730 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			730 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SHA1 hash implementation and interface functions
 | |
|  * Copyright (c) 2003-2005, Jouni Malinen <j@w1.fi>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * Alternatively, this software may be distributed under the terms of BSD
 | |
|  * license.
 | |
|  *
 | |
|  * See README and COPYING for more details.
 | |
|  */
 | |
| 
 | |
| #include <typedefs.h>
 | |
| #include <linuxver.h>
 | |
| #include <osl.h>
 | |
| 
 | |
| #include <bcmutils.h>
 | |
| #include <bcmendian.h>
 | |
| #include "sha1.h"
 | |
| #include "md5.h"
 | |
| #include "crypto.h"
 | |
| 
 | |
| #define os_memset	memset
 | |
| #define os_strlen	strlen
 | |
| #define os_memcpy	memcpy
 | |
| #define host_to_be32 hton32
 | |
| /**
 | |
|  * hmac_sha1_vector - HMAC-SHA1 over data vector (RFC 2104)
 | |
|  * @key: Key for HMAC operations
 | |
|  * @key_len: Length of the key in bytes
 | |
|  * @num_elem: Number of elements in the data vector
 | |
|  * @addr: Pointers to the data areas
 | |
|  * @len: Lengths of the data blocks
 | |
|  * @mac: Buffer for the hash (20 bytes)
 | |
|  */
 | |
| void hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
 | |
| 		      const u8 *addr[], const size_t *len, u8 *mac)
 | |
| {
 | |
| 	unsigned char k_pad[64]; /* padding - key XORd with ipad/opad */
 | |
| 	unsigned char tk[20];
 | |
| 	const u8 *_addr[6];
 | |
| 	size_t _len[6], i;
 | |
| 
 | |
| 	if (num_elem > 5) {
 | |
| 		/*
 | |
| 		 * Fixed limit on the number of fragments to avoid having to
 | |
| 		 * allocate memory (which could fail).
 | |
| 		 */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
|         /* if key is longer than 64 bytes reset it to key = SHA1(key) */
 | |
|         if (key_len > 64) {
 | |
| 		sha1_vector(1, &key, &key_len, tk);
 | |
| 		key = tk;
 | |
| 		key_len = 20;
 | |
|         }
 | |
| 
 | |
| 	/* the HMAC_SHA1 transform looks like:
 | |
| 	 *
 | |
| 	 * SHA1(K XOR opad, SHA1(K XOR ipad, text))
 | |
| 	 *
 | |
| 	 * where K is an n byte key
 | |
| 	 * ipad is the byte 0x36 repeated 64 times
 | |
| 	 * opad is the byte 0x5c repeated 64 times
 | |
| 	 * and text is the data being protected */
 | |
| 
 | |
| 	/* start out by storing key in ipad */
 | |
| 	os_memset(k_pad, 0, sizeof(k_pad));
 | |
| 	os_memcpy(k_pad, key, key_len);
 | |
| 	/* XOR key with ipad values */
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 		k_pad[i] ^= 0x36;
 | |
| 
 | |
| 	/* perform inner SHA1 */
 | |
| 	_addr[0] = k_pad;
 | |
| 	_len[0] = 64;
 | |
| 	for (i = 0; i < num_elem; i++) {
 | |
| 		_addr[i + 1] = addr[i];
 | |
| 		_len[i + 1] = len[i];
 | |
| 	}
 | |
| 	sha1_vector(1 + num_elem, _addr, _len, mac);
 | |
| 
 | |
| 	os_memset(k_pad, 0, sizeof(k_pad));
 | |
| 	os_memcpy(k_pad, key, key_len);
 | |
| 	/* XOR key with opad values */
 | |
| 	for (i = 0; i < 64; i++)
 | |
| 		k_pad[i] ^= 0x5c;
 | |
| 
 | |
| 	/* perform outer SHA1 */
 | |
| 	_addr[0] = k_pad;
 | |
| 	_len[0] = 64;
 | |
| 	_addr[1] = mac;
 | |
| 	_len[1] = SHA1_MAC_LEN;
 | |
| 	sha1_vector(2, _addr, _len, mac);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * hmac_sha1 - HMAC-SHA1 over data buffer (RFC 2104)
 | |
|  * @key: Key for HMAC operations
 | |
|  * @key_len: Length of the key in bytes
 | |
|  * @data: Pointers to the data area
 | |
|  * @data_len: Length of the data area
 | |
|  * @mac: Buffer for the hash (20 bytes)
 | |
|  */
 | |
| void hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
 | |
| 	       u8 *mac)
 | |
| {
 | |
| 	hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * sha1_prf - SHA1-based Pseudo-Random Function (PRF) (IEEE 802.11i, 8.5.1.1)
 | |
|  * @key: Key for PRF
 | |
|  * @key_len: Length of the key in bytes
 | |
|  * @label: A unique label for each purpose of the PRF
 | |
|  * @data: Extra data to bind into the key
 | |
|  * @data_len: Length of the data
 | |
|  * @buf: Buffer for the generated pseudo-random key
 | |
|  * @buf_len: Number of bytes of key to generate
 | |
|  *
 | |
|  * This function is used to derive new, cryptographically separate keys from a
 | |
|  * given key (e.g., PMK in IEEE 802.11i).
 | |
|  */
 | |
| void sha1_prf(const u8 *key, size_t key_len, const char *label,
 | |
| 	      const u8 *data, size_t data_len, u8 *buf, size_t buf_len)
 | |
| {
 | |
| 	u8 zero = 0, counter = 0;
 | |
| 	size_t pos, plen;
 | |
| 	u8 hash[SHA1_MAC_LEN];
 | |
| 	size_t label_len = os_strlen(label);
 | |
| 	const unsigned char *addr[4];
 | |
| 	size_t len[4];
 | |
| 
 | |
| 	addr[0] = (u8 *) label;
 | |
| 	len[0] = label_len;
 | |
| 	addr[1] = &zero;
 | |
| 	len[1] = 1;
 | |
| 	addr[2] = data;
 | |
| 	len[2] = data_len;
 | |
| 	addr[3] = &counter;
 | |
| 	len[3] = 1;
 | |
| 
 | |
| 	pos = 0;
 | |
| 	while (pos < buf_len) {
 | |
| 		plen = buf_len - pos;
 | |
| 		if (plen >= SHA1_MAC_LEN) {
 | |
| 			hmac_sha1_vector(key, key_len, 4, addr, len,
 | |
| 					 &buf[pos]);
 | |
| 			pos += SHA1_MAC_LEN;
 | |
| 		} else {
 | |
| 			hmac_sha1_vector(key, key_len, 4, addr, len,
 | |
| 					 hash);
 | |
| 			os_memcpy(&buf[pos], hash, plen);
 | |
| 			break;
 | |
| 		}
 | |
| 		counter++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * sha1_t_prf - EAP-FAST Pseudo-Random Function (T-PRF)
 | |
|  * @key: Key for PRF
 | |
|  * @key_len: Length of the key in bytes
 | |
|  * @label: A unique label for each purpose of the PRF
 | |
|  * @seed: Seed value to bind into the key
 | |
|  * @seed_len: Length of the seed
 | |
|  * @buf: Buffer for the generated pseudo-random key
 | |
|  * @buf_len: Number of bytes of key to generate
 | |
|  *
 | |
|  * This function is used to derive new, cryptographically separate keys from a
 | |
|  * given key for EAP-FAST. T-PRF is defined in
 | |
|  * draft-cam-winget-eap-fast-02.txt, Appendix B.
 | |
|  */
 | |
| void sha1_t_prf(const u8 *key, size_t key_len, const char *label,
 | |
| 		const u8 *seed, size_t seed_len, u8 *buf, size_t buf_len)
 | |
| {
 | |
| 	unsigned char counter = 0;
 | |
| 	size_t pos, plen;
 | |
| 	u8 hash[SHA1_MAC_LEN];
 | |
| 	size_t label_len = os_strlen(label);
 | |
| 	u8 output_len[2];
 | |
| 	const unsigned char *addr[5];
 | |
| 	size_t len[5];
 | |
| 
 | |
| 	addr[0] = hash;
 | |
| 	len[0] = 0;
 | |
| 	addr[1] = (unsigned char *) label;
 | |
| 	len[1] = label_len + 1;
 | |
| 	addr[2] = seed;
 | |
| 	len[2] = seed_len;
 | |
| 	addr[3] = output_len;
 | |
| 	len[3] = 2;
 | |
| 	addr[4] = &counter;
 | |
| 	len[4] = 1;
 | |
| 
 | |
| 	output_len[0] = (buf_len >> 8) & 0xff;
 | |
| 	output_len[1] = buf_len & 0xff;
 | |
| 	pos = 0;
 | |
| 	while (pos < buf_len) {
 | |
| 		counter++;
 | |
| 		plen = buf_len - pos;
 | |
| 		hmac_sha1_vector(key, key_len, 5, addr, len, hash);
 | |
| 		if (plen >= SHA1_MAC_LEN) {
 | |
| 			os_memcpy(&buf[pos], hash, SHA1_MAC_LEN);
 | |
| 			pos += SHA1_MAC_LEN;
 | |
| 		} else {
 | |
| 			os_memcpy(&buf[pos], hash, plen);
 | |
| 			break;
 | |
| 		}
 | |
| 		len[0] = SHA1_MAC_LEN;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * tls_prf - Pseudo-Random Function for TLS (TLS-PRF, RFC 2246)
 | |
|  * @secret: Key for PRF
 | |
|  * @secret_len: Length of the key in bytes
 | |
|  * @label: A unique label for each purpose of the PRF
 | |
|  * @seed: Seed value to bind into the key
 | |
|  * @seed_len: Length of the seed
 | |
|  * @out: Buffer for the generated pseudo-random key
 | |
|  * @outlen: Number of bytes of key to generate
 | |
|  * Returns: 0 on success, -1 on failure.
 | |
|  *
 | |
|  * This function is used to derive new, cryptographically separate keys from a
 | |
|  * given key in TLS. This PRF is defined in RFC 2246, Chapter 5.
 | |
|  */
 | |
| int tls_prf(const u8 *secret, size_t secret_len, const char *label,
 | |
| 	    const u8 *seed, size_t seed_len, u8 *out, size_t outlen)
 | |
| {
 | |
| 	size_t L_S1, L_S2, i;
 | |
| 	const u8 *S1, *S2;
 | |
| 	u8 A_MD5[MD5_MAC_LEN], A_SHA1[SHA1_MAC_LEN];
 | |
| 	u8 P_MD5[MD5_MAC_LEN], P_SHA1[SHA1_MAC_LEN];
 | |
| 	int MD5_pos, SHA1_pos;
 | |
| 	const u8 *MD5_addr[3];
 | |
| 	size_t MD5_len[3];
 | |
| 	const unsigned char *SHA1_addr[3];
 | |
| 	size_t SHA1_len[3];
 | |
| 
 | |
| 	if (secret_len & 1)
 | |
| 		return -1;
 | |
| 
 | |
| 	MD5_addr[0] = A_MD5;
 | |
| 	MD5_len[0] = MD5_MAC_LEN;
 | |
| 	MD5_addr[1] = (unsigned char *) label;
 | |
| 	MD5_len[1] = os_strlen(label);
 | |
| 	MD5_addr[2] = seed;
 | |
| 	MD5_len[2] = seed_len;
 | |
| 
 | |
| 	SHA1_addr[0] = A_SHA1;
 | |
| 	SHA1_len[0] = SHA1_MAC_LEN;
 | |
| 	SHA1_addr[1] = (unsigned char *) label;
 | |
| 	SHA1_len[1] = os_strlen(label);
 | |
| 	SHA1_addr[2] = seed;
 | |
| 	SHA1_len[2] = seed_len;
 | |
| 
 | |
| 	/* RFC 2246, Chapter 5
 | |
| 	 * A(0) = seed, A(i) = HMAC(secret, A(i-1))
 | |
| 	 * P_hash = HMAC(secret, A(1) + seed) + HMAC(secret, A(2) + seed) + ..
 | |
| 	 * PRF = P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed)
 | |
| 	 */
 | |
| 
 | |
| 	L_S1 = L_S2 = (secret_len + 1) / 2;
 | |
| 	S1 = secret;
 | |
| 	S2 = secret + L_S1;
 | |
| 	if (secret_len & 1) {
 | |
| 		/* The last byte of S1 will be shared with S2 */
 | |
| 		S2--;
 | |
| 	}
 | |
| 
 | |
| 	hmac_md5_vector(S1, L_S1, 2, &MD5_addr[1], &MD5_len[1], A_MD5);
 | |
| 	hmac_sha1_vector(S2, L_S2, 2, &SHA1_addr[1], &SHA1_len[1], A_SHA1);
 | |
| 
 | |
| 	MD5_pos = MD5_MAC_LEN;
 | |
| 	SHA1_pos = SHA1_MAC_LEN;
 | |
| 	for (i = 0; i < outlen; i++) {
 | |
| 		if (MD5_pos == MD5_MAC_LEN) {
 | |
| 			hmac_md5_vector(S1, L_S1, 3, MD5_addr, MD5_len, P_MD5);
 | |
| 			MD5_pos = 0;
 | |
| 			hmac_md5(S1, L_S1, A_MD5, MD5_MAC_LEN, A_MD5);
 | |
| 		}
 | |
| 		if (SHA1_pos == SHA1_MAC_LEN) {
 | |
| 			hmac_sha1_vector(S2, L_S2, 3, SHA1_addr, SHA1_len,
 | |
| 					 P_SHA1);
 | |
| 			SHA1_pos = 0;
 | |
| 			hmac_sha1(S2, L_S2, A_SHA1, SHA1_MAC_LEN, A_SHA1);
 | |
| 		}
 | |
| 
 | |
| 		out[i] = P_MD5[MD5_pos] ^ P_SHA1[SHA1_pos];
 | |
| 
 | |
| 		MD5_pos++;
 | |
| 		SHA1_pos++;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void pbkdf2_sha1_f(const char *passphrase, const char *ssid,
 | |
| 			  size_t ssid_len, int iterations, unsigned int count,
 | |
| 			  u8 *digest)
 | |
| {
 | |
| 	unsigned char tmp[SHA1_MAC_LEN], tmp2[SHA1_MAC_LEN];
 | |
| 	int i, j;
 | |
| 	unsigned char count_buf[4];
 | |
| 	const u8 *addr[2];
 | |
| 	size_t len[2];
 | |
| 	size_t passphrase_len = os_strlen(passphrase);
 | |
| 
 | |
| 	addr[0] = (u8 *) ssid;
 | |
| 	len[0] = ssid_len;
 | |
| 	addr[1] = count_buf;
 | |
| 	len[1] = 4;
 | |
| 
 | |
| 	/* F(P, S, c, i) = U1 xor U2 xor ... Uc
 | |
| 	 * U1 = PRF(P, S || i)
 | |
| 	 * U2 = PRF(P, U1)
 | |
| 	 * Uc = PRF(P, Uc-1)
 | |
| 	 */
 | |
| 
 | |
| 	count_buf[0] = (count >> 24) & 0xff;
 | |
| 	count_buf[1] = (count >> 16) & 0xff;
 | |
| 	count_buf[2] = (count >> 8) & 0xff;
 | |
| 	count_buf[3] = count & 0xff;
 | |
| 	hmac_sha1_vector((u8 *) passphrase, passphrase_len, 2, addr, len, tmp);
 | |
| 	os_memcpy(digest, tmp, SHA1_MAC_LEN);
 | |
| 
 | |
| 	for (i = 1; i < iterations; i++) {
 | |
| 		hmac_sha1((u8 *) passphrase, passphrase_len, tmp, SHA1_MAC_LEN,
 | |
| 			  tmp2);
 | |
| 		os_memcpy(tmp, tmp2, SHA1_MAC_LEN);
 | |
| 		for (j = 0; j < SHA1_MAC_LEN; j++)
 | |
| 			digest[j] ^= tmp2[j];
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * pbkdf2_sha1 - SHA1-based key derivation function (PBKDF2) for IEEE 802.11i
 | |
|  * @passphrase: ASCII passphrase
 | |
|  * @ssid: SSID
 | |
|  * @ssid_len: SSID length in bytes
 | |
|  * @interations: Number of iterations to run
 | |
|  * @buf: Buffer for the generated key
 | |
|  * @buflen: Length of the buffer in bytes
 | |
|  *
 | |
|  * This function is used to derive PSK for WPA-PSK. For this protocol,
 | |
|  * iterations is set to 4096 and buflen to 32. This function is described in
 | |
|  * IEEE Std 802.11-2004, Clause H.4. The main construction is from PKCS#5 v2.0.
 | |
|  */
 | |
| void pbkdf2_sha1(const char *passphrase, const char *ssid, size_t ssid_len,
 | |
| 		 int iterations, u8 *buf, size_t buflen)
 | |
| {
 | |
| 	unsigned int count = 0;
 | |
| 	unsigned char *pos = buf;
 | |
| 	size_t left = buflen, plen;
 | |
| 	unsigned char digest[SHA1_MAC_LEN];
 | |
| 
 | |
| 	while (left > 0) {
 | |
| 		count++;
 | |
| 		pbkdf2_sha1_f(passphrase, ssid, ssid_len, iterations, count,
 | |
| 			      digest);
 | |
| 		plen = left > SHA1_MAC_LEN ? SHA1_MAC_LEN : left;
 | |
| 		os_memcpy(pos, digest, plen);
 | |
| 		pos += plen;
 | |
| 		left -= plen;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| struct SHA1Context {
 | |
| 	u32 state[5];
 | |
| 	u32 count[2];
 | |
| 	unsigned char buffer[64];
 | |
| };
 | |
| 
 | |
| typedef struct SHA1Context SHA1_CTX;
 | |
| 
 | |
| #ifndef CONFIG_CRYPTO_INTERNAL
 | |
| static void SHA1Init(struct SHA1Context *context);
 | |
| static void SHA1Update(struct SHA1Context *context, const void *data, u32 len);
 | |
| static void SHA1Final(unsigned char digest[20], struct SHA1Context *context);
 | |
| #endif /* CONFIG_CRYPTO_INTERNAL */
 | |
| static void SHA1Transform(u32 state[5], const unsigned char buffer[64]);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * sha1_vector - SHA-1 hash for data vector
 | |
|  * @num_elem: Number of elements in the data vector
 | |
|  * @addr: Pointers to the data areas
 | |
|  * @len: Lengths of the data blocks
 | |
|  * @mac: Buffer for the hash
 | |
|  */
 | |
| void sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len,
 | |
| 		 u8 *mac)
 | |
| {
 | |
| 	SHA1_CTX ctx;
 | |
| 	size_t i;
 | |
| 
 | |
| 	SHA1Init(&ctx);
 | |
| 	for (i = 0; i < num_elem; i++)
 | |
| 		SHA1Update(&ctx, addr[i], len[i]);
 | |
| 	SHA1Final(mac, &ctx);
 | |
| }
 | |
| 
 | |
| 
 | |
| int fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, size_t xlen)
 | |
| {
 | |
| 	u8 xkey[64];
 | |
| 	u32 t[5], _t[5];
 | |
| 	int i, j, m, k;
 | |
| 	u8 *xpos = x;
 | |
| 	u32 carry;
 | |
| 
 | |
| 	if (seed_len > sizeof(xkey))
 | |
| 		seed_len = sizeof(xkey);
 | |
| 
 | |
| 	/* FIPS 186-2 + change notice 1 */
 | |
| 
 | |
| 	os_memcpy(xkey, seed, seed_len);
 | |
| 	os_memset(xkey + seed_len, 0, 64 - seed_len);
 | |
| 	t[0] = 0x67452301;
 | |
| 	t[1] = 0xEFCDAB89;
 | |
| 	t[2] = 0x98BADCFE;
 | |
| 	t[3] = 0x10325476;
 | |
| 	t[4] = 0xC3D2E1F0;
 | |
| 
 | |
| 	m = xlen / 40;
 | |
| 	for (j = 0; j < m; j++) {
 | |
| 		/* XSEED_j = 0 */
 | |
| 		for (i = 0; i < 2; i++) {
 | |
| 			/* XVAL = (XKEY + XSEED_j) mod 2^b */
 | |
| 
 | |
| 			/* w_i = G(t, XVAL) */
 | |
| 			os_memcpy(_t, t, 20);
 | |
| 			SHA1Transform(_t, xkey);
 | |
| 			_t[0] = host_to_be32(_t[0]);
 | |
| 			_t[1] = host_to_be32(_t[1]);
 | |
| 			_t[2] = host_to_be32(_t[2]);
 | |
| 			_t[3] = host_to_be32(_t[3]);
 | |
| 			_t[4] = host_to_be32(_t[4]);
 | |
| 			os_memcpy(xpos, _t, 20);
 | |
| 
 | |
| 			/* XKEY = (1 + XKEY + w_i) mod 2^b */
 | |
| 			carry = 1;
 | |
| 			for (k = 19; k >= 0; k--) {
 | |
| 				carry += xkey[k] + xpos[k];
 | |
| 				xkey[k] = carry & 0xff;
 | |
| 				carry >>= 8;
 | |
| 			}
 | |
| 
 | |
| 			xpos += SHA1_MAC_LEN;
 | |
| 		}
 | |
| 		/* x_j = w_0|w_1 */
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ===== start - public domain SHA1 implementation ===== */
 | |
| 
 | |
| /*
 | |
| SHA-1 in C
 | |
| By Steve Reid <sreid@sea-to-sky.net>
 | |
| 100% Public Domain
 | |
| 
 | |
| -----------------
 | |
| Modified 7/98 
 | |
| By James H. Brown <jbrown@burgoyne.com>
 | |
| Still 100% Public Domain
 | |
| 
 | |
| Corrected a problem which generated improper hash values on 16 bit machines
 | |
| Routine SHA1Update changed from
 | |
| 	void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned int
 | |
| len)
 | |
| to
 | |
| 	void SHA1Update(SHA1_CTX* context, unsigned char* data, unsigned
 | |
| long len)
 | |
| 
 | |
| The 'len' parameter was declared an int which works fine on 32 bit machines.
 | |
| However, on 16 bit machines an int is too small for the shifts being done
 | |
| against
 | |
| it.  This caused the hash function to generate incorrect values if len was
 | |
| greater than 8191 (8K - 1) due to the 'len << 3' on line 3 of SHA1Update().
 | |
| 
 | |
| Since the file IO in main() reads 16K at a time, any file 8K or larger would
 | |
| be guaranteed to generate the wrong hash (e.g. Test Vector #3, a million
 | |
| "a"s).
 | |
| 
 | |
| I also changed the declaration of variables i & j in SHA1Update to 
 | |
| unsigned long from unsigned int for the same reason.
 | |
| 
 | |
| These changes should make no difference to any 32 bit implementations since
 | |
| an
 | |
| int and a long are the same size in those environments.
 | |
| 
 | |
| --
 | |
| I also corrected a few compiler warnings generated by Borland C.
 | |
| 1. Added #include <process.h> for exit() prototype
 | |
| 2. Removed unused variable 'j' in SHA1Final
 | |
| 3. Changed exit(0) to return(0) at end of main.
 | |
| 
 | |
| ALL changes I made can be located by searching for comments containing 'JHB'
 | |
| -----------------
 | |
| Modified 8/98
 | |
| By Steve Reid <sreid@sea-to-sky.net>
 | |
| Still 100% public domain
 | |
| 
 | |
| 1- Removed #include <process.h> and used return() instead of exit()
 | |
| 2- Fixed overwriting of finalcount in SHA1Final() (discovered by Chris Hall)
 | |
| 3- Changed email address from steve@edmweb.com to sreid@sea-to-sky.net
 | |
| 
 | |
| -----------------
 | |
| Modified 4/01
 | |
| By Saul Kravitz <Saul.Kravitz@celera.com>
 | |
| Still 100% PD
 | |
| Modified to run on Compaq Alpha hardware.  
 | |
| 
 | |
| -----------------
 | |
| Modified 4/01
 | |
| By Jouni Malinen <j@w1.fi>
 | |
| Minor changes to match the coding style used in Dynamics.
 | |
| 
 | |
| Modified September 24, 2004
 | |
| By Jouni Malinen <j@w1.fi>
 | |
| Fixed alignment issue in SHA1Transform when SHA1HANDSOFF is defined.
 | |
| 
 | |
| */
 | |
| 
 | |
| /*
 | |
| Test Vectors (from FIPS PUB 180-1)
 | |
| "abc"
 | |
|   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
 | |
| "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
 | |
|   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
 | |
| A million repetitions of "a"
 | |
|   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
 | |
| */
 | |
| 
 | |
| #define SHA1HANDSOFF
 | |
| 
 | |
| #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
 | |
| 
 | |
| /* blk0() and blk() perform the initial expand. */
 | |
| /* I got the idea of expanding during the round function from SSLeay */
 | |
| #ifndef WORDS_BIGENDIAN
 | |
| #define blk0(i) (block->l[i] = (rol(block->l[i], 24) & 0xFF00FF00) | \
 | |
| 	(rol(block->l[i], 8) & 0x00FF00FF))
 | |
| #else
 | |
| #define blk0(i) block->l[i]
 | |
| #endif
 | |
| #define blk(i) (block->l[i & 15] = rol(block->l[(i + 13) & 15] ^ \
 | |
| 	block->l[(i + 8) & 15] ^ block->l[(i + 2) & 15] ^ block->l[i & 15], 1))
 | |
| 
 | |
| /* (R0+R1), R2, R3, R4 are the different operations used in SHA1 */
 | |
| #define R0(v,w,x,y,z,i) \
 | |
| 	z += ((w & (x ^ y)) ^ y) + blk0(i) + 0x5A827999 + rol(v, 5); \
 | |
| 	w = rol(w, 30);
 | |
| #define R1(v,w,x,y,z,i) \
 | |
| 	z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
 | |
| 	w = rol(w, 30);
 | |
| #define R2(v,w,x,y,z,i) \
 | |
| 	z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); w = rol(w, 30);
 | |
| #define R3(v,w,x,y,z,i) \
 | |
| 	z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
 | |
| 	w = rol(w, 30);
 | |
| #define R4(v,w,x,y,z,i) \
 | |
| 	z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
 | |
| 	w=rol(w, 30);
 | |
| 
 | |
| 
 | |
| #ifdef VERBOSE  /* SAK */
 | |
| void SHAPrintContext(SHA1_CTX *context, char *msg)
 | |
| {
 | |
| 	myprintf("%s (%d,%d) %x %x %x %x %x\n",
 | |
| 	       msg,
 | |
| 	       context->count[0], context->count[1], 
 | |
| 	       context->state[0],
 | |
| 	       context->state[1],
 | |
| 	       context->state[2],
 | |
| 	       context->state[3],
 | |
| 	       context->state[4]);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Hash a single 512-bit block. This is the core of the algorithm. */
 | |
| 
 | |
| static void SHA1Transform(u32 state[5], const unsigned char buffer[64])
 | |
| {
 | |
| 	u32 a, b, c, d, e;
 | |
| 	typedef union {
 | |
| 		unsigned char c[64];
 | |
| 		u32 l[16];
 | |
| 	} CHAR64LONG16;
 | |
| 	CHAR64LONG16* block;
 | |
| #ifdef SHA1HANDSOFF
 | |
| 	u32 workspace[16];
 | |
| 	block = (CHAR64LONG16 *) workspace;
 | |
| 	os_memcpy(block, buffer, 64);
 | |
| #else
 | |
| 	block = (CHAR64LONG16 *) buffer;
 | |
| #endif
 | |
| 	/* Copy context->state[] to working vars */
 | |
| 	a = state[0];
 | |
| 	b = state[1];
 | |
| 	c = state[2];
 | |
| 	d = state[3];
 | |
| 	e = state[4];
 | |
| 	/* 4 rounds of 20 operations each. Loop unrolled. */
 | |
| 	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
 | |
| 	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
 | |
| 	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
 | |
| 	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
 | |
| 	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
 | |
| 	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
 | |
| 	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
 | |
| 	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
 | |
| 	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
 | |
| 	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
 | |
| 	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
 | |
| 	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
 | |
| 	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
 | |
| 	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
 | |
| 	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
 | |
| 	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
 | |
| 	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
 | |
| 	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
 | |
| 	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
 | |
| 	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
 | |
| 	/* Add the working vars back into context.state[] */
 | |
| 	state[0] += a;
 | |
| 	state[1] += b;
 | |
| 	state[2] += c;
 | |
| 	state[3] += d;
 | |
| 	state[4] += e;
 | |
| 	/* Wipe variables */
 | |
| 	a = b = c = d = e = 0;
 | |
| #ifdef SHA1HANDSOFF
 | |
| 	os_memset(block, 0, 64);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* SHA1Init - Initialize new context */
 | |
| 
 | |
| void SHA1Init(SHA1_CTX* context)
 | |
| {
 | |
| 	/* SHA1 initialization constants */
 | |
| 	context->state[0] = 0x67452301;
 | |
| 	context->state[1] = 0xEFCDAB89;
 | |
| 	context->state[2] = 0x98BADCFE;
 | |
| 	context->state[3] = 0x10325476;
 | |
| 	context->state[4] = 0xC3D2E1F0;
 | |
| 	context->count[0] = context->count[1] = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Run your data through this. */
 | |
| 
 | |
| void SHA1Update(SHA1_CTX* context, const void *_data, u32 len)
 | |
| {
 | |
| 	u32 i, j;
 | |
| 	const unsigned char *data = _data;
 | |
| 
 | |
| #ifdef VERBOSE
 | |
| 	SHAPrintContext(context, "before");
 | |
| #endif
 | |
| 	j = (context->count[0] >> 3) & 63;
 | |
| 	if ((context->count[0] += len << 3) < (len << 3))
 | |
| 		context->count[1]++;
 | |
| 	context->count[1] += (len >> 29);
 | |
| 	if ((j + len) > 63) {
 | |
| 		os_memcpy(&context->buffer[j], data, (i = 64-j));
 | |
| 		SHA1Transform(context->state, context->buffer);
 | |
| 		for ( ; i + 63 < len; i += 64) {
 | |
| 			SHA1Transform(context->state, &data[i]);
 | |
| 		}
 | |
| 		j = 0;
 | |
| 	}
 | |
| 	else i = 0;
 | |
| 	os_memcpy(&context->buffer[j], &data[i], len - i);
 | |
| #ifdef VERBOSE
 | |
| 	SHAPrintContext(context, "after ");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Add padding and return the message digest. */
 | |
| 
 | |
| void SHA1Final(unsigned char digest[20], SHA1_CTX* context)
 | |
| {
 | |
| 	u32 i;
 | |
| 	unsigned char finalcount[8];
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		finalcount[i] = (unsigned char)
 | |
| 			((context->count[(i >= 4 ? 0 : 1)] >>
 | |
| 			  ((3-(i & 3)) * 8) ) & 255);  /* Endian independent */
 | |
| 	}
 | |
| 	SHA1Update(context, (unsigned char *) "\200", 1);
 | |
| 	while ((context->count[0] & 504) != 448) {
 | |
| 		SHA1Update(context, (unsigned char *) "\0", 1);
 | |
| 	}
 | |
| 	SHA1Update(context, finalcount, 8);  /* Should cause a SHA1Transform()
 | |
| 					      */
 | |
| 	for (i = 0; i < 20; i++) {
 | |
| 		digest[i] = (unsigned char)
 | |
| 			((context->state[i >> 2] >> ((3 - (i & 3)) * 8)) &
 | |
| 			 255);
 | |
| 	}
 | |
| 	/* Wipe variables */
 | |
| 	i = 0;
 | |
| 	os_memset(context->buffer, 0, 64);
 | |
| 	os_memset(context->state, 0, 20);
 | |
| 	os_memset(context->count, 0, 8);
 | |
| 	os_memset(finalcount, 0, 8);
 | |
| }
 | |
| 
 | |
| /* ===== end - public domain SHA1 implementation ===== */
 | |
| 
 |