574 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			574 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * SN2 Platform specific SMP Support
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (C) 2000-2006 Silicon Graphics, Inc. All rights reserved.
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/sal.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/delay.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/hw_irq.h>
 | |
| #include <asm/current.h>
 | |
| #include <asm/sn/sn_cpuid.h>
 | |
| #include <asm/sn/sn_sal.h>
 | |
| #include <asm/sn/addrs.h>
 | |
| #include <asm/sn/shub_mmr.h>
 | |
| #include <asm/sn/nodepda.h>
 | |
| #include <asm/sn/rw_mmr.h>
 | |
| #include <asm/sn/sn_feature_sets.h>
 | |
| 
 | |
| DEFINE_PER_CPU(struct ptc_stats, ptcstats);
 | |
| DECLARE_PER_CPU(struct ptc_stats, ptcstats);
 | |
| 
 | |
| static  __cacheline_aligned DEFINE_SPINLOCK(sn2_global_ptc_lock);
 | |
| 
 | |
| /* 0 = old algorithm (no IPI flushes), 1 = ipi deadlock flush, 2 = ipi instead of SHUB ptc, >2 = always ipi */
 | |
| static int sn2_flush_opt = 0;
 | |
| 
 | |
| extern unsigned long
 | |
| sn2_ptc_deadlock_recovery_core(volatile unsigned long *, unsigned long,
 | |
| 			       volatile unsigned long *, unsigned long,
 | |
| 			       volatile unsigned long *, unsigned long);
 | |
| void
 | |
| sn2_ptc_deadlock_recovery(short *, short, short, int,
 | |
| 			  volatile unsigned long *, unsigned long,
 | |
| 			  volatile unsigned long *, unsigned long);
 | |
| 
 | |
| /*
 | |
|  * Note: some is the following is captured here to make degugging easier
 | |
|  * (the macros make more sense if you see the debug patch - not posted)
 | |
|  */
 | |
| #define sn2_ptctest	0
 | |
| #define local_node_uses_ptc_ga(sh1)	((sh1) ? 1 : 0)
 | |
| #define max_active_pio(sh1)		((sh1) ? 32 : 7)
 | |
| #define reset_max_active_on_deadlock()	1
 | |
| #define PTC_LOCK(sh1)			((sh1) ? &sn2_global_ptc_lock : &sn_nodepda->ptc_lock)
 | |
| 
 | |
| struct ptc_stats {
 | |
| 	unsigned long ptc_l;
 | |
| 	unsigned long change_rid;
 | |
| 	unsigned long shub_ptc_flushes;
 | |
| 	unsigned long nodes_flushed;
 | |
| 	unsigned long deadlocks;
 | |
| 	unsigned long deadlocks2;
 | |
| 	unsigned long lock_itc_clocks;
 | |
| 	unsigned long shub_itc_clocks;
 | |
| 	unsigned long shub_itc_clocks_max;
 | |
| 	unsigned long shub_ptc_flushes_not_my_mm;
 | |
| 	unsigned long shub_ipi_flushes;
 | |
| 	unsigned long shub_ipi_flushes_itc_clocks;
 | |
| };
 | |
| 
 | |
| #define sn2_ptctest	0
 | |
| 
 | |
| static inline unsigned long wait_piowc(void)
 | |
| {
 | |
| 	volatile unsigned long *piows;
 | |
| 	unsigned long zeroval, ws;
 | |
| 
 | |
| 	piows = pda->pio_write_status_addr;
 | |
| 	zeroval = pda->pio_write_status_val;
 | |
| 	do {
 | |
| 		cpu_relax();
 | |
| 	} while (((ws = *piows) & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK) != zeroval);
 | |
| 	return (ws & SH_PIO_WRITE_STATUS_WRITE_DEADLOCK_MASK) != 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sn_migrate - SN-specific task migration actions
 | |
|  * @task: Task being migrated to new CPU
 | |
|  *
 | |
|  * SN2 PIO writes from separate CPUs are not guaranteed to arrive in order.
 | |
|  * Context switching user threads which have memory-mapped MMIO may cause
 | |
|  * PIOs to issue from separate CPUs, thus the PIO writes must be drained
 | |
|  * from the previous CPU's Shub before execution resumes on the new CPU.
 | |
|  */
 | |
| void sn_migrate(struct task_struct *task)
 | |
| {
 | |
| 	pda_t *last_pda = pdacpu(task_thread_info(task)->last_cpu);
 | |
| 	volatile unsigned long *adr = last_pda->pio_write_status_addr;
 | |
| 	unsigned long val = last_pda->pio_write_status_val;
 | |
| 
 | |
| 	/* Drain PIO writes from old CPU's Shub */
 | |
| 	while (unlikely((*adr & SH_PIO_WRITE_STATUS_PENDING_WRITE_COUNT_MASK)
 | |
| 			!= val))
 | |
| 		cpu_relax();
 | |
| }
 | |
| 
 | |
| void sn_tlb_migrate_finish(struct mm_struct *mm)
 | |
| {
 | |
| 	/* flush_tlb_mm is inefficient if more than 1 users of mm */
 | |
| 	if (mm == current->mm && mm && atomic_read(&mm->mm_users) == 1)
 | |
| 		flush_tlb_mm(mm);
 | |
| }
 | |
| 
 | |
| static void
 | |
| sn2_ipi_flush_all_tlb(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long itc;
 | |
| 
 | |
| 	itc = ia64_get_itc();
 | |
| 	smp_flush_tlb_cpumask(*mm_cpumask(mm));
 | |
| 	itc = ia64_get_itc() - itc;
 | |
| 	__get_cpu_var(ptcstats).shub_ipi_flushes_itc_clocks += itc;
 | |
| 	__get_cpu_var(ptcstats).shub_ipi_flushes++;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sn2_global_tlb_purge - globally purge translation cache of virtual address range
 | |
|  * @mm: mm_struct containing virtual address range
 | |
|  * @start: start of virtual address range
 | |
|  * @end: end of virtual address range
 | |
|  * @nbits: specifies number of bytes to purge per instruction (num = 1<<(nbits & 0xfc))
 | |
|  *
 | |
|  * Purges the translation caches of all processors of the given virtual address
 | |
|  * range.
 | |
|  *
 | |
|  * Note:
 | |
|  * 	- cpu_vm_mask is a bit mask that indicates which cpus have loaded the context.
 | |
|  * 	- cpu_vm_mask is converted into a nodemask of the nodes containing the
 | |
|  * 	  cpus in cpu_vm_mask.
 | |
|  *	- if only one bit is set in cpu_vm_mask & it is the current cpu & the
 | |
|  *	  process is purging its own virtual address range, then only the
 | |
|  *	  local TLB needs to be flushed. This flushing can be done using
 | |
|  *	  ptc.l. This is the common case & avoids the global spinlock.
 | |
|  *	- if multiple cpus have loaded the context, then flushing has to be
 | |
|  *	  done with ptc.g/MMRs under protection of the global ptc_lock.
 | |
|  */
 | |
| 
 | |
| void
 | |
| sn2_global_tlb_purge(struct mm_struct *mm, unsigned long start,
 | |
| 		     unsigned long end, unsigned long nbits)
 | |
| {
 | |
| 	int i, ibegin, shub1, cnode, mynasid, cpu, lcpu = 0, nasid;
 | |
| 	int mymm = (mm == current->active_mm && mm == current->mm);
 | |
| 	int use_cpu_ptcga;
 | |
| 	volatile unsigned long *ptc0, *ptc1;
 | |
| 	unsigned long itc, itc2, flags, data0 = 0, data1 = 0, rr_value, old_rr = 0;
 | |
| 	short nasids[MAX_NUMNODES], nix;
 | |
| 	nodemask_t nodes_flushed;
 | |
| 	int active, max_active, deadlock, flush_opt = sn2_flush_opt;
 | |
| 
 | |
| 	if (flush_opt > 2) {
 | |
| 		sn2_ipi_flush_all_tlb(mm);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	nodes_clear(nodes_flushed);
 | |
| 	i = 0;
 | |
| 
 | |
| 	for_each_cpu(cpu, mm_cpumask(mm)) {
 | |
| 		cnode = cpu_to_node(cpu);
 | |
| 		node_set(cnode, nodes_flushed);
 | |
| 		lcpu = cpu;
 | |
| 		i++;
 | |
| 	}
 | |
| 
 | |
| 	if (i == 0)
 | |
| 		return;
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	if (likely(i == 1 && lcpu == smp_processor_id() && mymm)) {
 | |
| 		do {
 | |
| 			ia64_ptcl(start, nbits << 2);
 | |
| 			start += (1UL << nbits);
 | |
| 		} while (start < end);
 | |
| 		ia64_srlz_i();
 | |
| 		__get_cpu_var(ptcstats).ptc_l++;
 | |
| 		preempt_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (atomic_read(&mm->mm_users) == 1 && mymm) {
 | |
| 		flush_tlb_mm(mm);
 | |
| 		__get_cpu_var(ptcstats).change_rid++;
 | |
| 		preempt_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (flush_opt == 2) {
 | |
| 		sn2_ipi_flush_all_tlb(mm);
 | |
| 		preempt_enable();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	itc = ia64_get_itc();
 | |
| 	nix = 0;
 | |
| 	for_each_node_mask(cnode, nodes_flushed)
 | |
| 		nasids[nix++] = cnodeid_to_nasid(cnode);
 | |
| 
 | |
| 	rr_value = (mm->context << 3) | REGION_NUMBER(start);
 | |
| 
 | |
| 	shub1 = is_shub1();
 | |
| 	if (shub1) {
 | |
| 		data0 = (1UL << SH1_PTC_0_A_SHFT) |
 | |
| 		    	(nbits << SH1_PTC_0_PS_SHFT) |
 | |
| 			(rr_value << SH1_PTC_0_RID_SHFT) |
 | |
| 		    	(1UL << SH1_PTC_0_START_SHFT);
 | |
| 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_0);
 | |
| 		ptc1 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH1_PTC_1);
 | |
| 	} else {
 | |
| 		data0 = (1UL << SH2_PTC_A_SHFT) |
 | |
| 			(nbits << SH2_PTC_PS_SHFT) |
 | |
| 		    	(1UL << SH2_PTC_START_SHFT);
 | |
| 		ptc0 = (long *)GLOBAL_MMR_PHYS_ADDR(0, SH2_PTC + 
 | |
| 			(rr_value << SH2_PTC_RID_SHFT));
 | |
| 		ptc1 = NULL;
 | |
| 	}
 | |
| 	
 | |
| 
 | |
| 	mynasid = get_nasid();
 | |
| 	use_cpu_ptcga = local_node_uses_ptc_ga(shub1);
 | |
| 	max_active = max_active_pio(shub1);
 | |
| 
 | |
| 	itc = ia64_get_itc();
 | |
| 	spin_lock_irqsave(PTC_LOCK(shub1), flags);
 | |
| 	itc2 = ia64_get_itc();
 | |
| 
 | |
| 	__get_cpu_var(ptcstats).lock_itc_clocks += itc2 - itc;
 | |
| 	__get_cpu_var(ptcstats).shub_ptc_flushes++;
 | |
| 	__get_cpu_var(ptcstats).nodes_flushed += nix;
 | |
| 	if (!mymm)
 | |
| 		 __get_cpu_var(ptcstats).shub_ptc_flushes_not_my_mm++;
 | |
| 
 | |
| 	if (use_cpu_ptcga && !mymm) {
 | |
| 		old_rr = ia64_get_rr(start);
 | |
| 		ia64_set_rr(start, (old_rr & 0xff) | (rr_value << 8));
 | |
| 		ia64_srlz_d();
 | |
| 	}
 | |
| 
 | |
| 	wait_piowc();
 | |
| 	do {
 | |
| 		if (shub1)
 | |
| 			data1 = start | (1UL << SH1_PTC_1_START_SHFT);
 | |
| 		else
 | |
| 			data0 = (data0 & ~SH2_PTC_ADDR_MASK) | (start & SH2_PTC_ADDR_MASK);
 | |
| 		deadlock = 0;
 | |
| 		active = 0;
 | |
| 		for (ibegin = 0, i = 0; i < nix; i++) {
 | |
| 			nasid = nasids[i];
 | |
| 			if (use_cpu_ptcga && unlikely(nasid == mynasid)) {
 | |
| 				ia64_ptcga(start, nbits << 2);
 | |
| 				ia64_srlz_i();
 | |
| 			} else {
 | |
| 				ptc0 = CHANGE_NASID(nasid, ptc0);
 | |
| 				if (ptc1)
 | |
| 					ptc1 = CHANGE_NASID(nasid, ptc1);
 | |
| 				pio_atomic_phys_write_mmrs(ptc0, data0, ptc1, data1);
 | |
| 				active++;
 | |
| 			}
 | |
| 			if (active >= max_active || i == (nix - 1)) {
 | |
| 				if ((deadlock = wait_piowc())) {
 | |
| 					if (flush_opt == 1)
 | |
| 						goto done;
 | |
| 					sn2_ptc_deadlock_recovery(nasids, ibegin, i, mynasid, ptc0, data0, ptc1, data1);
 | |
| 					if (reset_max_active_on_deadlock())
 | |
| 						max_active = 1;
 | |
| 				}
 | |
| 				active = 0;
 | |
| 				ibegin = i + 1;
 | |
| 			}
 | |
| 		}
 | |
| 		start += (1UL << nbits);
 | |
| 	} while (start < end);
 | |
| 
 | |
| done:
 | |
| 	itc2 = ia64_get_itc() - itc2;
 | |
| 	__get_cpu_var(ptcstats).shub_itc_clocks += itc2;
 | |
| 	if (itc2 > __get_cpu_var(ptcstats).shub_itc_clocks_max)
 | |
| 		__get_cpu_var(ptcstats).shub_itc_clocks_max = itc2;
 | |
| 
 | |
| 	if (old_rr) {
 | |
| 		ia64_set_rr(start, old_rr);
 | |
| 		ia64_srlz_d();
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(PTC_LOCK(shub1), flags);
 | |
| 
 | |
| 	if (flush_opt == 1 && deadlock) {
 | |
| 		__get_cpu_var(ptcstats).deadlocks++;
 | |
| 		sn2_ipi_flush_all_tlb(mm);
 | |
| 	}
 | |
| 
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sn2_ptc_deadlock_recovery
 | |
|  *
 | |
|  * Recover from PTC deadlocks conditions. Recovery requires stepping thru each 
 | |
|  * TLB flush transaction.  The recovery sequence is somewhat tricky & is
 | |
|  * coded in assembly language.
 | |
|  */
 | |
| 
 | |
| void
 | |
| sn2_ptc_deadlock_recovery(short *nasids, short ib, short ie, int mynasid,
 | |
| 			  volatile unsigned long *ptc0, unsigned long data0,
 | |
| 			  volatile unsigned long *ptc1, unsigned long data1)
 | |
| {
 | |
| 	short nasid, i;
 | |
| 	unsigned long *piows, zeroval, n;
 | |
| 
 | |
| 	__get_cpu_var(ptcstats).deadlocks++;
 | |
| 
 | |
| 	piows = (unsigned long *) pda->pio_write_status_addr;
 | |
| 	zeroval = pda->pio_write_status_val;
 | |
| 
 | |
| 
 | |
| 	for (i=ib; i <= ie; i++) {
 | |
| 		nasid = nasids[i];
 | |
| 		if (local_node_uses_ptc_ga(is_shub1()) && nasid == mynasid)
 | |
| 			continue;
 | |
| 		ptc0 = CHANGE_NASID(nasid, ptc0);
 | |
| 		if (ptc1)
 | |
| 			ptc1 = CHANGE_NASID(nasid, ptc1);
 | |
| 
 | |
| 		n = sn2_ptc_deadlock_recovery_core(ptc0, data0, ptc1, data1, piows, zeroval);
 | |
| 		__get_cpu_var(ptcstats).deadlocks2 += n;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * sn_send_IPI_phys - send an IPI to a Nasid and slice
 | |
|  * @nasid: nasid to receive the interrupt (may be outside partition)
 | |
|  * @physid: physical cpuid to receive the interrupt.
 | |
|  * @vector: command to send
 | |
|  * @delivery_mode: delivery mechanism
 | |
|  *
 | |
|  * Sends an IPI (interprocessor interrupt) to the processor specified by
 | |
|  * @physid
 | |
|  *
 | |
|  * @delivery_mode can be one of the following
 | |
|  *
 | |
|  * %IA64_IPI_DM_INT - pend an interrupt
 | |
|  * %IA64_IPI_DM_PMI - pend a PMI
 | |
|  * %IA64_IPI_DM_NMI - pend an NMI
 | |
|  * %IA64_IPI_DM_INIT - pend an INIT interrupt
 | |
|  */
 | |
| void sn_send_IPI_phys(int nasid, long physid, int vector, int delivery_mode)
 | |
| {
 | |
| 	long val;
 | |
| 	unsigned long flags = 0;
 | |
| 	volatile long *p;
 | |
| 
 | |
| 	p = (long *)GLOBAL_MMR_PHYS_ADDR(nasid, SH_IPI_INT);
 | |
| 	val = (1UL << SH_IPI_INT_SEND_SHFT) |
 | |
| 	    (physid << SH_IPI_INT_PID_SHFT) |
 | |
| 	    ((long)delivery_mode << SH_IPI_INT_TYPE_SHFT) |
 | |
| 	    ((long)vector << SH_IPI_INT_IDX_SHFT) |
 | |
| 	    (0x000feeUL << SH_IPI_INT_BASE_SHFT);
 | |
| 
 | |
| 	mb();
 | |
| 	if (enable_shub_wars_1_1()) {
 | |
| 		spin_lock_irqsave(&sn2_global_ptc_lock, flags);
 | |
| 	}
 | |
| 	pio_phys_write_mmr(p, val);
 | |
| 	if (enable_shub_wars_1_1()) {
 | |
| 		wait_piowc();
 | |
| 		spin_unlock_irqrestore(&sn2_global_ptc_lock, flags);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(sn_send_IPI_phys);
 | |
| 
 | |
| /**
 | |
|  * sn2_send_IPI - send an IPI to a processor
 | |
|  * @cpuid: target of the IPI
 | |
|  * @vector: command to send
 | |
|  * @delivery_mode: delivery mechanism
 | |
|  * @redirect: redirect the IPI?
 | |
|  *
 | |
|  * Sends an IPI (InterProcessor Interrupt) to the processor specified by
 | |
|  * @cpuid.  @vector specifies the command to send, while @delivery_mode can 
 | |
|  * be one of the following
 | |
|  *
 | |
|  * %IA64_IPI_DM_INT - pend an interrupt
 | |
|  * %IA64_IPI_DM_PMI - pend a PMI
 | |
|  * %IA64_IPI_DM_NMI - pend an NMI
 | |
|  * %IA64_IPI_DM_INIT - pend an INIT interrupt
 | |
|  */
 | |
| void sn2_send_IPI(int cpuid, int vector, int delivery_mode, int redirect)
 | |
| {
 | |
| 	long physid;
 | |
| 	int nasid;
 | |
| 
 | |
| 	physid = cpu_physical_id(cpuid);
 | |
| 	nasid = cpuid_to_nasid(cpuid);
 | |
| 
 | |
| 	/* the following is used only when starting cpus at boot time */
 | |
| 	if (unlikely(nasid == -1))
 | |
| 		ia64_sn_get_sapic_info(physid, &nasid, NULL, NULL);
 | |
| 
 | |
| 	sn_send_IPI_phys(nasid, physid, vector, delivery_mode);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| /**
 | |
|  * sn_cpu_disable_allowed - Determine if a CPU can be disabled.
 | |
|  * @cpu - CPU that is requested to be disabled.
 | |
|  *
 | |
|  * CPU disable is only allowed on SHub2 systems running with a PROM
 | |
|  * that supports CPU disable. It is not permitted to disable the boot processor.
 | |
|  */
 | |
| bool sn_cpu_disable_allowed(int cpu)
 | |
| {
 | |
| 	if (is_shub2() && sn_prom_feature_available(PRF_CPU_DISABLE_SUPPORT)) {
 | |
| 		if (cpu != 0)
 | |
| 			return true;
 | |
| 		else
 | |
| 			printk(KERN_WARNING
 | |
| 			      "Disabling the boot processor is not allowed.\n");
 | |
| 
 | |
| 	} else
 | |
| 		printk(KERN_WARNING
 | |
| 		       "CPU disable is not supported on this system.\n");
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| #ifdef CONFIG_PROC_FS
 | |
| 
 | |
| #define PTC_BASENAME	"sgi_sn/ptc_statistics"
 | |
| 
 | |
| static void *sn2_ptc_seq_start(struct seq_file *file, loff_t * offset)
 | |
| {
 | |
| 	if (*offset < nr_cpu_ids)
 | |
| 		return offset;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void *sn2_ptc_seq_next(struct seq_file *file, void *data, loff_t * offset)
 | |
| {
 | |
| 	(*offset)++;
 | |
| 	if (*offset < nr_cpu_ids)
 | |
| 		return offset;
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void sn2_ptc_seq_stop(struct seq_file *file, void *data)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int sn2_ptc_seq_show(struct seq_file *file, void *data)
 | |
| {
 | |
| 	struct ptc_stats *stat;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = *(loff_t *) data;
 | |
| 
 | |
| 	if (!cpu) {
 | |
| 		seq_printf(file,
 | |
| 			   "# cpu ptc_l newrid ptc_flushes nodes_flushed deadlocks lock_nsec shub_nsec shub_nsec_max not_my_mm deadlock2 ipi_fluches ipi_nsec\n");
 | |
| 		seq_printf(file, "# ptctest %d, flushopt %d\n", sn2_ptctest, sn2_flush_opt);
 | |
| 	}
 | |
| 
 | |
| 	if (cpu < nr_cpu_ids && cpu_online(cpu)) {
 | |
| 		stat = &per_cpu(ptcstats, cpu);
 | |
| 		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n", cpu, stat->ptc_l,
 | |
| 				stat->change_rid, stat->shub_ptc_flushes, stat->nodes_flushed,
 | |
| 				stat->deadlocks,
 | |
| 				1000 * stat->lock_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
 | |
| 				1000 * stat->shub_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec,
 | |
| 				1000 * stat->shub_itc_clocks_max / per_cpu(cpu_info, cpu).cyc_per_usec,
 | |
| 				stat->shub_ptc_flushes_not_my_mm,
 | |
| 				stat->deadlocks2,
 | |
| 				stat->shub_ipi_flushes,
 | |
| 				1000 * stat->shub_ipi_flushes_itc_clocks / per_cpu(cpu_info, cpu).cyc_per_usec);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static ssize_t sn2_ptc_proc_write(struct file *file, const char __user *user, size_t count, loff_t *data)
 | |
| {
 | |
| 	int cpu;
 | |
| 	char optstr[64];
 | |
| 
 | |
| 	if (count == 0 || count > sizeof(optstr))
 | |
| 		return -EINVAL;
 | |
| 	if (copy_from_user(optstr, user, count))
 | |
| 		return -EFAULT;
 | |
| 	optstr[count - 1] = '\0';
 | |
| 	sn2_flush_opt = simple_strtoul(optstr, NULL, 0);
 | |
| 
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		memset(&per_cpu(ptcstats, cpu), 0, sizeof(struct ptc_stats));
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static const struct seq_operations sn2_ptc_seq_ops = {
 | |
| 	.start = sn2_ptc_seq_start,
 | |
| 	.next = sn2_ptc_seq_next,
 | |
| 	.stop = sn2_ptc_seq_stop,
 | |
| 	.show = sn2_ptc_seq_show
 | |
| };
 | |
| 
 | |
| static int sn2_ptc_proc_open(struct inode *inode, struct file *file)
 | |
| {
 | |
| 	return seq_open(file, &sn2_ptc_seq_ops);
 | |
| }
 | |
| 
 | |
| static const struct file_operations proc_sn2_ptc_operations = {
 | |
| 	.open = sn2_ptc_proc_open,
 | |
| 	.read = seq_read,
 | |
| 	.write = sn2_ptc_proc_write,
 | |
| 	.llseek = seq_lseek,
 | |
| 	.release = seq_release,
 | |
| };
 | |
| 
 | |
| static struct proc_dir_entry *proc_sn2_ptc;
 | |
| 
 | |
| static int __init sn2_ptc_init(void)
 | |
| {
 | |
| 	if (!ia64_platform_is("sn2"))
 | |
| 		return 0;
 | |
| 
 | |
| 	proc_sn2_ptc = proc_create(PTC_BASENAME, 0444,
 | |
| 				   NULL, &proc_sn2_ptc_operations);
 | |
| 	if (!proc_sn2_ptc) {
 | |
| 		printk(KERN_ERR "unable to create %s proc entry", PTC_BASENAME);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	spin_lock_init(&sn2_global_ptc_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __exit sn2_ptc_exit(void)
 | |
| {
 | |
| 	remove_proc_entry(PTC_BASENAME, NULL);
 | |
| }
 | |
| 
 | |
| module_init(sn2_ptc_init);
 | |
| module_exit(sn2_ptc_exit);
 | |
| #endif /* CONFIG_PROC_FS */
 | |
| 
 |