1057 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1057 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* ZD1211 USB-WLAN driver for Linux
 | |
|  *
 | |
|  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
 | |
|  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
 | |
|  * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
 | |
|  * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 | |
|  */
 | |
| 
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/usb.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <net/ieee80211_radiotap.h>
 | |
| 
 | |
| #include "zd_def.h"
 | |
| #include "zd_chip.h"
 | |
| #include "zd_mac.h"
 | |
| #include "zd_rf.h"
 | |
| 
 | |
| struct zd_reg_alpha2_map {
 | |
| 	u32 reg;
 | |
| 	char alpha2[2];
 | |
| };
 | |
| 
 | |
| static struct zd_reg_alpha2_map reg_alpha2_map[] = {
 | |
| 	{ ZD_REGDOMAIN_FCC, "US" },
 | |
| 	{ ZD_REGDOMAIN_IC, "CA" },
 | |
| 	{ ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
 | |
| 	{ ZD_REGDOMAIN_JAPAN, "JP" },
 | |
| 	{ ZD_REGDOMAIN_JAPAN_ADD, "JP" },
 | |
| 	{ ZD_REGDOMAIN_SPAIN, "ES" },
 | |
| 	{ ZD_REGDOMAIN_FRANCE, "FR" },
 | |
| };
 | |
| 
 | |
| /* This table contains the hardware specific values for the modulation rates. */
 | |
| static const struct ieee80211_rate zd_rates[] = {
 | |
| 	{ .bitrate = 10,
 | |
| 	  .hw_value = ZD_CCK_RATE_1M, },
 | |
| 	{ .bitrate = 20,
 | |
| 	  .hw_value = ZD_CCK_RATE_2M,
 | |
| 	  .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
 | |
| 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 | |
| 	{ .bitrate = 55,
 | |
| 	  .hw_value = ZD_CCK_RATE_5_5M,
 | |
| 	  .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
 | |
| 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 | |
| 	{ .bitrate = 110,
 | |
| 	  .hw_value = ZD_CCK_RATE_11M,
 | |
| 	  .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
 | |
| 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE },
 | |
| 	{ .bitrate = 60,
 | |
| 	  .hw_value = ZD_OFDM_RATE_6M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 90,
 | |
| 	  .hw_value = ZD_OFDM_RATE_9M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 120,
 | |
| 	  .hw_value = ZD_OFDM_RATE_12M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 180,
 | |
| 	  .hw_value = ZD_OFDM_RATE_18M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 240,
 | |
| 	  .hw_value = ZD_OFDM_RATE_24M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 360,
 | |
| 	  .hw_value = ZD_OFDM_RATE_36M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 480,
 | |
| 	  .hw_value = ZD_OFDM_RATE_48M,
 | |
| 	  .flags = 0 },
 | |
| 	{ .bitrate = 540,
 | |
| 	  .hw_value = ZD_OFDM_RATE_54M,
 | |
| 	  .flags = 0 },
 | |
| };
 | |
| 
 | |
| static const struct ieee80211_channel zd_channels[] = {
 | |
| 	{ .center_freq = 2412, .hw_value = 1 },
 | |
| 	{ .center_freq = 2417, .hw_value = 2 },
 | |
| 	{ .center_freq = 2422, .hw_value = 3 },
 | |
| 	{ .center_freq = 2427, .hw_value = 4 },
 | |
| 	{ .center_freq = 2432, .hw_value = 5 },
 | |
| 	{ .center_freq = 2437, .hw_value = 6 },
 | |
| 	{ .center_freq = 2442, .hw_value = 7 },
 | |
| 	{ .center_freq = 2447, .hw_value = 8 },
 | |
| 	{ .center_freq = 2452, .hw_value = 9 },
 | |
| 	{ .center_freq = 2457, .hw_value = 10 },
 | |
| 	{ .center_freq = 2462, .hw_value = 11 },
 | |
| 	{ .center_freq = 2467, .hw_value = 12 },
 | |
| 	{ .center_freq = 2472, .hw_value = 13 },
 | |
| 	{ .center_freq = 2484, .hw_value = 14 },
 | |
| };
 | |
| 
 | |
| static void housekeeping_init(struct zd_mac *mac);
 | |
| static void housekeeping_enable(struct zd_mac *mac);
 | |
| static void housekeeping_disable(struct zd_mac *mac);
 | |
| 
 | |
| static int zd_reg2alpha2(u8 regdomain, char *alpha2)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct zd_reg_alpha2_map *reg_map;
 | |
| 	for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
 | |
| 		reg_map = ®_alpha2_map[i];
 | |
| 		if (regdomain == reg_map->reg) {
 | |
| 			alpha2[0] = reg_map->alpha2[0];
 | |
| 			alpha2[1] = reg_map->alpha2[1];
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int zd_mac_preinit_hw(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	int r;
 | |
| 	u8 addr[ETH_ALEN];
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 
 | |
| 	r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	SET_IEEE80211_PERM_ADDR(hw, addr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int zd_mac_init_hw(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	int r;
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct zd_chip *chip = &mac->chip;
 | |
| 	char alpha2[2];
 | |
| 	u8 default_regdomain;
 | |
| 
 | |
| 	r = zd_chip_enable_int(chip);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = zd_chip_init_hw(chip);
 | |
| 	if (r)
 | |
| 		goto disable_int;
 | |
| 
 | |
| 	ZD_ASSERT(!irqs_disabled());
 | |
| 
 | |
| 	r = zd_read_regdomain(chip, &default_regdomain);
 | |
| 	if (r)
 | |
| 		goto disable_int;
 | |
| 	spin_lock_irq(&mac->lock);
 | |
| 	mac->regdomain = mac->default_regdomain = default_regdomain;
 | |
| 	spin_unlock_irq(&mac->lock);
 | |
| 
 | |
| 	/* We must inform the device that we are doing encryption/decryption in
 | |
| 	 * software at the moment. */
 | |
| 	r = zd_set_encryption_type(chip, ENC_SNIFFER);
 | |
| 	if (r)
 | |
| 		goto disable_int;
 | |
| 
 | |
| 	r = zd_reg2alpha2(mac->regdomain, alpha2);
 | |
| 	if (r)
 | |
| 		goto disable_int;
 | |
| 
 | |
| 	r = regulatory_hint(hw->wiphy, alpha2);
 | |
| disable_int:
 | |
| 	zd_chip_disable_int(chip);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void zd_mac_clear(struct zd_mac *mac)
 | |
| {
 | |
| 	flush_workqueue(zd_workqueue);
 | |
| 	zd_chip_clear(&mac->chip);
 | |
| 	ZD_ASSERT(!spin_is_locked(&mac->lock));
 | |
| 	ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
 | |
| }
 | |
| 
 | |
| static int set_rx_filter(struct zd_mac *mac)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	u32 filter = STA_RX_FILTER;
 | |
| 
 | |
| 	spin_lock_irqsave(&mac->lock, flags);
 | |
| 	if (mac->pass_ctrl)
 | |
| 		filter |= RX_FILTER_CTRL;
 | |
| 	spin_unlock_irqrestore(&mac->lock, flags);
 | |
| 
 | |
| 	return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
 | |
| }
 | |
| 
 | |
| static int set_mc_hash(struct zd_mac *mac)
 | |
| {
 | |
| 	struct zd_mc_hash hash;
 | |
| 	zd_mc_clear(&hash);
 | |
| 	return zd_chip_set_multicast_hash(&mac->chip, &hash);
 | |
| }
 | |
| 
 | |
| static int zd_op_start(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct zd_chip *chip = &mac->chip;
 | |
| 	struct zd_usb *usb = &chip->usb;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!usb->initialized) {
 | |
| 		r = zd_usb_init_hw(usb);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = zd_chip_enable_int(chip);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
 | |
| 	if (r < 0)
 | |
| 		goto disable_int;
 | |
| 	r = set_rx_filter(mac);
 | |
| 	if (r)
 | |
| 		goto disable_int;
 | |
| 	r = set_mc_hash(mac);
 | |
| 	if (r)
 | |
| 		goto disable_int;
 | |
| 	r = zd_chip_switch_radio_on(chip);
 | |
| 	if (r < 0)
 | |
| 		goto disable_int;
 | |
| 	r = zd_chip_enable_rxtx(chip);
 | |
| 	if (r < 0)
 | |
| 		goto disable_radio;
 | |
| 	r = zd_chip_enable_hwint(chip);
 | |
| 	if (r < 0)
 | |
| 		goto disable_rxtx;
 | |
| 
 | |
| 	housekeeping_enable(mac);
 | |
| 	return 0;
 | |
| disable_rxtx:
 | |
| 	zd_chip_disable_rxtx(chip);
 | |
| disable_radio:
 | |
| 	zd_chip_switch_radio_off(chip);
 | |
| disable_int:
 | |
| 	zd_chip_disable_int(chip);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void zd_op_stop(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct zd_chip *chip = &mac->chip;
 | |
| 	struct sk_buff *skb;
 | |
| 	struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
 | |
| 
 | |
| 	/* The order here deliberately is a little different from the open()
 | |
| 	 * method, since we need to make sure there is no opportunity for RX
 | |
| 	 * frames to be processed by mac80211 after we have stopped it.
 | |
| 	 */
 | |
| 
 | |
| 	zd_chip_disable_rxtx(chip);
 | |
| 	housekeeping_disable(mac);
 | |
| 	flush_workqueue(zd_workqueue);
 | |
| 
 | |
| 	zd_chip_disable_hwint(chip);
 | |
| 	zd_chip_switch_radio_off(chip);
 | |
| 	zd_chip_disable_int(chip);
 | |
| 
 | |
| 
 | |
| 	while ((skb = skb_dequeue(ack_wait_queue)))
 | |
| 		dev_kfree_skb_any(skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tx_status - reports tx status of a packet if required
 | |
|  * @hw - a &struct ieee80211_hw pointer
 | |
|  * @skb - a sk-buffer
 | |
|  * @flags: extra flags to set in the TX status info
 | |
|  * @ackssi: ACK signal strength
 | |
|  * @success - True for successful transmission of the frame
 | |
|  *
 | |
|  * This information calls ieee80211_tx_status_irqsafe() if required by the
 | |
|  * control information. It copies the control information into the status
 | |
|  * information.
 | |
|  *
 | |
|  * If no status information has been requested, the skb is freed.
 | |
|  */
 | |
| static void tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
 | |
| 		      int ackssi, bool success)
 | |
| {
 | |
| 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 | |
| 
 | |
| 	ieee80211_tx_info_clear_status(info);
 | |
| 
 | |
| 	if (success)
 | |
| 		info->flags |= IEEE80211_TX_STAT_ACK;
 | |
| 	info->status.ack_signal = ackssi;
 | |
| 	ieee80211_tx_status_irqsafe(hw, skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * zd_mac_tx_failed - callback for failed frames
 | |
|  * @dev: the mac80211 wireless device
 | |
|  *
 | |
|  * This function is called if a frame couldn't be succesfully be
 | |
|  * transferred. The first frame from the tx queue, will be selected and
 | |
|  * reported as error to the upper layers.
 | |
|  */
 | |
| void zd_mac_tx_failed(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	struct sk_buff_head *q = &zd_hw_mac(hw)->ack_wait_queue;
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	skb = skb_dequeue(q);
 | |
| 	if (skb == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	tx_status(hw, skb, 0, 0);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * zd_mac_tx_to_dev - callback for USB layer
 | |
|  * @skb: a &sk_buff pointer
 | |
|  * @error: error value, 0 if transmission successful
 | |
|  *
 | |
|  * Informs the MAC layer that the frame has successfully transferred to the
 | |
|  * device. If an ACK is required and the transfer to the device has been
 | |
|  * successful, the packets are put on the @ack_wait_queue with
 | |
|  * the control set removed.
 | |
|  */
 | |
| void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
 | |
| {
 | |
| 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 | |
| 	struct ieee80211_hw *hw = info->rate_driver_data[0];
 | |
| 
 | |
| 	skb_pull(skb, sizeof(struct zd_ctrlset));
 | |
| 	if (unlikely(error ||
 | |
| 	    (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
 | |
| 		tx_status(hw, skb, 0, !error);
 | |
| 	} else {
 | |
| 		struct sk_buff_head *q =
 | |
| 			&zd_hw_mac(hw)->ack_wait_queue;
 | |
| 
 | |
| 		skb_queue_tail(q, skb);
 | |
| 		while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS)
 | |
| 			zd_mac_tx_failed(hw);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
 | |
| {
 | |
| 	/* ZD_PURE_RATE() must be used to remove the modulation type flag of
 | |
| 	 * the zd-rate values.
 | |
| 	 */
 | |
| 	static const u8 rate_divisor[] = {
 | |
| 		[ZD_PURE_RATE(ZD_CCK_RATE_1M)]   =  1,
 | |
| 		[ZD_PURE_RATE(ZD_CCK_RATE_2M)]	 =  2,
 | |
| 		/* Bits must be doubled. */
 | |
| 		[ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
 | |
| 		[ZD_PURE_RATE(ZD_CCK_RATE_11M)]	 = 11,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_6M)]  =  6,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_9M)]  =  9,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
 | |
| 		[ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
 | |
| 	};
 | |
| 
 | |
| 	u32 bits = (u32)tx_length * 8;
 | |
| 	u32 divisor;
 | |
| 
 | |
| 	divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
 | |
| 	if (divisor == 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	switch (zd_rate) {
 | |
| 	case ZD_CCK_RATE_5_5M:
 | |
| 		bits = (2*bits) + 10; /* round up to the next integer */
 | |
| 		break;
 | |
| 	case ZD_CCK_RATE_11M:
 | |
| 		if (service) {
 | |
| 			u32 t = bits % 11;
 | |
| 			*service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 | |
| 			if (0 < t && t <= 3) {
 | |
| 				*service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
 | |
| 			}
 | |
| 		}
 | |
| 		bits += 10; /* round up to the next integer */
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return bits/divisor;
 | |
| }
 | |
| 
 | |
| static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
 | |
| 	                   struct ieee80211_hdr *header,
 | |
| 	                   struct ieee80211_tx_info *info)
 | |
| {
 | |
| 	/*
 | |
| 	 * CONTROL TODO:
 | |
| 	 * - if backoff needed, enable bit 0
 | |
| 	 * - if burst (backoff not needed) disable bit 0
 | |
| 	 */
 | |
| 
 | |
| 	cs->control = 0;
 | |
| 
 | |
| 	/* First fragment */
 | |
| 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
 | |
| 		cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
 | |
| 
 | |
| 	/* No ACK expected (multicast, etc.) */
 | |
| 	if (info->flags & IEEE80211_TX_CTL_NO_ACK)
 | |
| 		cs->control |= ZD_CS_NO_ACK;
 | |
| 
 | |
| 	/* PS-POLL */
 | |
| 	if (ieee80211_is_pspoll(header->frame_control))
 | |
| 		cs->control |= ZD_CS_PS_POLL_FRAME;
 | |
| 
 | |
| 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
 | |
| 		cs->control |= ZD_CS_RTS;
 | |
| 
 | |
| 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
 | |
| 		cs->control |= ZD_CS_SELF_CTS;
 | |
| 
 | |
| 	/* FIXME: Management frame? */
 | |
| }
 | |
| 
 | |
| static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	int r;
 | |
| 	u32 tmp, j = 0;
 | |
| 	/* 4 more bytes for tail CRC */
 | |
| 	u32 full_len = beacon->len + 4;
 | |
| 
 | |
| 	r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 	r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	while (tmp & 0x2) {
 | |
| 		r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 		if ((++j % 100) == 0) {
 | |
| 			printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
 | |
| 			if (j >= 500)  {
 | |
| 				printk(KERN_ERR "Giving up beacon config.\n");
 | |
| 				return -ETIMEDOUT;
 | |
| 			}
 | |
| 		}
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 	if (zd_chip_is_zd1211b(&mac->chip)) {
 | |
| 		r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0 ; j < beacon->len; j++) {
 | |
| 		r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
 | |
| 				*((u8 *)(beacon->data + j)));
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	for (j = 0; j < 4; j++) {
 | |
| 		r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
 | |
| 		if (r < 0)
 | |
| 			return r;
 | |
| 	}
 | |
| 
 | |
| 	r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 
 | |
| 	/* 802.11b/g 2.4G CCK 1Mb
 | |
| 	 * 802.11a, not yet implemented, uses different values (see GPL vendor
 | |
| 	 * driver)
 | |
| 	 */
 | |
| 	return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
 | |
| 			(full_len << 19));
 | |
| }
 | |
| 
 | |
| static int fill_ctrlset(struct zd_mac *mac,
 | |
| 			struct sk_buff *skb)
 | |
| {
 | |
| 	int r;
 | |
| 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 | |
| 	unsigned int frag_len = skb->len + FCS_LEN;
 | |
| 	unsigned int packet_length;
 | |
| 	struct ieee80211_rate *txrate;
 | |
| 	struct zd_ctrlset *cs = (struct zd_ctrlset *)
 | |
| 		skb_push(skb, sizeof(struct zd_ctrlset));
 | |
| 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 | |
| 
 | |
| 	ZD_ASSERT(frag_len <= 0xffff);
 | |
| 
 | |
| 	txrate = ieee80211_get_tx_rate(mac->hw, info);
 | |
| 
 | |
| 	cs->modulation = txrate->hw_value;
 | |
| 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
 | |
| 		cs->modulation = txrate->hw_value_short;
 | |
| 
 | |
| 	cs->tx_length = cpu_to_le16(frag_len);
 | |
| 
 | |
| 	cs_set_control(mac, cs, hdr, info);
 | |
| 
 | |
| 	packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
 | |
| 	ZD_ASSERT(packet_length <= 0xffff);
 | |
| 	/* ZD1211B: Computing the length difference this way, gives us
 | |
| 	 * flexibility to compute the packet length.
 | |
| 	 */
 | |
| 	cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
 | |
| 			packet_length - frag_len : packet_length);
 | |
| 
 | |
| 	/*
 | |
| 	 * CURRENT LENGTH:
 | |
| 	 * - transmit frame length in microseconds
 | |
| 	 * - seems to be derived from frame length
 | |
| 	 * - see Cal_Us_Service() in zdinlinef.h
 | |
| 	 * - if macp->bTxBurstEnable is enabled, then multiply by 4
 | |
| 	 *  - bTxBurstEnable is never set in the vendor driver
 | |
| 	 *
 | |
| 	 * SERVICE:
 | |
| 	 * - "for PLCP configuration"
 | |
| 	 * - always 0 except in some situations at 802.11b 11M
 | |
| 	 * - see line 53 of zdinlinef.h
 | |
| 	 */
 | |
| 	cs->service = 0;
 | |
| 	r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
 | |
| 		                 le16_to_cpu(cs->tx_length));
 | |
| 	if (r < 0)
 | |
| 		return r;
 | |
| 	cs->current_length = cpu_to_le16(r);
 | |
| 	cs->next_frame_length = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * zd_op_tx - transmits a network frame to the device
 | |
|  *
 | |
|  * @dev: mac80211 hardware device
 | |
|  * @skb: socket buffer
 | |
|  * @control: the control structure
 | |
|  *
 | |
|  * This function transmit an IEEE 802.11 network frame to the device. The
 | |
|  * control block of the skbuff will be initialized. If necessary the incoming
 | |
|  * mac80211 queues will be stopped.
 | |
|  */
 | |
| static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
 | |
| 	int r;
 | |
| 
 | |
| 	r = fill_ctrlset(mac, skb);
 | |
| 	if (r)
 | |
| 		goto fail;
 | |
| 
 | |
| 	info->rate_driver_data[0] = hw;
 | |
| 
 | |
| 	r = zd_usb_tx(&mac->chip.usb, skb);
 | |
| 	if (r)
 | |
| 		goto fail;
 | |
| 	return 0;
 | |
| 
 | |
| fail:
 | |
| 	dev_kfree_skb(skb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * filter_ack - filters incoming packets for acknowledgements
 | |
|  * @dev: the mac80211 device
 | |
|  * @rx_hdr: received header
 | |
|  * @stats: the status for the received packet
 | |
|  *
 | |
|  * This functions looks for ACK packets and tries to match them with the
 | |
|  * frames in the tx queue. If a match is found the frame will be dequeued and
 | |
|  * the upper layers is informed about the successful transmission. If
 | |
|  * mac80211 queues have been stopped and the number of frames still to be
 | |
|  * transmitted is low the queues will be opened again.
 | |
|  *
 | |
|  * Returns 1 if the frame was an ACK, 0 if it was ignored.
 | |
|  */
 | |
| static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
 | |
| 		      struct ieee80211_rx_status *stats)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	struct sk_buff_head *q;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!ieee80211_is_ack(rx_hdr->frame_control))
 | |
| 		return 0;
 | |
| 
 | |
| 	q = &zd_hw_mac(hw)->ack_wait_queue;
 | |
| 	spin_lock_irqsave(&q->lock, flags);
 | |
| 	skb_queue_walk(q, skb) {
 | |
| 		struct ieee80211_hdr *tx_hdr;
 | |
| 
 | |
| 		tx_hdr = (struct ieee80211_hdr *)skb->data;
 | |
| 		if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
 | |
| 		{
 | |
| 			__skb_unlink(skb, q);
 | |
| 			tx_status(hw, skb, stats->signal, 1);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&q->lock, flags);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct ieee80211_rx_status stats;
 | |
| 	const struct rx_status *status;
 | |
| 	struct sk_buff *skb;
 | |
| 	int bad_frame = 0;
 | |
| 	__le16 fc;
 | |
| 	int need_padding;
 | |
| 	int i;
 | |
| 	u8 rate;
 | |
| 
 | |
| 	if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
 | |
| 	             FCS_LEN + sizeof(struct rx_status))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	memset(&stats, 0, sizeof(stats));
 | |
| 
 | |
| 	/* Note about pass_failed_fcs and pass_ctrl access below:
 | |
| 	 * mac locking intentionally omitted here, as this is the only unlocked
 | |
| 	 * reader and the only writer is configure_filter. Plus, if there were
 | |
| 	 * any races accessing these variables, it wouldn't really matter.
 | |
| 	 * If mac80211 ever provides a way for us to access filter flags
 | |
| 	 * from outside configure_filter, we could improve on this. Also, this
 | |
| 	 * situation may change once we implement some kind of DMA-into-skb
 | |
| 	 * RX path. */
 | |
| 
 | |
| 	/* Caller has to ensure that length >= sizeof(struct rx_status). */
 | |
| 	status = (struct rx_status *)
 | |
| 		(buffer + (length - sizeof(struct rx_status)));
 | |
| 	if (status->frame_status & ZD_RX_ERROR) {
 | |
| 		if (mac->pass_failed_fcs &&
 | |
| 				(status->frame_status & ZD_RX_CRC32_ERROR)) {
 | |
| 			stats.flag |= RX_FLAG_FAILED_FCS_CRC;
 | |
| 			bad_frame = 1;
 | |
| 		} else {
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
 | |
| 	stats.band = IEEE80211_BAND_2GHZ;
 | |
| 	stats.signal = status->signal_strength;
 | |
| 	stats.qual = zd_rx_qual_percent(buffer,
 | |
| 		                          length - sizeof(struct rx_status),
 | |
| 		                          status);
 | |
| 
 | |
| 	rate = zd_rx_rate(buffer, status);
 | |
| 
 | |
| 	/* todo: return index in the big switches in zd_rx_rate instead */
 | |
| 	for (i = 0; i < mac->band.n_bitrates; i++)
 | |
| 		if (rate == mac->band.bitrates[i].hw_value)
 | |
| 			stats.rate_idx = i;
 | |
| 
 | |
| 	length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
 | |
| 	buffer += ZD_PLCP_HEADER_SIZE;
 | |
| 
 | |
| 	/* Except for bad frames, filter each frame to see if it is an ACK, in
 | |
| 	 * which case our internal TX tracking is updated. Normally we then
 | |
| 	 * bail here as there's no need to pass ACKs on up to the stack, but
 | |
| 	 * there is also the case where the stack has requested us to pass
 | |
| 	 * control frames on up (pass_ctrl) which we must consider. */
 | |
| 	if (!bad_frame &&
 | |
| 			filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
 | |
| 			&& !mac->pass_ctrl)
 | |
| 		return 0;
 | |
| 
 | |
| 	fc = get_unaligned((__le16*)buffer);
 | |
| 	need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
 | |
| 
 | |
| 	skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
 | |
| 	if (skb == NULL)
 | |
| 		return -ENOMEM;
 | |
| 	if (need_padding) {
 | |
| 		/* Make sure the the payload data is 4 byte aligned. */
 | |
| 		skb_reserve(skb, 2);
 | |
| 	}
 | |
| 
 | |
| 	memcpy(skb_put(skb, length), buffer, length);
 | |
| 
 | |
| 	memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
 | |
| 	ieee80211_rx_irqsafe(hw, skb);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int zd_op_add_interface(struct ieee80211_hw *hw,
 | |
| 				struct ieee80211_if_init_conf *conf)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 
 | |
| 	/* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
 | |
| 	if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
 | |
| 		return -EOPNOTSUPP;
 | |
| 
 | |
| 	switch (conf->type) {
 | |
| 	case NL80211_IFTYPE_MONITOR:
 | |
| 	case NL80211_IFTYPE_MESH_POINT:
 | |
| 	case NL80211_IFTYPE_STATION:
 | |
| 	case NL80211_IFTYPE_ADHOC:
 | |
| 		mac->type = conf->type;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	return zd_write_mac_addr(&mac->chip, conf->mac_addr);
 | |
| }
 | |
| 
 | |
| static void zd_op_remove_interface(struct ieee80211_hw *hw,
 | |
| 				    struct ieee80211_if_init_conf *conf)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
 | |
| 	zd_set_beacon_interval(&mac->chip, 0);
 | |
| 	zd_write_mac_addr(&mac->chip, NULL);
 | |
| }
 | |
| 
 | |
| static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct ieee80211_conf *conf = &hw->conf;
 | |
| 
 | |
| 	return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
 | |
| }
 | |
| 
 | |
| static void zd_process_intr(struct work_struct *work)
 | |
| {
 | |
| 	u16 int_status;
 | |
| 	struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
 | |
| 
 | |
| 	int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4));
 | |
| 	if (int_status & INT_CFG_NEXT_BCN)
 | |
| 		dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
 | |
| 	else
 | |
| 		dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
 | |
| 
 | |
| 	zd_chip_enable_hwint(&mac->chip);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void set_multicast_hash_handler(struct work_struct *work)
 | |
| {
 | |
| 	struct zd_mac *mac =
 | |
| 		container_of(work, struct zd_mac, set_multicast_hash_work);
 | |
| 	struct zd_mc_hash hash;
 | |
| 
 | |
| 	spin_lock_irq(&mac->lock);
 | |
| 	hash = mac->multicast_hash;
 | |
| 	spin_unlock_irq(&mac->lock);
 | |
| 
 | |
| 	zd_chip_set_multicast_hash(&mac->chip, &hash);
 | |
| }
 | |
| 
 | |
| static void set_rx_filter_handler(struct work_struct *work)
 | |
| {
 | |
| 	struct zd_mac *mac =
 | |
| 		container_of(work, struct zd_mac, set_rx_filter_work);
 | |
| 	int r;
 | |
| 
 | |
| 	dev_dbg_f(zd_mac_dev(mac), "\n");
 | |
| 	r = set_rx_filter(mac);
 | |
| 	if (r)
 | |
| 		dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
 | |
| }
 | |
| 
 | |
| static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
 | |
| 				   int mc_count, struct dev_addr_list *mclist)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	struct zd_mc_hash hash;
 | |
| 	int i;
 | |
| 
 | |
| 	zd_mc_clear(&hash);
 | |
| 
 | |
| 	for (i = 0; i < mc_count; i++) {
 | |
| 		if (!mclist)
 | |
| 			break;
 | |
| 		dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", mclist->dmi_addr);
 | |
| 		zd_mc_add_addr(&hash, mclist->dmi_addr);
 | |
| 		mclist = mclist->next;
 | |
| 	}
 | |
| 
 | |
| 	return hash.low | ((u64)hash.high << 32);
 | |
| }
 | |
| 
 | |
| #define SUPPORTED_FIF_FLAGS \
 | |
| 	(FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
 | |
| 	FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
 | |
| static void zd_op_configure_filter(struct ieee80211_hw *hw,
 | |
| 			unsigned int changed_flags,
 | |
| 			unsigned int *new_flags,
 | |
| 			u64 multicast)
 | |
| {
 | |
| 	struct zd_mc_hash hash = {
 | |
| 		.low = multicast,
 | |
| 		.high = multicast >> 32,
 | |
| 	};
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Only deal with supported flags */
 | |
| 	changed_flags &= SUPPORTED_FIF_FLAGS;
 | |
| 	*new_flags &= SUPPORTED_FIF_FLAGS;
 | |
| 
 | |
| 	/* changed_flags is always populated but this driver
 | |
| 	 * doesn't support all FIF flags so its possible we don't
 | |
| 	 * need to do anything */
 | |
| 	if (!changed_flags)
 | |
| 		return;
 | |
| 
 | |
| 	if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
 | |
| 		zd_mc_add_all(&hash);
 | |
| 
 | |
| 	spin_lock_irqsave(&mac->lock, flags);
 | |
| 	mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
 | |
| 	mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
 | |
| 	mac->multicast_hash = hash;
 | |
| 	spin_unlock_irqrestore(&mac->lock, flags);
 | |
| 
 | |
| 	/* XXX: these can be called here now, can sleep now! */
 | |
| 	queue_work(zd_workqueue, &mac->set_multicast_hash_work);
 | |
| 
 | |
| 	if (changed_flags & FIF_CONTROL)
 | |
| 		queue_work(zd_workqueue, &mac->set_rx_filter_work);
 | |
| 
 | |
| 	/* no handling required for FIF_OTHER_BSS as we don't currently
 | |
| 	 * do BSSID filtering */
 | |
| 	/* FIXME: in future it would be nice to enable the probe response
 | |
| 	 * filter (so that the driver doesn't see them) until
 | |
| 	 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
 | |
| 	 * have to schedule work to enable prbresp reception, which might
 | |
| 	 * happen too late. For now we'll just listen and forward them all the
 | |
| 	 * time. */
 | |
| }
 | |
| 
 | |
| static void set_rts_cts_work(struct work_struct *work)
 | |
| {
 | |
| 	struct zd_mac *mac =
 | |
| 		container_of(work, struct zd_mac, set_rts_cts_work);
 | |
| 	unsigned long flags;
 | |
| 	unsigned int short_preamble;
 | |
| 
 | |
| 	mutex_lock(&mac->chip.mutex);
 | |
| 
 | |
| 	spin_lock_irqsave(&mac->lock, flags);
 | |
| 	mac->updating_rts_rate = 0;
 | |
| 	short_preamble = mac->short_preamble;
 | |
| 	spin_unlock_irqrestore(&mac->lock, flags);
 | |
| 
 | |
| 	zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
 | |
| 	mutex_unlock(&mac->chip.mutex);
 | |
| }
 | |
| 
 | |
| static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
 | |
| 				   struct ieee80211_vif *vif,
 | |
| 				   struct ieee80211_bss_conf *bss_conf,
 | |
| 				   u32 changes)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	unsigned long flags;
 | |
| 	int associated;
 | |
| 
 | |
| 	dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
 | |
| 
 | |
| 	if (mac->type == NL80211_IFTYPE_MESH_POINT ||
 | |
| 	    mac->type == NL80211_IFTYPE_ADHOC) {
 | |
| 		associated = true;
 | |
| 		if (changes & BSS_CHANGED_BEACON) {
 | |
| 			struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
 | |
| 
 | |
| 			if (beacon) {
 | |
| 				zd_mac_config_beacon(hw, beacon);
 | |
| 				kfree_skb(beacon);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (changes & BSS_CHANGED_BEACON_ENABLED) {
 | |
| 			u32 interval;
 | |
| 
 | |
| 			if (bss_conf->enable_beacon)
 | |
| 				interval = BCN_MODE_IBSS |
 | |
| 						bss_conf->beacon_int;
 | |
| 			else
 | |
| 				interval = 0;
 | |
| 
 | |
| 			zd_set_beacon_interval(&mac->chip, interval);
 | |
| 		}
 | |
| 	} else
 | |
| 		associated = is_valid_ether_addr(bss_conf->bssid);
 | |
| 
 | |
| 	spin_lock_irq(&mac->lock);
 | |
| 	mac->associated = associated;
 | |
| 	spin_unlock_irq(&mac->lock);
 | |
| 
 | |
| 	/* TODO: do hardware bssid filtering */
 | |
| 
 | |
| 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
 | |
| 		spin_lock_irqsave(&mac->lock, flags);
 | |
| 		mac->short_preamble = bss_conf->use_short_preamble;
 | |
| 		if (!mac->updating_rts_rate) {
 | |
| 			mac->updating_rts_rate = 1;
 | |
| 			/* FIXME: should disable TX here, until work has
 | |
| 			 * completed and RTS_CTS reg is updated */
 | |
| 			queue_work(zd_workqueue, &mac->set_rts_cts_work);
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&mac->lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
 | |
| {
 | |
| 	struct zd_mac *mac = zd_hw_mac(hw);
 | |
| 	return zd_chip_get_tsf(&mac->chip);
 | |
| }
 | |
| 
 | |
| static const struct ieee80211_ops zd_ops = {
 | |
| 	.tx			= zd_op_tx,
 | |
| 	.start			= zd_op_start,
 | |
| 	.stop			= zd_op_stop,
 | |
| 	.add_interface		= zd_op_add_interface,
 | |
| 	.remove_interface	= zd_op_remove_interface,
 | |
| 	.config			= zd_op_config,
 | |
| 	.prepare_multicast	= zd_op_prepare_multicast,
 | |
| 	.configure_filter	= zd_op_configure_filter,
 | |
| 	.bss_info_changed	= zd_op_bss_info_changed,
 | |
| 	.get_tsf		= zd_op_get_tsf,
 | |
| };
 | |
| 
 | |
| struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
 | |
| {
 | |
| 	struct zd_mac *mac;
 | |
| 	struct ieee80211_hw *hw;
 | |
| 
 | |
| 	hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
 | |
| 	if (!hw) {
 | |
| 		dev_dbg_f(&intf->dev, "out of memory\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	mac = zd_hw_mac(hw);
 | |
| 
 | |
| 	memset(mac, 0, sizeof(*mac));
 | |
| 	spin_lock_init(&mac->lock);
 | |
| 	mac->hw = hw;
 | |
| 
 | |
| 	mac->type = NL80211_IFTYPE_UNSPECIFIED;
 | |
| 
 | |
| 	memcpy(mac->channels, zd_channels, sizeof(zd_channels));
 | |
| 	memcpy(mac->rates, zd_rates, sizeof(zd_rates));
 | |
| 	mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
 | |
| 	mac->band.bitrates = mac->rates;
 | |
| 	mac->band.n_channels = ARRAY_SIZE(zd_channels);
 | |
| 	mac->band.channels = mac->channels;
 | |
| 
 | |
| 	hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
 | |
| 
 | |
| 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
 | |
| 		    IEEE80211_HW_SIGNAL_UNSPEC;
 | |
| 
 | |
| 	hw->wiphy->interface_modes =
 | |
| 		BIT(NL80211_IFTYPE_MESH_POINT) |
 | |
| 		BIT(NL80211_IFTYPE_STATION) |
 | |
| 		BIT(NL80211_IFTYPE_ADHOC);
 | |
| 
 | |
| 	hw->max_signal = 100;
 | |
| 	hw->queues = 1;
 | |
| 	hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
 | |
| 
 | |
| 	skb_queue_head_init(&mac->ack_wait_queue);
 | |
| 
 | |
| 	zd_chip_init(&mac->chip, hw, intf);
 | |
| 	housekeeping_init(mac);
 | |
| 	INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
 | |
| 	INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
 | |
| 	INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
 | |
| 	INIT_WORK(&mac->process_intr, zd_process_intr);
 | |
| 
 | |
| 	SET_IEEE80211_DEV(hw, &intf->dev);
 | |
| 	return hw;
 | |
| }
 | |
| 
 | |
| #define LINK_LED_WORK_DELAY HZ
 | |
| 
 | |
| static void link_led_handler(struct work_struct *work)
 | |
| {
 | |
| 	struct zd_mac *mac =
 | |
| 		container_of(work, struct zd_mac, housekeeping.link_led_work.work);
 | |
| 	struct zd_chip *chip = &mac->chip;
 | |
| 	int is_associated;
 | |
| 	int r;
 | |
| 
 | |
| 	spin_lock_irq(&mac->lock);
 | |
| 	is_associated = mac->associated;
 | |
| 	spin_unlock_irq(&mac->lock);
 | |
| 
 | |
| 	r = zd_chip_control_leds(chip,
 | |
| 		                 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
 | |
| 	if (r)
 | |
| 		dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
 | |
| 
 | |
| 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
 | |
| 		           LINK_LED_WORK_DELAY);
 | |
| }
 | |
| 
 | |
| static void housekeeping_init(struct zd_mac *mac)
 | |
| {
 | |
| 	INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
 | |
| }
 | |
| 
 | |
| static void housekeeping_enable(struct zd_mac *mac)
 | |
| {
 | |
| 	dev_dbg_f(zd_mac_dev(mac), "\n");
 | |
| 	queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
 | |
| 			   0);
 | |
| }
 | |
| 
 | |
| static void housekeeping_disable(struct zd_mac *mac)
 | |
| {
 | |
| 	dev_dbg_f(zd_mac_dev(mac), "\n");
 | |
| 	cancel_rearming_delayed_workqueue(zd_workqueue,
 | |
| 		&mac->housekeeping.link_led_work);
 | |
| 	zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
 | |
| }
 |