639 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			639 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Kernel Probes (KProbes)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright (C) IBM Corporation, 2002, 2006
 | |
|  *
 | |
|  * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/stop_machine.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/sections.h>
 | |
| #include <linux/module.h>
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	/* Make sure the probe isn't going on a difficult instruction */
 | |
| 	if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if ((unsigned long)p->addr & 0x01)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Use the get_insn_slot() facility for correctness */
 | |
| 	if (!(p->ainsn.insn = get_insn_slot()))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 	get_instruction_type(&p->ainsn);
 | |
| 	p->opcode = *p->addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
 | |
| {
 | |
| 	switch (*(__u8 *) instruction) {
 | |
| 	case 0x0c:	/* bassm */
 | |
| 	case 0x0b:	/* bsm	 */
 | |
| 	case 0x83:	/* diag  */
 | |
| 	case 0x44:	/* ex	 */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	switch (*(__u16 *) instruction) {
 | |
| 	case 0x0101:	/* pr	 */
 | |
| 	case 0xb25a:	/* bsa	 */
 | |
| 	case 0xb240:	/* bakr  */
 | |
| 	case 0xb258:	/* bsg	 */
 | |
| 	case 0xb218:	/* pc	 */
 | |
| 	case 0xb228:	/* pt	 */
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
 | |
| {
 | |
| 	/* default fixup method */
 | |
| 	ainsn->fixup = FIXUP_PSW_NORMAL;
 | |
| 
 | |
| 	/* save r1 operand */
 | |
| 	ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
 | |
| 
 | |
| 	/* save the instruction length (pop 5-5) in bytes */
 | |
| 	switch (*(__u8 *) (ainsn->insn) >> 6) {
 | |
| 	case 0:
 | |
| 		ainsn->ilen = 2;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 	case 2:
 | |
| 		ainsn->ilen = 4;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		ainsn->ilen = 6;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (*(__u8 *) ainsn->insn) {
 | |
| 	case 0x05:	/* balr	*/
 | |
| 	case 0x0d:	/* basr */
 | |
| 		ainsn->fixup = FIXUP_RETURN_REGISTER;
 | |
| 		/* if r2 = 0, no branch will be taken */
 | |
| 		if ((*ainsn->insn & 0x0f) == 0)
 | |
| 			ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0x06:	/* bctr	*/
 | |
| 	case 0x07:	/* bcr	*/
 | |
| 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0x45:	/* bal	*/
 | |
| 	case 0x4d:	/* bas	*/
 | |
| 		ainsn->fixup = FIXUP_RETURN_REGISTER;
 | |
| 		break;
 | |
| 	case 0x47:	/* bc	*/
 | |
| 	case 0x46:	/* bct	*/
 | |
| 	case 0x86:	/* bxh	*/
 | |
| 	case 0x87:	/* bxle	*/
 | |
| 		ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		break;
 | |
| 	case 0x82:	/* lpsw	*/
 | |
| 		ainsn->fixup = FIXUP_NOT_REQUIRED;
 | |
| 		break;
 | |
| 	case 0xb2:	/* lpswe */
 | |
| 		if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
 | |
| 			ainsn->fixup = FIXUP_NOT_REQUIRED;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xa7:	/* bras	*/
 | |
| 		if ((*ainsn->insn & 0x0f) == 0x05) {
 | |
| 			ainsn->fixup |= FIXUP_RETURN_REGISTER;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xc0:
 | |
| 		if ((*ainsn->insn & 0x0f) == 0x00  /* larl  */
 | |
| 			|| (*ainsn->insn & 0x0f) == 0x05) /* brasl */
 | |
| 		ainsn->fixup |= FIXUP_RETURN_REGISTER;
 | |
| 		break;
 | |
| 	case 0xeb:
 | |
| 		if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 ||	/* bxhg  */
 | |
| 			*(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
 | |
| 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		}
 | |
| 		break;
 | |
| 	case 0xe3:	/* bctg	*/
 | |
| 		if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
 | |
| 			ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __kprobes swap_instruction(void *aref)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long status = kcb->kprobe_status;
 | |
| 	struct ins_replace_args *args = aref;
 | |
| 	int rc;
 | |
| 
 | |
| 	kcb->kprobe_status = KPROBE_SWAP_INST;
 | |
| 	rc = probe_kernel_write(args->ptr, &args->new, sizeof(args->new));
 | |
| 	kcb->kprobe_status = status;
 | |
| 	return rc;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	struct ins_replace_args args;
 | |
| 
 | |
| 	args.ptr = p->addr;
 | |
| 	args.old = p->opcode;
 | |
| 	args.new = BREAKPOINT_INSTRUCTION;
 | |
| 	stop_machine(swap_instruction, &args, NULL);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	struct ins_replace_args args;
 | |
| 
 | |
| 	args.ptr = p->addr;
 | |
| 	args.old = BREAKPOINT_INSTRUCTION;
 | |
| 	args.new = p->opcode;
 | |
| 	stop_machine(swap_instruction, &args, NULL);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->ainsn.insn) {
 | |
| 		free_insn_slot(p->ainsn.insn, 0);
 | |
| 		p->ainsn.insn = NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	per_cr_bits kprobe_per_regs[1];
 | |
| 
 | |
| 	memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
 | |
| 	regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
 | |
| 
 | |
| 	/* Set up the per control reg info, will pass to lctl */
 | |
| 	kprobe_per_regs[0].em_instruction_fetch = 1;
 | |
| 	kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
 | |
| 	kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
 | |
| 
 | |
| 	/* Set the PER control regs, turns on single step for this address */
 | |
| 	__ctl_load(kprobe_per_regs, 9, 11);
 | |
| 	regs->psw.mask |= PSW_MASK_PER;
 | |
| 	regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	kcb->prev_kprobe.kp = kprobe_running();
 | |
| 	kcb->prev_kprobe.status = kcb->kprobe_status;
 | |
| 	kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
 | |
| 	memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
 | |
| 					sizeof(kcb->kprobe_saved_ctl));
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe.status;
 | |
| 	kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
 | |
| 	memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
 | |
| 					sizeof(kcb->kprobe_saved_ctl));
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 | |
| 						struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| 	/* Save the interrupt and per flags */
 | |
| 	kcb->kprobe_saved_imask = regs->psw.mask &
 | |
| 	    (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
 | |
| 	/* Save the control regs that govern PER */
 | |
| 	__ctl_store(kcb->kprobe_saved_ctl, 9, 11);
 | |
| }
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 					struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
 | |
| }
 | |
| 
 | |
| static int __kprobes kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	unsigned long *addr = (unsigned long *)
 | |
| 		((regs->psw.addr & PSW_ADDR_INSN) - 2);
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	/* Check we're not actually recursing */
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
 | |
| 			    *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
 | |
| 				regs->psw.mask &= ~PSW_MASK_PER;
 | |
| 				regs->psw.mask |= kcb->kprobe_saved_imask;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/* We have reentered the kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, regs, kcb);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			prepare_singlestep(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			p = __get_cpu_var(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 				goto ss_probe;
 | |
| 			}
 | |
| 		}
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p)
 | |
| 		/*
 | |
| 		 * No kprobe at this address. The fault has not been
 | |
| 		 * caused by a kprobe breakpoint. The race of breakpoint
 | |
| 		 * vs. kprobe remove does not exist because on s390 we
 | |
| 		 * use stop_machine to arm/disarm the breakpoints.
 | |
| 		 */
 | |
| 		goto no_kprobe;
 | |
| 
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 	set_current_kprobe(p, regs, kcb);
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs))
 | |
| 		/* handler has already set things up, so skip ss setup */
 | |
| 		return 1;
 | |
| 
 | |
| ss_probe:
 | |
| 	prepare_singlestep(p, regs);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Function return probe trampoline:
 | |
|  *	- init_kprobes() establishes a probepoint here
 | |
|  *	- When the probed function returns, this probe
 | |
|  *		causes the handlers to fire
 | |
|  */
 | |
| static void __used kretprobe_trampoline_holder(void)
 | |
| {
 | |
| 	asm volatile(".global kretprobe_trampoline\n"
 | |
| 		     "kretprobe_trampoline: bcr 0,0\n");
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when the probe at kretprobe trampoline is hit
 | |
|  */
 | |
| static int __kprobes trampoline_probe_handler(struct kprobe *p,
 | |
| 					      struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *	 function, the first instance's ret_addr will point to the
 | |
| 	 *	 real return address, and all the rest will point to
 | |
| 	 *	 kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address) {
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 	regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called after single-stepping.  p->addr is the address of the
 | |
|  * instruction whose first byte has been replaced by the "breakpoint"
 | |
|  * instruction.  To avoid the SMP problems that can occur when we
 | |
|  * temporarily put back the original opcode to single-step, we
 | |
|  * single-stepped a copy of the instruction.  The address of this
 | |
|  * copy is p->ainsn.insn.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	regs->psw.addr &= PSW_ADDR_INSN;
 | |
| 
 | |
| 	if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
 | |
| 		regs->psw.addr = (unsigned long)p->addr +
 | |
| 				((unsigned long)regs->psw.addr -
 | |
| 				 (unsigned long)p->ainsn.insn);
 | |
| 
 | |
| 	if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
 | |
| 		if ((unsigned long)regs->psw.addr -
 | |
| 		    (unsigned long)p->ainsn.insn == p->ainsn.ilen)
 | |
| 			regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
 | |
| 
 | |
| 	if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
 | |
| 		regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
 | |
| 						(regs->gprs[p->ainsn.reg] -
 | |
| 						(unsigned long)p->ainsn.insn))
 | |
| 						| PSW_ADDR_AMODE;
 | |
| 
 | |
| 	regs->psw.addr |= PSW_ADDR_AMODE;
 | |
| 	/* turn off PER mode */
 | |
| 	regs->psw.mask &= ~PSW_MASK_PER;
 | |
| 	/* Restore the original per control regs */
 | |
| 	__ctl_load(kcb->kprobe_saved_ctl, 9, 11);
 | |
| 	regs->psw.mask |= kcb->kprobe_saved_imask;
 | |
| }
 | |
| 
 | |
| static int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs);
 | |
| 
 | |
| 	/*Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * if somebody else is singlestepping across a probe point, psw mask
 | |
| 	 * will have PER set, in which case, continue the remaining processing
 | |
| 	 * of do_single_step, as if this is not a probe hit.
 | |
| 	 */
 | |
| 	if (regs->psw.mask & PSW_MASK_PER) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	const struct exception_table_entry *entry;
 | |
| 
 | |
| 	switch(kcb->kprobe_status) {
 | |
| 	case KPROBE_SWAP_INST:
 | |
| 		/* We are here because the instruction replacement failed */
 | |
| 		return 0;
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the nip points back to the probe address
 | |
| 		 * and allow the page fault handler to continue as a
 | |
| 		 * normal page fault.
 | |
| 		 */
 | |
| 		regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
 | |
| 		regs->psw.mask &= ~PSW_MASK_PER;
 | |
| 		regs->psw.mask |= kcb->kprobe_saved_imask;
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accouting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 		entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
 | |
| 		if (entry) {
 | |
| 			regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
 | |
| 			return 1;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * fixup_exception() could not handle it,
 | |
| 		 * Let do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Wrapper routine to for handling exceptions.
 | |
|  */
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (val) {
 | |
| 	case DIE_BPT:
 | |
| 		if (kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_SSTEP:
 | |
| 		if (post_kprobe_handler(args->regs))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_TRAP:
 | |
| 		/* kprobe_running() needs smp_processor_id() */
 | |
| 		preempt_disable();
 | |
| 		if (kprobe_running() &&
 | |
| 		    kprobe_fault_handler(args->regs, args->trapnr))
 | |
| 			ret = NOTIFY_STOP;
 | |
| 		preempt_enable();
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	unsigned long addr;
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
 | |
| 
 | |
| 	/* setup return addr to the jprobe handler routine */
 | |
| 	regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
 | |
| 
 | |
| 	/* r14 is the function return address */
 | |
| 	kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
 | |
| 	/* r15 is the stack pointer */
 | |
| 	kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
 | |
| 	addr = (unsigned long)kcb->jprobe_saved_r15;
 | |
| 
 | |
| 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
 | |
| 	       MIN_STACK_SIZE(addr));
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| 	asm volatile(".word 0x0002");
 | |
| }
 | |
| 
 | |
| void __kprobes jprobe_return_end(void)
 | |
| {
 | |
| 	asm volatile("bcr 0,0");
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
 | |
| 
 | |
| 	/* Put the regs back */
 | |
| 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
 | |
| 	/* put the stack back */
 | |
| 	memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
 | |
| 	       MIN_STACK_SIZE(stack_addr));
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.addr = (kprobe_opcode_t *) & kretprobe_trampoline,
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 |