android_kernel_cmhtcleo/arch/arm/mach-bcmring/csp/chipc/chipcHw.c
2010-08-27 11:19:57 +02:00

777 lines
26 KiB
C

/*****************************************************************************
* Copyright 2003 - 2008 Broadcom Corporation. All rights reserved.
*
* Unless you and Broadcom execute a separate written software license
* agreement governing use of this software, this software is licensed to you
* under the terms of the GNU General Public License version 2, available at
* http://www.broadcom.com/licenses/GPLv2.php (the "GPL").
*
* Notwithstanding the above, under no circumstances may you combine this
* software in any way with any other Broadcom software provided under a
* license other than the GPL, without Broadcom's express prior written
* consent.
*****************************************************************************/
/****************************************************************************/
/**
* @file chipcHw.c
*
* @brief Low level Various CHIP clock controlling routines
*
* @note
*
* These routines provide basic clock controlling functionality only.
*/
/****************************************************************************/
/* ---- Include Files ---------------------------------------------------- */
#include <csp/errno.h>
#include <csp/stdint.h>
#include <csp/module.h>
#include <mach/csp/chipcHw_def.h>
#include <mach/csp/chipcHw_inline.h>
#include <csp/reg.h>
#include <csp/delay.h>
/* ---- Private Constants and Types --------------------------------------- */
/* VPM alignment algorithm uses this */
#define MAX_PHASE_ADJUST_COUNT 0xFFFF /* Max number of times allowed to adjust the phase */
#define MAX_PHASE_ALIGN_ATTEMPTS 10 /* Max number of attempt to align the phase */
/* Local definition of clock type */
#define PLL_CLOCK 1 /* PLL Clock */
#define NON_PLL_CLOCK 2 /* Divider clock */
static int chipcHw_divide(int num, int denom)
__attribute__ ((section(".aramtext")));
/****************************************************************************/
/**
* @brief Set clock fequency for miscellaneous configurable clocks
*
* This function sets clock frequency
*
* @return Configured clock frequency in hertz
*
*/
/****************************************************************************/
chipcHw_freq chipcHw_getClockFrequency(chipcHw_CLOCK_e clock /* [ IN ] Configurable clock */
) {
volatile uint32_t *pPLLReg = (uint32_t *) 0x0;
volatile uint32_t *pClockCtrl = (uint32_t *) 0x0;
volatile uint32_t *pDependentClock = (uint32_t *) 0x0;
uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
uint32_t dependentClockType = 0;
uint32_t vcoHz = 0;
/* Get VCO frequencies */
if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
uint64_t adjustFreq = 0;
vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
/* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz *
(uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC));
vcoFreqPll1Hz += (uint32_t) adjustFreq;
} else {
vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
}
vcoFreqPll2Hz =
chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
switch (clock) {
case chipcHw_CLOCK_DDR:
pPLLReg = &pChipcHw->DDRClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ARM:
pPLLReg = &pChipcHw->ARMClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ESW:
pPLLReg = &pChipcHw->ESWClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_VPM:
pPLLReg = &pChipcHw->VPMClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ESW125:
pPLLReg = &pChipcHw->ESW125Clock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_UART:
pPLLReg = &pChipcHw->UARTClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_SDIO0:
pPLLReg = &pChipcHw->SDIO0Clock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_SDIO1:
pPLLReg = &pChipcHw->SDIO1Clock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_SPI:
pPLLReg = &pChipcHw->SPIClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ETM:
pPLLReg = &pChipcHw->ETMClock;
vcoHz = vcoFreqPll1Hz;
break;
case chipcHw_CLOCK_USB:
pPLLReg = &pChipcHw->USBClock;
vcoHz = vcoFreqPll2Hz;
break;
case chipcHw_CLOCK_LCD:
pPLLReg = &pChipcHw->LCDClock;
vcoHz = vcoFreqPll2Hz;
break;
case chipcHw_CLOCK_APM:
pPLLReg = &pChipcHw->APMClock;
vcoHz = vcoFreqPll2Hz;
break;
case chipcHw_CLOCK_BUS:
pClockCtrl = &pChipcHw->ACLKClock;
pDependentClock = &pChipcHw->ARMClock;
vcoHz = vcoFreqPll1Hz;
dependentClockType = PLL_CLOCK;
break;
case chipcHw_CLOCK_OTP:
pClockCtrl = &pChipcHw->OTPClock;
break;
case chipcHw_CLOCK_I2C:
pClockCtrl = &pChipcHw->I2CClock;
break;
case chipcHw_CLOCK_I2S0:
pClockCtrl = &pChipcHw->I2S0Clock;
break;
case chipcHw_CLOCK_RTBUS:
pClockCtrl = &pChipcHw->RTBUSClock;
pDependentClock = &pChipcHw->ACLKClock;
dependentClockType = NON_PLL_CLOCK;
break;
case chipcHw_CLOCK_APM100:
pClockCtrl = &pChipcHw->APM100Clock;
pDependentClock = &pChipcHw->APMClock;
vcoHz = vcoFreqPll2Hz;
dependentClockType = PLL_CLOCK;
break;
case chipcHw_CLOCK_TSC:
pClockCtrl = &pChipcHw->TSCClock;
break;
case chipcHw_CLOCK_LED:
pClockCtrl = &pChipcHw->LEDClock;
break;
case chipcHw_CLOCK_I2S1:
pClockCtrl = &pChipcHw->I2S1Clock;
break;
}
if (pPLLReg) {
/* Obtain PLL clock frequency */
if (*pPLLReg & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
/* Return crystal clock frequency when bypassed */
return chipcHw_XTAL_FREQ_Hz;
} else if (clock == chipcHw_CLOCK_DDR) {
/* DDR frequency is configured in PLLDivider register */
return chipcHw_divide (vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256));
} else {
/* From chip revision number B0, LCD clock is internally divided by 2 */
if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
vcoHz >>= 1;
}
/* Obtain PLL clock frequency using VCO dividers */
return chipcHw_divide(vcoHz, ((*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*pPLLReg & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
}
} else if (pClockCtrl) {
/* Obtain divider clock frequency */
uint32_t div;
uint32_t freq = 0;
if (*pClockCtrl & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
/* Return crystal clock frequency when bypassed */
return chipcHw_XTAL_FREQ_Hz;
} else if (pDependentClock) {
/* Identify the dependent clock frequency */
switch (dependentClockType) {
case PLL_CLOCK:
if (*pDependentClock & chipcHw_REG_PLL_CLOCK_BYPASS_SELECT) {
/* Use crystal clock frequency when dependent PLL clock is bypassed */
freq = chipcHw_XTAL_FREQ_Hz;
} else {
/* Obtain PLL clock frequency using VCO dividers */
div = *pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK;
freq = div ? chipcHw_divide(vcoHz, div) : 0;
}
break;
case NON_PLL_CLOCK:
if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) {
freq = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
} else {
if (*pDependentClock & chipcHw_REG_DIV_CLOCK_BYPASS_SELECT) {
/* Use crystal clock frequency when dependent divider clock is bypassed */
freq = chipcHw_XTAL_FREQ_Hz;
} else {
/* Obtain divider clock frequency using XTAL dividers */
div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK;
freq = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, (div ? div : 256));
}
}
break;
}
} else {
/* Dependent on crystal clock */
freq = chipcHw_XTAL_FREQ_Hz;
}
div = *pClockCtrl & chipcHw_REG_DIV_CLOCK_DIV_MASK;
return chipcHw_divide(freq, (div ? div : 256));
}
return 0;
}
/****************************************************************************/
/**
* @brief Set clock fequency for miscellaneous configurable clocks
*
* This function sets clock frequency
*
* @return Configured clock frequency in Hz
*
*/
/****************************************************************************/
chipcHw_freq chipcHw_setClockFrequency(chipcHw_CLOCK_e clock, /* [ IN ] Configurable clock */
uint32_t freq /* [ IN ] Clock frequency in Hz */
) {
volatile uint32_t *pPLLReg = (uint32_t *) 0x0;
volatile uint32_t *pClockCtrl = (uint32_t *) 0x0;
volatile uint32_t *pDependentClock = (uint32_t *) 0x0;
uint32_t vcoFreqPll1Hz = 0; /* Effective VCO frequency for PLL1 in Hz */
uint32_t desVcoFreqPll1Hz = 0; /* Desired VCO frequency for PLL1 in Hz */
uint32_t vcoFreqPll2Hz = 0; /* Effective VCO frequency for PLL2 in Hz */
uint32_t dependentClockType = 0;
uint32_t vcoHz = 0;
uint32_t desVcoHz = 0;
/* Get VCO frequencies */
if ((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_MASK) != chipcHw_REG_PLL_PREDIVIDER_NDIV_MODE_INTEGER) {
uint64_t adjustFreq = 0;
vcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
/* Adjusted frequency due to chipcHw_REG_PLL_DIVIDER_NDIV_f_SS */
adjustFreq = (uint64_t) chipcHw_XTAL_FREQ_Hz *
(uint64_t) chipcHw_REG_PLL_DIVIDER_NDIV_f_SS *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, (chipcHw_REG_PLL_PREDIVIDER_P2 * (uint64_t) chipcHw_REG_PLL_DIVIDER_FRAC));
vcoFreqPll1Hz += (uint32_t) adjustFreq;
/* Desired VCO frequency */
desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
(((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT) + 1);
} else {
vcoFreqPll1Hz = desVcoFreqPll1Hz = chipcHw_XTAL_FREQ_Hz *
chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
}
vcoFreqPll2Hz = chipcHw_XTAL_FREQ_Hz * chipcHw_divide(chipcHw_REG_PLL_PREDIVIDER_P1, chipcHw_REG_PLL_PREDIVIDER_P2) *
((pChipcHw->PLLPreDivider2 & chipcHw_REG_PLL_PREDIVIDER_NDIV_MASK) >>
chipcHw_REG_PLL_PREDIVIDER_NDIV_SHIFT);
switch (clock) {
case chipcHw_CLOCK_DDR:
/* Configure the DDR_ctrl:BUS ratio settings */
{
REG_LOCAL_IRQ_SAVE;
/* Dvide DDR_phy by two to obtain DDR_ctrl clock */
pChipcHw->DDRClock = (pChipcHw->DDRClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((((freq / 2) / chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1)
<< chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT);
REG_LOCAL_IRQ_RESTORE;
}
pPLLReg = &pChipcHw->DDRClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ARM:
pPLLReg = &pChipcHw->ARMClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ESW:
pPLLReg = &pChipcHw->ESWClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_VPM:
/* Configure the VPM:BUS ratio settings */
{
REG_LOCAL_IRQ_SAVE;
pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_MASK) | ((chipcHw_divide (freq, chipcHw_getClockFrequency(chipcHw_CLOCK_BUS)) - 1)
<< chipcHw_REG_PLL_CLOCK_TO_BUS_RATIO_SHIFT);
REG_LOCAL_IRQ_RESTORE;
}
pPLLReg = &pChipcHw->VPMClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ESW125:
pPLLReg = &pChipcHw->ESW125Clock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_UART:
pPLLReg = &pChipcHw->UARTClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_SDIO0:
pPLLReg = &pChipcHw->SDIO0Clock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_SDIO1:
pPLLReg = &pChipcHw->SDIO1Clock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_SPI:
pPLLReg = &pChipcHw->SPIClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_ETM:
pPLLReg = &pChipcHw->ETMClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
break;
case chipcHw_CLOCK_USB:
pPLLReg = &pChipcHw->USBClock;
vcoHz = vcoFreqPll2Hz;
desVcoHz = vcoFreqPll2Hz;
break;
case chipcHw_CLOCK_LCD:
pPLLReg = &pChipcHw->LCDClock;
vcoHz = vcoFreqPll2Hz;
desVcoHz = vcoFreqPll2Hz;
break;
case chipcHw_CLOCK_APM:
pPLLReg = &pChipcHw->APMClock;
vcoHz = vcoFreqPll2Hz;
desVcoHz = vcoFreqPll2Hz;
break;
case chipcHw_CLOCK_BUS:
pClockCtrl = &pChipcHw->ACLKClock;
pDependentClock = &pChipcHw->ARMClock;
vcoHz = vcoFreqPll1Hz;
desVcoHz = desVcoFreqPll1Hz;
dependentClockType = PLL_CLOCK;
break;
case chipcHw_CLOCK_OTP:
pClockCtrl = &pChipcHw->OTPClock;
break;
case chipcHw_CLOCK_I2C:
pClockCtrl = &pChipcHw->I2CClock;
break;
case chipcHw_CLOCK_I2S0:
pClockCtrl = &pChipcHw->I2S0Clock;
break;
case chipcHw_CLOCK_RTBUS:
pClockCtrl = &pChipcHw->RTBUSClock;
pDependentClock = &pChipcHw->ACLKClock;
dependentClockType = NON_PLL_CLOCK;
break;
case chipcHw_CLOCK_APM100:
pClockCtrl = &pChipcHw->APM100Clock;
pDependentClock = &pChipcHw->APMClock;
vcoHz = vcoFreqPll2Hz;
desVcoHz = vcoFreqPll2Hz;
dependentClockType = PLL_CLOCK;
break;
case chipcHw_CLOCK_TSC:
pClockCtrl = &pChipcHw->TSCClock;
break;
case chipcHw_CLOCK_LED:
pClockCtrl = &pChipcHw->LEDClock;
break;
case chipcHw_CLOCK_I2S1:
pClockCtrl = &pChipcHw->I2S1Clock;
break;
}
if (pPLLReg) {
/* Select XTAL as bypass source */
reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_SOURCE_GPIO);
reg32_modify_or(pPLLReg, chipcHw_REG_PLL_CLOCK_BYPASS_SELECT);
/* For DDR settings use only the PLL divider clock */
if (pPLLReg == &pChipcHw->DDRClock) {
/* Set M1DIV for PLL1, which controls the DDR clock */
reg32_write(&pChipcHw->PLLDivider, (pChipcHw->PLLDivider & 0x00FFFFFF) | ((chipcHw_REG_PLL_DIVIDER_MDIV (desVcoHz, freq)) << 24));
/* Calculate expected frequency */
freq = chipcHw_divide(vcoHz, (((pChipcHw->PLLDivider & 0xFF000000) >> 24) ? ((pChipcHw->PLLDivider & 0xFF000000) >> 24) : 256));
} else {
/* From chip revision number B0, LCD clock is internally divided by 2 */
if ((pPLLReg == &pChipcHw->LCDClock) && (chipcHw_getChipRevisionNumber() != chipcHw_REV_NUMBER_A0)) {
desVcoHz >>= 1;
vcoHz >>= 1;
}
/* Set MDIV to change the frequency */
reg32_modify_and(pPLLReg, ~(chipcHw_REG_PLL_CLOCK_MDIV_MASK));
reg32_modify_or(pPLLReg, chipcHw_REG_PLL_DIVIDER_MDIV(desVcoHz, freq));
/* Calculate expected frequency */
freq = chipcHw_divide(vcoHz, ((*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) ? (*(pPLLReg) & chipcHw_REG_PLL_CLOCK_MDIV_MASK) : 256));
}
/* Wait for for atleast 200ns as per the protocol to change frequency */
udelay(1);
/* Do not bypass */
reg32_modify_and(pPLLReg, ~chipcHw_REG_PLL_CLOCK_BYPASS_SELECT);
/* Return the configured frequency */
return freq;
} else if (pClockCtrl) {
uint32_t divider = 0;
/* Divider clock should not be bypassed */
reg32_modify_and(pClockCtrl,
~chipcHw_REG_DIV_CLOCK_BYPASS_SELECT);
/* Identify the clock source */
if (pDependentClock) {
switch (dependentClockType) {
case PLL_CLOCK:
divider = chipcHw_divide(chipcHw_divide (desVcoHz, (*pDependentClock & chipcHw_REG_PLL_CLOCK_MDIV_MASK)), freq);
break;
case NON_PLL_CLOCK:
{
uint32_t sourceClock = 0;
if (pDependentClock == (uint32_t *) &pChipcHw->ACLKClock) {
sourceClock = chipcHw_getClockFrequency (chipcHw_CLOCK_BUS);
} else {
uint32_t div = *pDependentClock & chipcHw_REG_DIV_CLOCK_DIV_MASK;
sourceClock = chipcHw_divide (chipcHw_XTAL_FREQ_Hz, ((div) ? div : 256));
}
divider = chipcHw_divide(sourceClock, freq);
}
break;
}
} else {
divider = chipcHw_divide(chipcHw_XTAL_FREQ_Hz, freq);
}
if (divider) {
REG_LOCAL_IRQ_SAVE;
/* Set the divider to obtain the required frequency */
*pClockCtrl = (*pClockCtrl & (~chipcHw_REG_DIV_CLOCK_DIV_MASK)) | (((divider > 256) ? chipcHw_REG_DIV_CLOCK_DIV_256 : divider) & chipcHw_REG_DIV_CLOCK_DIV_MASK);
REG_LOCAL_IRQ_RESTORE;
return freq;
}
}
return 0;
}
EXPORT_SYMBOL(chipcHw_setClockFrequency);
/****************************************************************************/
/**
* @brief Set VPM clock in sync with BUS clock for Chip Rev #A0
*
* This function does the phase adjustment between VPM and BUS clock
*
* @return >= 0 : On success (# of adjustment required)
* -1 : On failure
*
*/
/****************************************************************************/
static int vpmPhaseAlignA0(void)
{
uint32_t phaseControl;
uint32_t phaseValue;
uint32_t prevPhaseComp;
int iter = 0;
int adjustCount = 0;
int count = 0;
for (iter = 0; (iter < MAX_PHASE_ALIGN_ATTEMPTS) && (adjustCount < MAX_PHASE_ADJUST_COUNT); iter++) {
phaseControl = (pChipcHw->VPMClock & chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT;
phaseValue = 0;
prevPhaseComp = 0;
/* Step 1: Look for falling PH_COMP transition */
/* Read the contents of VPM Clock resgister */
phaseValue = pChipcHw->VPMClock;
do {
/* Store previous value of phase comparator */
prevPhaseComp = phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP;
/* Change the value of PH_CTRL. */
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */
udelay(1);
/* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
/* Read the contents of VPM Clock resgister. */
phaseValue = pChipcHw->VPMClock;
if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
phaseControl = (0x3F & (phaseControl - 1));
} else {
/* Increment to the Phase count value for next write, if Phase is not stable. */
phaseControl = (0x3F & (phaseControl + 1));
}
/* Count number of adjustment made */
adjustCount++;
} while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || /* Look for a transition */
((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && /* Look for a falling edge */
(adjustCount < MAX_PHASE_ADJUST_COUNT) /* Do not exceed the limit while trying */
);
if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
return -1;
}
/* Step 2: Keep moving forward to make sure falling PH_COMP transition was valid */
for (count = 0; (count < 5) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
phaseControl = (0x3F & (phaseControl + 1));
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */
udelay(1);
/* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
phaseValue = pChipcHw->VPMClock;
/* Count number of adjustment made */
adjustCount++;
}
if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
return -1;
}
if (count != 5) {
/* Detected false transition */
continue;
}
/* Step 3: Keep moving backward to make sure falling PH_COMP transition was stable */
for (count = 0; (count < 3) && ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0); count++) {
phaseControl = (0x3F & (phaseControl - 1));
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */
udelay(1);
/* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
phaseValue = pChipcHw->VPMClock;
/* Count number of adjustment made */
adjustCount++;
}
if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
return -1;
}
if (count != 3) {
/* Detected noisy transition */
continue;
}
/* Step 4: Keep moving backward before the original transition took place. */
for (count = 0; (count < 5); count++) {
phaseControl = (0x3F & (phaseControl - 1));
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */
udelay(1);
/* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
phaseValue = pChipcHw->VPMClock;
/* Count number of adjustment made */
adjustCount++;
}
if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
return -1;
}
if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0) {
/* Detected false transition */
continue;
}
/* Step 5: Re discover the valid transition */
do {
/* Store previous value of phase comparator */
prevPhaseComp = phaseValue;
/* Change the value of PH_CTRL. */
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */
udelay(1);
/* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^=
chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
/* Read the contents of VPM Clock resgister. */
phaseValue = pChipcHw->VPMClock;
if ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) == 0x0) {
phaseControl = (0x3F & (phaseControl - 1));
} else {
/* Increment to the Phase count value for next write, if Phase is not stable. */
phaseControl = (0x3F & (phaseControl + 1));
}
/* Count number of adjustment made */
adjustCount++;
} while (((prevPhaseComp == (phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP)) || ((phaseValue & chipcHw_REG_PLL_CLOCK_PHASE_COMP) != 0x0)) && (adjustCount < MAX_PHASE_ADJUST_COUNT));
if (adjustCount >= MAX_PHASE_ADJUST_COUNT) {
/* Failed to align VPM phase after MAX_PHASE_ADJUST_COUNT tries */
return -1;
} else {
/* Valid phase must have detected */
break;
}
}
/* For VPM Phase should be perfectly aligned. */
phaseControl = (((pChipcHw->VPMClock >> chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT) - 1) & 0x3F);
{
REG_LOCAL_IRQ_SAVE;
pChipcHw->VPMClock = (pChipcHw->VPMClock & ~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT);
/* Load new phase value */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
REG_LOCAL_IRQ_RESTORE;
}
/* Return the status */
return (int)adjustCount;
}
/****************************************************************************/
/**
* @brief Set VPM clock in sync with BUS clock
*
* This function does the phase adjustment between VPM and BUS clock
*
* @return >= 0 : On success (# of adjustment required)
* -1 : On failure
*
*/
/****************************************************************************/
int chipcHw_vpmPhaseAlign(void)
{
if (chipcHw_getChipRevisionNumber() == chipcHw_REV_NUMBER_A0) {
return vpmPhaseAlignA0();
} else {
uint32_t phaseControl = chipcHw_getVpmPhaseControl();
uint32_t phaseValue = 0;
int adjustCount = 0;
/* Disable VPM access */
pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE;
/* Disable HW VPM phase alignment */
chipcHw_vpmHwPhaseAlignDisable();
/* Enable SW VPM phase alignment */
chipcHw_vpmSwPhaseAlignEnable();
/* Adjust VPM phase */
while (adjustCount < MAX_PHASE_ADJUST_COUNT) {
phaseValue = chipcHw_getVpmHwPhaseAlignStatus();
/* Adjust phase control value */
if (phaseValue > 0xF) {
/* Increment phase control value */
phaseControl++;
} else if (phaseValue < 0xF) {
/* Decrement phase control value */
phaseControl--;
} else {
/* Enable VPM access */
pChipcHw->Spare1 |= chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE;
/* Return adjust count */
return adjustCount;
}
/* Change the value of PH_CTRL. */
reg32_write(&pChipcHw->VPMClock, (pChipcHw->VPMClock & (~chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_MASK)) | (phaseControl << chipcHw_REG_PLL_CLOCK_PHASE_CONTROL_SHIFT));
/* Wait atleast 20 ns */
udelay(1);
/* Toggle the LOAD_CH after phase control is written. */
pChipcHw->VPMClock ^= chipcHw_REG_PLL_CLOCK_PHASE_UPDATE_ENABLE;
/* Count adjustment */
adjustCount++;
}
}
/* Disable VPM access */
pChipcHw->Spare1 &= ~chipcHw_REG_SPARE1_VPM_BUS_ACCESS_ENABLE;
return -1;
}
/****************************************************************************/
/**
* @brief Local Divide function
*
* This function does the divide
*
* @return divide value
*
*/
/****************************************************************************/
static int chipcHw_divide(int num, int denom)
{
int r;
int t = 1;
/* Shift denom and t up to the largest value to optimize algorithm */
/* t contains the units of each divide */
while ((denom & 0x40000000) == 0) { /* fails if denom=0 */
denom = denom << 1;
t = t << 1;
}
/* Intialize the result */
r = 0;
do {
/* Determine if there exists a positive remainder */
if ((num - denom) >= 0) {
/* Accumlate t to the result and calculate a new remainder */
num = num - denom;
r = r + t;
}
/* Continue to shift denom and shift t down to 0 */
denom = denom >> 1;
t = t >> 1;
} while (t != 0);
return r;
}