661 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			661 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright (C) 2006 Freescale Semicondutor, Inc. All rights reserved.
 | 
						|
 *
 | 
						|
 * Authors: 	Shlomi Gridish <gridish@freescale.com>
 | 
						|
 * 		Li Yang <leoli@freescale.com>
 | 
						|
 * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net)
 | 
						|
 *
 | 
						|
 * Description:
 | 
						|
 * General Purpose functions for the global management of the
 | 
						|
 * QUICC Engine (QE).
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute  it and/or modify it
 | 
						|
 * under  the terms of  the GNU General  Public License as published by the
 | 
						|
 * Free Software Foundation;  either version 2 of the  License, or (at your
 | 
						|
 * option) any later version.
 | 
						|
 */
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/param.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/ioport.h>
 | 
						|
#include <linux/crc32.h>
 | 
						|
#include <asm/irq.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/immap_qe.h>
 | 
						|
#include <asm/qe.h>
 | 
						|
#include <asm/prom.h>
 | 
						|
#include <asm/rheap.h>
 | 
						|
 | 
						|
static void qe_snums_init(void);
 | 
						|
static int qe_sdma_init(void);
 | 
						|
 | 
						|
static DEFINE_SPINLOCK(qe_lock);
 | 
						|
DEFINE_SPINLOCK(cmxgcr_lock);
 | 
						|
EXPORT_SYMBOL(cmxgcr_lock);
 | 
						|
 | 
						|
/* QE snum state */
 | 
						|
enum qe_snum_state {
 | 
						|
	QE_SNUM_STATE_USED,
 | 
						|
	QE_SNUM_STATE_FREE
 | 
						|
};
 | 
						|
 | 
						|
/* QE snum */
 | 
						|
struct qe_snum {
 | 
						|
	u8 num;
 | 
						|
	enum qe_snum_state state;
 | 
						|
};
 | 
						|
 | 
						|
/* We allocate this here because it is used almost exclusively for
 | 
						|
 * the communication processor devices.
 | 
						|
 */
 | 
						|
struct qe_immap __iomem *qe_immr;
 | 
						|
EXPORT_SYMBOL(qe_immr);
 | 
						|
 | 
						|
static struct qe_snum snums[QE_NUM_OF_SNUM];	/* Dynamically allocated SNUMs */
 | 
						|
static unsigned int qe_num_of_snum;
 | 
						|
 | 
						|
static phys_addr_t qebase = -1;
 | 
						|
 | 
						|
int qe_alive_during_sleep(void)
 | 
						|
{
 | 
						|
	static int ret = -1;
 | 
						|
 | 
						|
	if (ret != -1)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = !of_find_compatible_node(NULL, NULL, "fsl,mpc8569-pmc");
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_alive_during_sleep);
 | 
						|
 | 
						|
phys_addr_t get_qe_base(void)
 | 
						|
{
 | 
						|
	struct device_node *qe;
 | 
						|
	int size;
 | 
						|
	const u32 *prop;
 | 
						|
 | 
						|
	if (qebase != -1)
 | 
						|
		return qebase;
 | 
						|
 | 
						|
	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | 
						|
	if (!qe) {
 | 
						|
		qe = of_find_node_by_type(NULL, "qe");
 | 
						|
		if (!qe)
 | 
						|
			return qebase;
 | 
						|
	}
 | 
						|
 | 
						|
	prop = of_get_property(qe, "reg", &size);
 | 
						|
	if (prop && size >= sizeof(*prop))
 | 
						|
		qebase = of_translate_address(qe, prop);
 | 
						|
	of_node_put(qe);
 | 
						|
 | 
						|
	return qebase;
 | 
						|
}
 | 
						|
 | 
						|
EXPORT_SYMBOL(get_qe_base);
 | 
						|
 | 
						|
void __init qe_reset(void)
 | 
						|
{
 | 
						|
	if (qe_immr == NULL)
 | 
						|
		qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE);
 | 
						|
 | 
						|
	qe_snums_init();
 | 
						|
 | 
						|
	qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID,
 | 
						|
		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
 | 
						|
 | 
						|
	/* Reclaim the MURAM memory for our use. */
 | 
						|
	qe_muram_init();
 | 
						|
 | 
						|
	if (qe_sdma_init())
 | 
						|
		panic("sdma init failed!");
 | 
						|
}
 | 
						|
 | 
						|
int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	u8 mcn_shift = 0, dev_shift = 0;
 | 
						|
	u32 ret;
 | 
						|
 | 
						|
	spin_lock_irqsave(&qe_lock, flags);
 | 
						|
	if (cmd == QE_RESET) {
 | 
						|
		out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG));
 | 
						|
	} else {
 | 
						|
		if (cmd == QE_ASSIGN_PAGE) {
 | 
						|
			/* Here device is the SNUM, not sub-block */
 | 
						|
			dev_shift = QE_CR_SNUM_SHIFT;
 | 
						|
		} else if (cmd == QE_ASSIGN_RISC) {
 | 
						|
			/* Here device is the SNUM, and mcnProtocol is
 | 
						|
			 * e_QeCmdRiscAssignment value */
 | 
						|
			dev_shift = QE_CR_SNUM_SHIFT;
 | 
						|
			mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT;
 | 
						|
		} else {
 | 
						|
			if (device == QE_CR_SUBBLOCK_USB)
 | 
						|
				mcn_shift = QE_CR_MCN_USB_SHIFT;
 | 
						|
			else
 | 
						|
				mcn_shift = QE_CR_MCN_NORMAL_SHIFT;
 | 
						|
		}
 | 
						|
 | 
						|
		out_be32(&qe_immr->cp.cecdr, cmd_input);
 | 
						|
		out_be32(&qe_immr->cp.cecr,
 | 
						|
			 (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32)
 | 
						|
			  mcn_protocol << mcn_shift));
 | 
						|
	}
 | 
						|
 | 
						|
	/* wait for the QE_CR_FLG to clear */
 | 
						|
	ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0,
 | 
						|
			   100, 0);
 | 
						|
	/* On timeout (e.g. failure), the expression will be false (ret == 0),
 | 
						|
	   otherwise it will be true (ret == 1). */
 | 
						|
	spin_unlock_irqrestore(&qe_lock, flags);
 | 
						|
 | 
						|
	return ret == 1;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_issue_cmd);
 | 
						|
 | 
						|
/* Set a baud rate generator. This needs lots of work. There are
 | 
						|
 * 16 BRGs, which can be connected to the QE channels or output
 | 
						|
 * as clocks. The BRGs are in two different block of internal
 | 
						|
 * memory mapped space.
 | 
						|
 * The BRG clock is the QE clock divided by 2.
 | 
						|
 * It was set up long ago during the initial boot phase and is
 | 
						|
 * is given to us.
 | 
						|
 * Baud rate clocks are zero-based in the driver code (as that maps
 | 
						|
 * to port numbers). Documentation uses 1-based numbering.
 | 
						|
 */
 | 
						|
static unsigned int brg_clk = 0;
 | 
						|
 | 
						|
unsigned int qe_get_brg_clk(void)
 | 
						|
{
 | 
						|
	struct device_node *qe;
 | 
						|
	int size;
 | 
						|
	const u32 *prop;
 | 
						|
 | 
						|
	if (brg_clk)
 | 
						|
		return brg_clk;
 | 
						|
 | 
						|
	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | 
						|
	if (!qe) {
 | 
						|
		qe = of_find_node_by_type(NULL, "qe");
 | 
						|
		if (!qe)
 | 
						|
			return brg_clk;
 | 
						|
	}
 | 
						|
 | 
						|
	prop = of_get_property(qe, "brg-frequency", &size);
 | 
						|
	if (prop && size == sizeof(*prop))
 | 
						|
		brg_clk = *prop;
 | 
						|
 | 
						|
	of_node_put(qe);
 | 
						|
 | 
						|
	return brg_clk;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_get_brg_clk);
 | 
						|
 | 
						|
/* Program the BRG to the given sampling rate and multiplier
 | 
						|
 *
 | 
						|
 * @brg: the BRG, QE_BRG1 - QE_BRG16
 | 
						|
 * @rate: the desired sampling rate
 | 
						|
 * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or
 | 
						|
 * GUMR_L[TDCR].  E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01,
 | 
						|
 * then 'multiplier' should be 8.
 | 
						|
 */
 | 
						|
int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier)
 | 
						|
{
 | 
						|
	u32 divisor, tempval;
 | 
						|
	u32 div16 = 0;
 | 
						|
 | 
						|
	if ((brg < QE_BRG1) || (brg > QE_BRG16))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	divisor = qe_get_brg_clk() / (rate * multiplier);
 | 
						|
 | 
						|
	if (divisor > QE_BRGC_DIVISOR_MAX + 1) {
 | 
						|
		div16 = QE_BRGC_DIV16;
 | 
						|
		divisor /= 16;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says
 | 
						|
	   that the BRG divisor must be even if you're not using divide-by-16
 | 
						|
	   mode. */
 | 
						|
	if (!div16 && (divisor & 1))
 | 
						|
		divisor++;
 | 
						|
 | 
						|
	tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) |
 | 
						|
		QE_BRGC_ENABLE | div16;
 | 
						|
 | 
						|
	out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_setbrg);
 | 
						|
 | 
						|
/* Convert a string to a QE clock source enum
 | 
						|
 *
 | 
						|
 * This function takes a string, typically from a property in the device
 | 
						|
 * tree, and returns the corresponding "enum qe_clock" value.
 | 
						|
*/
 | 
						|
enum qe_clock qe_clock_source(const char *source)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (strcasecmp(source, "none") == 0)
 | 
						|
		return QE_CLK_NONE;
 | 
						|
 | 
						|
	if (strncasecmp(source, "brg", 3) == 0) {
 | 
						|
		i = simple_strtoul(source + 3, NULL, 10);
 | 
						|
		if ((i >= 1) && (i <= 16))
 | 
						|
			return (QE_BRG1 - 1) + i;
 | 
						|
		else
 | 
						|
			return QE_CLK_DUMMY;
 | 
						|
	}
 | 
						|
 | 
						|
	if (strncasecmp(source, "clk", 3) == 0) {
 | 
						|
		i = simple_strtoul(source + 3, NULL, 10);
 | 
						|
		if ((i >= 1) && (i <= 24))
 | 
						|
			return (QE_CLK1 - 1) + i;
 | 
						|
		else
 | 
						|
			return QE_CLK_DUMMY;
 | 
						|
	}
 | 
						|
 | 
						|
	return QE_CLK_DUMMY;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_clock_source);
 | 
						|
 | 
						|
/* Initialize SNUMs (thread serial numbers) according to
 | 
						|
 * QE Module Control chapter, SNUM table
 | 
						|
 */
 | 
						|
static void qe_snums_init(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	static const u8 snum_init[] = {
 | 
						|
		0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D,
 | 
						|
		0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89,
 | 
						|
		0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9,
 | 
						|
		0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19,
 | 
						|
		0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59,
 | 
						|
		0x68, 0x69, 0x78, 0x79, 0x80, 0x81,
 | 
						|
	};
 | 
						|
 | 
						|
	qe_num_of_snum = qe_get_num_of_snums();
 | 
						|
 | 
						|
	for (i = 0; i < qe_num_of_snum; i++) {
 | 
						|
		snums[i].num = snum_init[i];
 | 
						|
		snums[i].state = QE_SNUM_STATE_FREE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int qe_get_snum(void)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int snum = -EBUSY;
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock_irqsave(&qe_lock, flags);
 | 
						|
	for (i = 0; i < qe_num_of_snum; i++) {
 | 
						|
		if (snums[i].state == QE_SNUM_STATE_FREE) {
 | 
						|
			snums[i].state = QE_SNUM_STATE_USED;
 | 
						|
			snum = snums[i].num;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	spin_unlock_irqrestore(&qe_lock, flags);
 | 
						|
 | 
						|
	return snum;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_get_snum);
 | 
						|
 | 
						|
void qe_put_snum(u8 snum)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < qe_num_of_snum; i++) {
 | 
						|
		if (snums[i].num == snum) {
 | 
						|
			snums[i].state = QE_SNUM_STATE_FREE;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_put_snum);
 | 
						|
 | 
						|
static int qe_sdma_init(void)
 | 
						|
{
 | 
						|
	struct sdma __iomem *sdma = &qe_immr->sdma;
 | 
						|
	unsigned long sdma_buf_offset;
 | 
						|
 | 
						|
	if (!sdma)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	/* allocate 2 internal temporary buffers (512 bytes size each) for
 | 
						|
	 * the SDMA */
 | 
						|
 	sdma_buf_offset = qe_muram_alloc(512 * 2, 4096);
 | 
						|
	if (IS_ERR_VALUE(sdma_buf_offset))
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK);
 | 
						|
 	out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK |
 | 
						|
 					(0x1 << QE_SDMR_CEN_SHIFT)));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* The maximum number of RISCs we support */
 | 
						|
#define MAX_QE_RISC     2
 | 
						|
 | 
						|
/* Firmware information stored here for qe_get_firmware_info() */
 | 
						|
static struct qe_firmware_info qe_firmware_info;
 | 
						|
 | 
						|
/*
 | 
						|
 * Set to 1 if QE firmware has been uploaded, and therefore
 | 
						|
 * qe_firmware_info contains valid data.
 | 
						|
 */
 | 
						|
static int qe_firmware_uploaded;
 | 
						|
 | 
						|
/*
 | 
						|
 * Upload a QE microcode
 | 
						|
 *
 | 
						|
 * This function is a worker function for qe_upload_firmware().  It does
 | 
						|
 * the actual uploading of the microcode.
 | 
						|
 */
 | 
						|
static void qe_upload_microcode(const void *base,
 | 
						|
	const struct qe_microcode *ucode)
 | 
						|
{
 | 
						|
	const __be32 *code = base + be32_to_cpu(ucode->code_offset);
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (ucode->major || ucode->minor || ucode->revision)
 | 
						|
		printk(KERN_INFO "qe-firmware: "
 | 
						|
			"uploading microcode '%s' version %u.%u.%u\n",
 | 
						|
			ucode->id, ucode->major, ucode->minor, ucode->revision);
 | 
						|
	else
 | 
						|
		printk(KERN_INFO "qe-firmware: "
 | 
						|
			"uploading microcode '%s'\n", ucode->id);
 | 
						|
 | 
						|
	/* Use auto-increment */
 | 
						|
	out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) |
 | 
						|
		QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR);
 | 
						|
 | 
						|
	for (i = 0; i < be32_to_cpu(ucode->count); i++)
 | 
						|
		out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i]));
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Upload a microcode to the I-RAM at a specific address.
 | 
						|
 *
 | 
						|
 * See Documentation/powerpc/qe-firmware.txt for information on QE microcode
 | 
						|
 * uploading.
 | 
						|
 *
 | 
						|
 * Currently, only version 1 is supported, so the 'version' field must be
 | 
						|
 * set to 1.
 | 
						|
 *
 | 
						|
 * The SOC model and revision are not validated, they are only displayed for
 | 
						|
 * informational purposes.
 | 
						|
 *
 | 
						|
 * 'calc_size' is the calculated size, in bytes, of the firmware structure and
 | 
						|
 * all of the microcode structures, minus the CRC.
 | 
						|
 *
 | 
						|
 * 'length' is the size that the structure says it is, including the CRC.
 | 
						|
 */
 | 
						|
int qe_upload_firmware(const struct qe_firmware *firmware)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
	unsigned int j;
 | 
						|
	u32 crc;
 | 
						|
	size_t calc_size = sizeof(struct qe_firmware);
 | 
						|
	size_t length;
 | 
						|
	const struct qe_header *hdr;
 | 
						|
 | 
						|
	if (!firmware) {
 | 
						|
		printk(KERN_ERR "qe-firmware: invalid pointer\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	hdr = &firmware->header;
 | 
						|
	length = be32_to_cpu(hdr->length);
 | 
						|
 | 
						|
	/* Check the magic */
 | 
						|
	if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') ||
 | 
						|
	    (hdr->magic[2] != 'F')) {
 | 
						|
		printk(KERN_ERR "qe-firmware: not a microcode\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check the version */
 | 
						|
	if (hdr->version != 1) {
 | 
						|
		printk(KERN_ERR "qe-firmware: unsupported version\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Validate some of the fields */
 | 
						|
	if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) {
 | 
						|
		printk(KERN_ERR "qe-firmware: invalid data\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Validate the length and check if there's a CRC */
 | 
						|
	calc_size += (firmware->count - 1) * sizeof(struct qe_microcode);
 | 
						|
 | 
						|
	for (i = 0; i < firmware->count; i++)
 | 
						|
		/*
 | 
						|
		 * For situations where the second RISC uses the same microcode
 | 
						|
		 * as the first, the 'code_offset' and 'count' fields will be
 | 
						|
		 * zero, so it's okay to add those.
 | 
						|
		 */
 | 
						|
		calc_size += sizeof(__be32) *
 | 
						|
			be32_to_cpu(firmware->microcode[i].count);
 | 
						|
 | 
						|
	/* Validate the length */
 | 
						|
	if (length != calc_size + sizeof(__be32)) {
 | 
						|
		printk(KERN_ERR "qe-firmware: invalid length\n");
 | 
						|
		return -EPERM;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Validate the CRC */
 | 
						|
	crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size));
 | 
						|
	if (crc != crc32(0, firmware, calc_size)) {
 | 
						|
		printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n");
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the microcode calls for it, split the I-RAM.
 | 
						|
	 */
 | 
						|
	if (!firmware->split)
 | 
						|
		setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR);
 | 
						|
 | 
						|
	if (firmware->soc.model)
 | 
						|
		printk(KERN_INFO
 | 
						|
			"qe-firmware: firmware '%s' for %u V%u.%u\n",
 | 
						|
			firmware->id, be16_to_cpu(firmware->soc.model),
 | 
						|
			firmware->soc.major, firmware->soc.minor);
 | 
						|
	else
 | 
						|
		printk(KERN_INFO "qe-firmware: firmware '%s'\n",
 | 
						|
			firmware->id);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The QE only supports one microcode per RISC, so clear out all the
 | 
						|
	 * saved microcode information and put in the new.
 | 
						|
	 */
 | 
						|
	memset(&qe_firmware_info, 0, sizeof(qe_firmware_info));
 | 
						|
	strcpy(qe_firmware_info.id, firmware->id);
 | 
						|
	qe_firmware_info.extended_modes = firmware->extended_modes;
 | 
						|
	memcpy(qe_firmware_info.vtraps, firmware->vtraps,
 | 
						|
		sizeof(firmware->vtraps));
 | 
						|
 | 
						|
	/* Loop through each microcode. */
 | 
						|
	for (i = 0; i < firmware->count; i++) {
 | 
						|
		const struct qe_microcode *ucode = &firmware->microcode[i];
 | 
						|
 | 
						|
		/* Upload a microcode if it's present */
 | 
						|
		if (ucode->code_offset)
 | 
						|
			qe_upload_microcode(firmware, ucode);
 | 
						|
 | 
						|
		/* Program the traps for this processor */
 | 
						|
		for (j = 0; j < 16; j++) {
 | 
						|
			u32 trap = be32_to_cpu(ucode->traps[j]);
 | 
						|
 | 
						|
			if (trap)
 | 
						|
				out_be32(&qe_immr->rsp[i].tibcr[j], trap);
 | 
						|
		}
 | 
						|
 | 
						|
		/* Enable traps */
 | 
						|
		out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr));
 | 
						|
	}
 | 
						|
 | 
						|
	qe_firmware_uploaded = 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_upload_firmware);
 | 
						|
 | 
						|
/*
 | 
						|
 * Get info on the currently-loaded firmware
 | 
						|
 *
 | 
						|
 * This function also checks the device tree to see if the boot loader has
 | 
						|
 * uploaded a firmware already.
 | 
						|
 */
 | 
						|
struct qe_firmware_info *qe_get_firmware_info(void)
 | 
						|
{
 | 
						|
	static int initialized;
 | 
						|
	struct property *prop;
 | 
						|
	struct device_node *qe;
 | 
						|
	struct device_node *fw = NULL;
 | 
						|
	const char *sprop;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we haven't checked yet, and a driver hasn't uploaded a firmware
 | 
						|
	 * yet, then check the device tree for information.
 | 
						|
	 */
 | 
						|
	if (qe_firmware_uploaded)
 | 
						|
		return &qe_firmware_info;
 | 
						|
 | 
						|
	if (initialized)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	initialized = 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Newer device trees have an "fsl,qe" compatible property for the QE
 | 
						|
	 * node, but we still need to support older device trees.
 | 
						|
	*/
 | 
						|
	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | 
						|
	if (!qe) {
 | 
						|
		qe = of_find_node_by_type(NULL, "qe");
 | 
						|
		if (!qe)
 | 
						|
			return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Find the 'firmware' child node */
 | 
						|
	for_each_child_of_node(qe, fw) {
 | 
						|
		if (strcmp(fw->name, "firmware") == 0)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	of_node_put(qe);
 | 
						|
 | 
						|
	/* Did we find the 'firmware' node? */
 | 
						|
	if (!fw)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	qe_firmware_uploaded = 1;
 | 
						|
 | 
						|
	/* Copy the data into qe_firmware_info*/
 | 
						|
	sprop = of_get_property(fw, "id", NULL);
 | 
						|
	if (sprop)
 | 
						|
		strncpy(qe_firmware_info.id, sprop,
 | 
						|
			sizeof(qe_firmware_info.id) - 1);
 | 
						|
 | 
						|
	prop = of_find_property(fw, "extended-modes", NULL);
 | 
						|
	if (prop && (prop->length == sizeof(u64))) {
 | 
						|
		const u64 *iprop = prop->value;
 | 
						|
 | 
						|
		qe_firmware_info.extended_modes = *iprop;
 | 
						|
	}
 | 
						|
 | 
						|
	prop = of_find_property(fw, "virtual-traps", NULL);
 | 
						|
	if (prop && (prop->length == 32)) {
 | 
						|
		const u32 *iprop = prop->value;
 | 
						|
 | 
						|
		for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++)
 | 
						|
			qe_firmware_info.vtraps[i] = iprop[i];
 | 
						|
	}
 | 
						|
 | 
						|
	of_node_put(fw);
 | 
						|
 | 
						|
	return &qe_firmware_info;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_get_firmware_info);
 | 
						|
 | 
						|
unsigned int qe_get_num_of_risc(void)
 | 
						|
{
 | 
						|
	struct device_node *qe;
 | 
						|
	int size;
 | 
						|
	unsigned int num_of_risc = 0;
 | 
						|
	const u32 *prop;
 | 
						|
 | 
						|
	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | 
						|
	if (!qe) {
 | 
						|
		/* Older devices trees did not have an "fsl,qe"
 | 
						|
		 * compatible property, so we need to look for
 | 
						|
		 * the QE node by name.
 | 
						|
		 */
 | 
						|
		qe = of_find_node_by_type(NULL, "qe");
 | 
						|
		if (!qe)
 | 
						|
			return num_of_risc;
 | 
						|
	}
 | 
						|
 | 
						|
	prop = of_get_property(qe, "fsl,qe-num-riscs", &size);
 | 
						|
	if (prop && size == sizeof(*prop))
 | 
						|
		num_of_risc = *prop;
 | 
						|
 | 
						|
	of_node_put(qe);
 | 
						|
 | 
						|
	return num_of_risc;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_get_num_of_risc);
 | 
						|
 | 
						|
unsigned int qe_get_num_of_snums(void)
 | 
						|
{
 | 
						|
	struct device_node *qe;
 | 
						|
	int size;
 | 
						|
	unsigned int num_of_snums;
 | 
						|
	const u32 *prop;
 | 
						|
 | 
						|
	num_of_snums = 28; /* The default number of snum for threads is 28 */
 | 
						|
	qe = of_find_compatible_node(NULL, NULL, "fsl,qe");
 | 
						|
	if (!qe) {
 | 
						|
		/* Older devices trees did not have an "fsl,qe"
 | 
						|
		 * compatible property, so we need to look for
 | 
						|
		 * the QE node by name.
 | 
						|
		 */
 | 
						|
		qe = of_find_node_by_type(NULL, "qe");
 | 
						|
		if (!qe)
 | 
						|
			return num_of_snums;
 | 
						|
	}
 | 
						|
 | 
						|
	prop = of_get_property(qe, "fsl,qe-num-snums", &size);
 | 
						|
	if (prop && size == sizeof(*prop)) {
 | 
						|
		num_of_snums = *prop;
 | 
						|
		if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) {
 | 
						|
			/* No QE ever has fewer than 28 SNUMs */
 | 
						|
			pr_err("QE: number of snum is invalid\n");
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	of_node_put(qe);
 | 
						|
 | 
						|
	return num_of_snums;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(qe_get_num_of_snums);
 |