415 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			415 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (C) 1994 Linus Torvalds
 | |
|  *
 | |
|  * Pentium III FXSR, SSE support
 | |
|  * General FPU state handling cleanups
 | |
|  *	Gareth Hughes <gareth@valinux.com>, May 2000
 | |
|  * x86-64 work by Andi Kleen 2002
 | |
|  */
 | |
| 
 | |
| #ifndef _ASM_X86_I387_H
 | |
| #define _ASM_X86_I387_H
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/regset.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <asm/asm.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/sigcontext.h>
 | |
| #include <asm/user.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/xsave.h>
 | |
| 
 | |
| extern unsigned int sig_xstate_size;
 | |
| extern void fpu_init(void);
 | |
| extern void mxcsr_feature_mask_init(void);
 | |
| extern int init_fpu(struct task_struct *child);
 | |
| extern asmlinkage void math_state_restore(void);
 | |
| extern void __math_state_restore(void);
 | |
| extern void init_thread_xstate(void);
 | |
| extern int dump_fpu(struct pt_regs *, struct user_i387_struct *);
 | |
| 
 | |
| extern user_regset_active_fn fpregs_active, xfpregs_active;
 | |
| extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get;
 | |
| extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set;
 | |
| 
 | |
| extern struct _fpx_sw_bytes fx_sw_reserved;
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| extern unsigned int sig_xstate_ia32_size;
 | |
| extern struct _fpx_sw_bytes fx_sw_reserved_ia32;
 | |
| struct _fpstate_ia32;
 | |
| struct _xstate_ia32;
 | |
| extern int save_i387_xstate_ia32(void __user *buf);
 | |
| extern int restore_i387_xstate_ia32(void __user *buf);
 | |
| #endif
 | |
| 
 | |
| #define X87_FSW_ES (1 << 7)	/* Exception Summary */
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| /* Ignore delayed exceptions from user space */
 | |
| static inline void tolerant_fwait(void)
 | |
| {
 | |
| 	asm volatile("1: fwait\n"
 | |
| 		     "2:\n"
 | |
| 		     _ASM_EXTABLE(1b, 2b));
 | |
| }
 | |
| 
 | |
| static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	asm volatile("1:  rex64/fxrstor (%[fx])\n\t"
 | |
| 		     "2:\n"
 | |
| 		     ".section .fixup,\"ax\"\n"
 | |
| 		     "3:  movl $-1,%[err]\n"
 | |
| 		     "    jmp  2b\n"
 | |
| 		     ".previous\n"
 | |
| 		     _ASM_EXTABLE(1b, 3b)
 | |
| 		     : [err] "=r" (err)
 | |
| #if 0 /* See comment in fxsave() below. */
 | |
| 		     : [fx] "r" (fx), "m" (*fx), "0" (0));
 | |
| #else
 | |
| 		     : [fx] "cdaSDb" (fx), "m" (*fx), "0" (0));
 | |
| #endif
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /* AMD CPUs don't save/restore FDP/FIP/FOP unless an exception
 | |
|    is pending. Clear the x87 state here by setting it to fixed
 | |
|    values. The kernel data segment can be sometimes 0 and sometimes
 | |
|    new user value. Both should be ok.
 | |
|    Use the PDA as safe address because it should be already in L1. */
 | |
| static inline void clear_fpu_state(struct task_struct *tsk)
 | |
| {
 | |
| 	struct xsave_struct *xstate = &tsk->thread.xstate->xsave;
 | |
| 	struct i387_fxsave_struct *fx = &tsk->thread.xstate->fxsave;
 | |
| 
 | |
| 	/*
 | |
| 	 * xsave header may indicate the init state of the FP.
 | |
| 	 */
 | |
| 	if ((task_thread_info(tsk)->status & TS_XSAVE) &&
 | |
| 	    !(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
 | |
| 		return;
 | |
| 
 | |
| 	if (unlikely(fx->swd & X87_FSW_ES))
 | |
| 		asm volatile("fnclex");
 | |
| 	alternative_input(ASM_NOP8 ASM_NOP2,
 | |
| 			  "    emms\n"		/* clear stack tags */
 | |
| 			  "    fildl %%gs:0",	/* load to clear state */
 | |
| 			  X86_FEATURE_FXSAVE_LEAK);
 | |
| }
 | |
| 
 | |
| static inline int fxsave_user(struct i387_fxsave_struct __user *fx)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	asm volatile("1:  rex64/fxsave (%[fx])\n\t"
 | |
| 		     "2:\n"
 | |
| 		     ".section .fixup,\"ax\"\n"
 | |
| 		     "3:  movl $-1,%[err]\n"
 | |
| 		     "    jmp  2b\n"
 | |
| 		     ".previous\n"
 | |
| 		     _ASM_EXTABLE(1b, 3b)
 | |
| 		     : [err] "=r" (err), "=m" (*fx)
 | |
| #if 0 /* See comment in fxsave() below. */
 | |
| 		     : [fx] "r" (fx), "0" (0));
 | |
| #else
 | |
| 		     : [fx] "cdaSDb" (fx), "0" (0));
 | |
| #endif
 | |
| 	if (unlikely(err) &&
 | |
| 	    __clear_user(fx, sizeof(struct i387_fxsave_struct)))
 | |
| 		err = -EFAULT;
 | |
| 	/* No need to clear here because the caller clears USED_MATH */
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static inline void fxsave(struct task_struct *tsk)
 | |
| {
 | |
| 	/* Using "rex64; fxsave %0" is broken because, if the memory operand
 | |
| 	   uses any extended registers for addressing, a second REX prefix
 | |
| 	   will be generated (to the assembler, rex64 followed by semicolon
 | |
| 	   is a separate instruction), and hence the 64-bitness is lost. */
 | |
| #if 0
 | |
| 	/* Using "fxsaveq %0" would be the ideal choice, but is only supported
 | |
| 	   starting with gas 2.16. */
 | |
| 	__asm__ __volatile__("fxsaveq %0"
 | |
| 			     : "=m" (tsk->thread.xstate->fxsave));
 | |
| #elif 0
 | |
| 	/* Using, as a workaround, the properly prefixed form below isn't
 | |
| 	   accepted by any binutils version so far released, complaining that
 | |
| 	   the same type of prefix is used twice if an extended register is
 | |
| 	   needed for addressing (fix submitted to mainline 2005-11-21). */
 | |
| 	__asm__ __volatile__("rex64/fxsave %0"
 | |
| 			     : "=m" (tsk->thread.xstate->fxsave));
 | |
| #else
 | |
| 	/* This, however, we can work around by forcing the compiler to select
 | |
| 	   an addressing mode that doesn't require extended registers. */
 | |
| 	__asm__ __volatile__("rex64/fxsave (%1)"
 | |
| 			     : "=m" (tsk->thread.xstate->fxsave)
 | |
| 			     : "cdaSDb" (&tsk->thread.xstate->fxsave));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void __save_init_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	if (task_thread_info(tsk)->status & TS_XSAVE)
 | |
| 		xsave(tsk);
 | |
| 	else
 | |
| 		fxsave(tsk);
 | |
| 
 | |
| 	clear_fpu_state(tsk);
 | |
| 	task_thread_info(tsk)->status &= ~TS_USEDFPU;
 | |
| }
 | |
| 
 | |
| #else  /* CONFIG_X86_32 */
 | |
| 
 | |
| #ifdef CONFIG_MATH_EMULATION
 | |
| extern void finit_task(struct task_struct *tsk);
 | |
| #else
 | |
| static inline void finit_task(struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void tolerant_fwait(void)
 | |
| {
 | |
| 	asm volatile("fnclex ; fwait");
 | |
| }
 | |
| 
 | |
| /* perform fxrstor iff the processor has extended states, otherwise frstor */
 | |
| static inline int fxrstor_checking(struct i387_fxsave_struct *fx)
 | |
| {
 | |
| 	/*
 | |
| 	 * The "nop" is needed to make the instructions the same
 | |
| 	 * length.
 | |
| 	 */
 | |
| 	alternative_input(
 | |
| 		"nop ; frstor %1",
 | |
| 		"fxrstor %1",
 | |
| 		X86_FEATURE_FXSR,
 | |
| 		"m" (*fx));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* We need a safe address that is cheap to find and that is already
 | |
|    in L1 during context switch. The best choices are unfortunately
 | |
|    different for UP and SMP */
 | |
| #ifdef CONFIG_SMP
 | |
| #define safe_address (__per_cpu_offset[0])
 | |
| #else
 | |
| #define safe_address (kstat_cpu(0).cpustat.user)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * These must be called with preempt disabled
 | |
|  */
 | |
| static inline void __save_init_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	if (task_thread_info(tsk)->status & TS_XSAVE) {
 | |
| 		struct xsave_struct *xstate = &tsk->thread.xstate->xsave;
 | |
| 		struct i387_fxsave_struct *fx = &tsk->thread.xstate->fxsave;
 | |
| 
 | |
| 		xsave(tsk);
 | |
| 
 | |
| 		/*
 | |
| 		 * xsave header may indicate the init state of the FP.
 | |
| 		 */
 | |
| 		if (!(xstate->xsave_hdr.xstate_bv & XSTATE_FP))
 | |
| 			goto end;
 | |
| 
 | |
| 		if (unlikely(fx->swd & X87_FSW_ES))
 | |
| 			asm volatile("fnclex");
 | |
| 
 | |
| 		/*
 | |
| 		 * we can do a simple return here or be paranoid :)
 | |
| 		 */
 | |
| 		goto clear_state;
 | |
| 	}
 | |
| 
 | |
| 	/* Use more nops than strictly needed in case the compiler
 | |
| 	   varies code */
 | |
| 	alternative_input(
 | |
| 		"fnsave %[fx] ;fwait;" GENERIC_NOP8 GENERIC_NOP4,
 | |
| 		"fxsave %[fx]\n"
 | |
| 		"bt $7,%[fsw] ; jnc 1f ; fnclex\n1:",
 | |
| 		X86_FEATURE_FXSR,
 | |
| 		[fx] "m" (tsk->thread.xstate->fxsave),
 | |
| 		[fsw] "m" (tsk->thread.xstate->fxsave.swd) : "memory");
 | |
| clear_state:
 | |
| 	/* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception
 | |
| 	   is pending.  Clear the x87 state here by setting it to fixed
 | |
| 	   values. safe_address is a random variable that should be in L1 */
 | |
| 	alternative_input(
 | |
| 		GENERIC_NOP8 GENERIC_NOP2,
 | |
| 		"emms\n\t"	  	/* clear stack tags */
 | |
| 		"fildl %[addr]", 	/* set F?P to defined value */
 | |
| 		X86_FEATURE_FXSAVE_LEAK,
 | |
| 		[addr] "m" (safe_address));
 | |
| end:
 | |
| 	task_thread_info(tsk)->status &= ~TS_USEDFPU;
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_X86_64 */
 | |
| 
 | |
| static inline int restore_fpu_checking(struct task_struct *tsk)
 | |
| {
 | |
| 	if (task_thread_info(tsk)->status & TS_XSAVE)
 | |
| 		return xrstor_checking(&tsk->thread.xstate->xsave);
 | |
| 	else
 | |
| 		return fxrstor_checking(&tsk->thread.xstate->fxsave);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Signal frame handlers...
 | |
|  */
 | |
| extern int save_i387_xstate(void __user *buf);
 | |
| extern int restore_i387_xstate(void __user *buf);
 | |
| 
 | |
| static inline void __unlazy_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	if (task_thread_info(tsk)->status & TS_USEDFPU) {
 | |
| 		__save_init_fpu(tsk);
 | |
| 		stts();
 | |
| 	} else
 | |
| 		tsk->fpu_counter = 0;
 | |
| }
 | |
| 
 | |
| static inline void __clear_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	if (task_thread_info(tsk)->status & TS_USEDFPU) {
 | |
| 		tolerant_fwait();
 | |
| 		task_thread_info(tsk)->status &= ~TS_USEDFPU;
 | |
| 		stts();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void kernel_fpu_begin(void)
 | |
| {
 | |
| 	struct thread_info *me = current_thread_info();
 | |
| 	preempt_disable();
 | |
| 	if (me->status & TS_USEDFPU)
 | |
| 		__save_init_fpu(me->task);
 | |
| 	else
 | |
| 		clts();
 | |
| }
 | |
| 
 | |
| static inline void kernel_fpu_end(void)
 | |
| {
 | |
| 	stts();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static inline bool irq_fpu_usable(void)
 | |
| {
 | |
| 	struct pt_regs *regs;
 | |
| 
 | |
| 	return !in_interrupt() || !(regs = get_irq_regs()) || \
 | |
| 		user_mode(regs) || (read_cr0() & X86_CR0_TS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some instructions like VIA's padlock instructions generate a spurious
 | |
|  * DNA fault but don't modify SSE registers. And these instructions
 | |
|  * get used from interrupt context as well. To prevent these kernel instructions
 | |
|  * in interrupt context interacting wrongly with other user/kernel fpu usage, we
 | |
|  * should use them only in the context of irq_ts_save/restore()
 | |
|  */
 | |
| static inline int irq_ts_save(void)
 | |
| {
 | |
| 	/*
 | |
| 	 * If in process context and not atomic, we can take a spurious DNA fault.
 | |
| 	 * Otherwise, doing clts() in process context requires disabling preemption
 | |
| 	 * or some heavy lifting like kernel_fpu_begin()
 | |
| 	 */
 | |
| 	if (!in_atomic())
 | |
| 		return 0;
 | |
| 
 | |
| 	if (read_cr0() & X86_CR0_TS) {
 | |
| 		clts();
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline void irq_ts_restore(int TS_state)
 | |
| {
 | |
| 	if (TS_state)
 | |
| 		stts();
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_X86_64
 | |
| 
 | |
| static inline void save_init_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	__save_init_fpu(tsk);
 | |
| 	stts();
 | |
| }
 | |
| 
 | |
| #define unlazy_fpu	__unlazy_fpu
 | |
| #define clear_fpu	__clear_fpu
 | |
| 
 | |
| #else  /* CONFIG_X86_32 */
 | |
| 
 | |
| /*
 | |
|  * These disable preemption on their own and are safe
 | |
|  */
 | |
| static inline void save_init_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__save_init_fpu(tsk);
 | |
| 	stts();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static inline void unlazy_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__unlazy_fpu(tsk);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| static inline void clear_fpu(struct task_struct *tsk)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	__clear_fpu(tsk);
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| #endif	/* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * i387 state interaction
 | |
|  */
 | |
| static inline unsigned short get_fpu_cwd(struct task_struct *tsk)
 | |
| {
 | |
| 	if (cpu_has_fxsr) {
 | |
| 		return tsk->thread.xstate->fxsave.cwd;
 | |
| 	} else {
 | |
| 		return (unsigned short)tsk->thread.xstate->fsave.cwd;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline unsigned short get_fpu_swd(struct task_struct *tsk)
 | |
| {
 | |
| 	if (cpu_has_fxsr) {
 | |
| 		return tsk->thread.xstate->fxsave.swd;
 | |
| 	} else {
 | |
| 		return (unsigned short)tsk->thread.xstate->fsave.swd;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk)
 | |
| {
 | |
| 	if (cpu_has_xmm) {
 | |
| 		return tsk->thread.xstate->fxsave.mxcsr;
 | |
| 	} else {
 | |
| 		return MXCSR_DEFAULT;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #endif /* _ASM_X86_I387_H */
 |