubifs_assert(lprops->free + lprops->dirty >= c->min_idx_node_sz);
 | |
| 	ubifs_assert(!(lprops->flags & LPROPS_TAKEN));
 | |
| 	ubifs_assert((lprops->flags & LPROPS_INDEX));
 | |
| 
 | |
| 	dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
 | |
| 		 lprops->lnum, lprops->free, lprops->dirty, lprops->flags);
 | |
| 
 | |
| 	lprops = ubifs_change_lp(c, lprops, LPROPS_NC, LPROPS_NC,
 | |
| 				 lprops->flags | LPROPS_TAKEN, 0);
 | |
| 	if (IS_ERR(lprops))
 | |
| 		return PTR_ERR(lprops);
 | |
| 
 | |
| 	return lprops->lnum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * get_idx_gc_leb - try to get a LEB number from trivial GC.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  */
 | |
| static int get_idx_gc_leb(struct ubifs_info *c)
 | |
| {
 | |
| 	const struct ubifs_lprops *lp;
 | |
| 	int err, lnum;
 | |
| 
 | |
| 	err = ubifs_get_idx_gc_leb(c);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 	lnum = err;
 | |
| 	/*
 | |
| 	 * The LEB was due to be unmapped after the commit but
 | |
| 	 * it is needed now for this commit.
 | |
| 	 */
 | |
| 	lp = ubifs_lpt_lookup_dirty(c, lnum);
 | |
| 	if (IS_ERR(lp))
 | |
| 		return PTR_ERR(lp);
 | |
| 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 | |
| 			     lp->flags | LPROPS_INDEX, -1);
 | |
| 	if (IS_ERR(lp))
 | |
| 		return PTR_ERR(lp);
 | |
| 	dbg_find("LEB %d, dirty %d and free %d flags %#x",
 | |
| 		 lp->lnum, lp->dirty, lp->free, lp->flags);
 | |
| 	return lnum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  */
 | |
| static int find_dirtiest_idx_leb(struct ubifs_info *c)
 | |
| {
 | |
| 	const struct ubifs_lprops *lp;
 | |
| 	int lnum;
 | |
| 
 | |
| 	while (1) {
 | |
| 		if (!c->dirty_idx.cnt)
 | |
| 			return -ENOSPC;
 | |
| 		/* The lprops pointers were replaced by LEB numbers */
 | |
| 		lnum = (size_t)c->dirty_idx.arr[--c->dirty_idx.cnt];
 | |
| 		lp = ubifs_lpt_lookup(c, lnum);
 | |
| 		if (IS_ERR(lp))
 | |
| 			return PTR_ERR(lp);
 | |
| 		if ((lp->flags & LPROPS_TAKEN) || !(lp->flags & LPROPS_INDEX))
 | |
| 			continue;
 | |
| 		lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
 | |
| 				     lp->flags | LPROPS_TAKEN, 0);
 | |
| 		if (IS_ERR(lp))
 | |
| 			return PTR_ERR(lp);
 | |
| 		break;
 | |
| 	}
 | |
| 	dbg_find("LEB %d, dirty %d and free %d flags %#x", lp->lnum, lp->dirty,
 | |
| 		 lp->free, lp->flags);
 | |
| 	ubifs_assert(lp->flags | LPROPS_TAKEN);
 | |
| 	ubifs_assert(lp->flags | LPROPS_INDEX);
 | |
| 	return lnum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
 | |
|  * @c: the UBIFS file-system description object
 | |
|  *
 | |
|  * This function attempts to find an untaken index LEB with the most free and
 | |
|  * dirty space that can be used without overwriting index nodes that were in the
 | |
|  * last index committed.
 | |
|  */
 | |
| int ubifs_find_dirty_idx_leb(struct ubifs_info *c)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	ubifs_get_lprops(c);
 | |
| 
 | |
| 	/*
 | |
| 	 * We made an array of the dirtiest index LEB numbers as at the start of
 | |
| 	 * last commit.  Try that array first.
 | |
| 	 */
 | |
| 	err = find_dirtiest_idx_leb(c);
 | |
| 
 | |
| 	/* Next try scanning the entire LPT */
 | |
| 	if (err == -ENOSPC)
 | |
| 		err = find_dirty_idx_leb(c);
 | |
| 
 | |
| 	/* Finally take any index LEBs awaiting trivial GC */
 | |
| 	if (err == -ENOSPC)
 | |
| 		err = get_idx_gc_leb(c);
 | |
| 
 | |
| 	ubifs_release_lprops(c);
 | |
| 	return err;
 | |
| }
 |