android_kernel_cmhtcleo/arch/powerpc/platforms/cell/pmu.c
2010-08-27 11:19:57 +02:00

424 lines
9.5 KiB
C

/*
* Cell Broadband Engine Performance Monitor
*
* (C) Copyright IBM Corporation 2001,2006
*
* Author:
* David Erb (djerb@us.ibm.com)
* Kevin Corry (kevcorry@us.ibm.com)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/interrupt.h>
#include <linux/types.h>
#include <asm/io.h>
#include <asm/irq_regs.h>
#include <asm/machdep.h>
#include <asm/pmc.h>
#include <asm/reg.h>
#include <asm/spu.h>
#include <asm/cell-regs.h>
#include "interrupt.h"
/*
* When writing to write-only mmio addresses, save a shadow copy. All of the
* registers are 32-bit, but stored in the upper-half of a 64-bit field in
* pmd_regs.
*/
#define WRITE_WO_MMIO(reg, x) \
do { \
u32 _x = (x); \
struct cbe_pmd_regs __iomem *pmd_regs; \
struct cbe_pmd_shadow_regs *shadow_regs; \
pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
out_be64(&(pmd_regs->reg), (((u64)_x) << 32)); \
shadow_regs->reg = _x; \
} while (0)
#define READ_SHADOW_REG(val, reg) \
do { \
struct cbe_pmd_shadow_regs *shadow_regs; \
shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu); \
(val) = shadow_regs->reg; \
} while (0)
#define READ_MMIO_UPPER32(val, reg) \
do { \
struct cbe_pmd_regs __iomem *pmd_regs; \
pmd_regs = cbe_get_cpu_pmd_regs(cpu); \
(val) = (u32)(in_be64(&pmd_regs->reg) >> 32); \
} while (0)
/*
* Physical counter registers.
* Each physical counter can act as one 32-bit counter or two 16-bit counters.
*/
u32 cbe_read_phys_ctr(u32 cpu, u32 phys_ctr)
{
u32 val_in_latch, val = 0;
if (phys_ctr < NR_PHYS_CTRS) {
READ_SHADOW_REG(val_in_latch, counter_value_in_latch);
/* Read the latch or the actual counter, whichever is newer. */
if (val_in_latch & (1 << phys_ctr)) {
READ_SHADOW_REG(val, pm_ctr[phys_ctr]);
} else {
READ_MMIO_UPPER32(val, pm_ctr[phys_ctr]);
}
}
return val;
}
EXPORT_SYMBOL_GPL(cbe_read_phys_ctr);
void cbe_write_phys_ctr(u32 cpu, u32 phys_ctr, u32 val)
{
struct cbe_pmd_shadow_regs *shadow_regs;
u32 pm_ctrl;
if (phys_ctr < NR_PHYS_CTRS) {
/* Writing to a counter only writes to a hardware latch.
* The new value is not propagated to the actual counter
* until the performance monitor is enabled.
*/
WRITE_WO_MMIO(pm_ctr[phys_ctr], val);
pm_ctrl = cbe_read_pm(cpu, pm_control);
if (pm_ctrl & CBE_PM_ENABLE_PERF_MON) {
/* The counters are already active, so we need to
* rewrite the pm_control register to "re-enable"
* the PMU.
*/
cbe_write_pm(cpu, pm_control, pm_ctrl);
} else {
shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
shadow_regs->counter_value_in_latch |= (1 << phys_ctr);
}
}
}
EXPORT_SYMBOL_GPL(cbe_write_phys_ctr);
/*
* "Logical" counter registers.
* These will read/write 16-bits or 32-bits depending on the
* current size of the counter. Counters 4 - 7 are always 16-bit.
*/
u32 cbe_read_ctr(u32 cpu, u32 ctr)
{
u32 val;
u32 phys_ctr = ctr & (NR_PHYS_CTRS - 1);
val = cbe_read_phys_ctr(cpu, phys_ctr);
if (cbe_get_ctr_size(cpu, phys_ctr) == 16)
val = (ctr < NR_PHYS_CTRS) ? (val >> 16) : (val & 0xffff);
return val;
}
EXPORT_SYMBOL_GPL(cbe_read_ctr);
void cbe_write_ctr(u32 cpu, u32 ctr, u32 val)
{
u32 phys_ctr;
u32 phys_val;
phys_ctr = ctr & (NR_PHYS_CTRS - 1);
if (cbe_get_ctr_size(cpu, phys_ctr) == 16) {
phys_val = cbe_read_phys_ctr(cpu, phys_ctr);
if (ctr < NR_PHYS_CTRS)
val = (val << 16) | (phys_val & 0xffff);
else
val = (val & 0xffff) | (phys_val & 0xffff0000);
}
cbe_write_phys_ctr(cpu, phys_ctr, val);
}
EXPORT_SYMBOL_GPL(cbe_write_ctr);
/*
* Counter-control registers.
* Each "logical" counter has a corresponding control register.
*/
u32 cbe_read_pm07_control(u32 cpu, u32 ctr)
{
u32 pm07_control = 0;
if (ctr < NR_CTRS)
READ_SHADOW_REG(pm07_control, pm07_control[ctr]);
return pm07_control;
}
EXPORT_SYMBOL_GPL(cbe_read_pm07_control);
void cbe_write_pm07_control(u32 cpu, u32 ctr, u32 val)
{
if (ctr < NR_CTRS)
WRITE_WO_MMIO(pm07_control[ctr], val);
}
EXPORT_SYMBOL_GPL(cbe_write_pm07_control);
/*
* Other PMU control registers. Most of these are write-only.
*/
u32 cbe_read_pm(u32 cpu, enum pm_reg_name reg)
{
u32 val = 0;
switch (reg) {
case group_control:
READ_SHADOW_REG(val, group_control);
break;
case debug_bus_control:
READ_SHADOW_REG(val, debug_bus_control);
break;
case trace_address:
READ_MMIO_UPPER32(val, trace_address);
break;
case ext_tr_timer:
READ_SHADOW_REG(val, ext_tr_timer);
break;
case pm_status:
READ_MMIO_UPPER32(val, pm_status);
break;
case pm_control:
READ_SHADOW_REG(val, pm_control);
break;
case pm_interval:
READ_MMIO_UPPER32(val, pm_interval);
break;
case pm_start_stop:
READ_SHADOW_REG(val, pm_start_stop);
break;
}
return val;
}
EXPORT_SYMBOL_GPL(cbe_read_pm);
void cbe_write_pm(u32 cpu, enum pm_reg_name reg, u32 val)
{
switch (reg) {
case group_control:
WRITE_WO_MMIO(group_control, val);
break;
case debug_bus_control:
WRITE_WO_MMIO(debug_bus_control, val);
break;
case trace_address:
WRITE_WO_MMIO(trace_address, val);
break;
case ext_tr_timer:
WRITE_WO_MMIO(ext_tr_timer, val);
break;
case pm_status:
WRITE_WO_MMIO(pm_status, val);
break;
case pm_control:
WRITE_WO_MMIO(pm_control, val);
break;
case pm_interval:
WRITE_WO_MMIO(pm_interval, val);
break;
case pm_start_stop:
WRITE_WO_MMIO(pm_start_stop, val);
break;
}
}
EXPORT_SYMBOL_GPL(cbe_write_pm);
/*
* Get/set the size of a physical counter to either 16 or 32 bits.
*/
u32 cbe_get_ctr_size(u32 cpu, u32 phys_ctr)
{
u32 pm_ctrl, size = 0;
if (phys_ctr < NR_PHYS_CTRS) {
pm_ctrl = cbe_read_pm(cpu, pm_control);
size = (pm_ctrl & CBE_PM_16BIT_CTR(phys_ctr)) ? 16 : 32;
}
return size;
}
EXPORT_SYMBOL_GPL(cbe_get_ctr_size);
void cbe_set_ctr_size(u32 cpu, u32 phys_ctr, u32 ctr_size)
{
u32 pm_ctrl;
if (phys_ctr < NR_PHYS_CTRS) {
pm_ctrl = cbe_read_pm(cpu, pm_control);
switch (ctr_size) {
case 16:
pm_ctrl |= CBE_PM_16BIT_CTR(phys_ctr);
break;
case 32:
pm_ctrl &= ~CBE_PM_16BIT_CTR(phys_ctr);
break;
}
cbe_write_pm(cpu, pm_control, pm_ctrl);
}
}
EXPORT_SYMBOL_GPL(cbe_set_ctr_size);
/*
* Enable/disable the entire performance monitoring unit.
* When we enable the PMU, all pending writes to counters get committed.
*/
void cbe_enable_pm(u32 cpu)
{
struct cbe_pmd_shadow_regs *shadow_regs;
u32 pm_ctrl;
shadow_regs = cbe_get_cpu_pmd_shadow_regs(cpu);
shadow_regs->counter_value_in_latch = 0;
pm_ctrl = cbe_read_pm(cpu, pm_control) | CBE_PM_ENABLE_PERF_MON;
cbe_write_pm(cpu, pm_control, pm_ctrl);
}
EXPORT_SYMBOL_GPL(cbe_enable_pm);
void cbe_disable_pm(u32 cpu)
{
u32 pm_ctrl;
pm_ctrl = cbe_read_pm(cpu, pm_control) & ~CBE_PM_ENABLE_PERF_MON;
cbe_write_pm(cpu, pm_control, pm_ctrl);
}
EXPORT_SYMBOL_GPL(cbe_disable_pm);
/*
* Reading from the trace_buffer.
* The trace buffer is two 64-bit registers. Reading from
* the second half automatically increments the trace_address.
*/
void cbe_read_trace_buffer(u32 cpu, u64 *buf)
{
struct cbe_pmd_regs __iomem *pmd_regs = cbe_get_cpu_pmd_regs(cpu);
*buf++ = in_be64(&pmd_regs->trace_buffer_0_63);
*buf++ = in_be64(&pmd_regs->trace_buffer_64_127);
}
EXPORT_SYMBOL_GPL(cbe_read_trace_buffer);
/*
* Enabling/disabling interrupts for the entire performance monitoring unit.
*/
u32 cbe_get_and_clear_pm_interrupts(u32 cpu)
{
/* Reading pm_status clears the interrupt bits. */
return cbe_read_pm(cpu, pm_status);
}
EXPORT_SYMBOL_GPL(cbe_get_and_clear_pm_interrupts);
void cbe_enable_pm_interrupts(u32 cpu, u32 thread, u32 mask)
{
/* Set which node and thread will handle the next interrupt. */
iic_set_interrupt_routing(cpu, thread, 0);
/* Enable the interrupt bits in the pm_status register. */
if (mask)
cbe_write_pm(cpu, pm_status, mask);
}
EXPORT_SYMBOL_GPL(cbe_enable_pm_interrupts);
void cbe_disable_pm_interrupts(u32 cpu)
{
cbe_get_and_clear_pm_interrupts(cpu);
cbe_write_pm(cpu, pm_status, 0);
}
EXPORT_SYMBOL_GPL(cbe_disable_pm_interrupts);
static irqreturn_t cbe_pm_irq(int irq, void *dev_id)
{
perf_irq(get_irq_regs());
return IRQ_HANDLED;
}
static int __init cbe_init_pm_irq(void)
{
unsigned int irq;
int rc, node;
for_each_node(node) {
irq = irq_create_mapping(NULL, IIC_IRQ_IOEX_PMI |
(node << IIC_IRQ_NODE_SHIFT));
if (irq == NO_IRQ) {
printk("ERROR: Unable to allocate irq for node %d\n",
node);
return -EINVAL;
}
rc = request_irq(irq, cbe_pm_irq,
IRQF_DISABLED, "cbe-pmu-0", NULL);
if (rc) {
printk("ERROR: Request for irq on node %d failed\n",
node);
return rc;
}
}
return 0;
}
machine_arch_initcall(cell, cbe_init_pm_irq);
void cbe_sync_irq(int node)
{
unsigned int irq;
irq = irq_find_mapping(NULL,
IIC_IRQ_IOEX_PMI
| (node << IIC_IRQ_NODE_SHIFT));
if (irq == NO_IRQ) {
printk(KERN_WARNING "ERROR, unable to get existing irq %d " \
"for node %d\n", irq, node);
return;
}
synchronize_irq(irq);
}
EXPORT_SYMBOL_GPL(cbe_sync_irq);