785 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			785 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * NFTL mount code with extensive checks
 | |
|  *
 | |
|  * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
 | |
|  * Copyright (C) 2000 Netgem S.A.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <asm/errno.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/nftl.h>
 | |
| 
 | |
| #define SECTORSIZE 512
 | |
| 
 | |
| /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
 | |
|  *	various device information of the NFTL partition and Bad Unit Table. Update
 | |
|  *	the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[]
 | |
|  *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
 | |
|  */
 | |
| static int find_boot_record(struct NFTLrecord *nftl)
 | |
| {
 | |
| 	struct nftl_uci1 h1;
 | |
| 	unsigned int block, boot_record_count = 0;
 | |
| 	size_t retlen;
 | |
| 	u8 buf[SECTORSIZE];
 | |
| 	struct NFTLMediaHeader *mh = &nftl->MediaHdr;
 | |
| 	struct mtd_info *mtd = nftl->mbd.mtd;
 | |
| 	unsigned int i;
 | |
| 
 | |
|         /* Assume logical EraseSize == physical erasesize for starting the scan.
 | |
| 	   We'll sort it out later if we find a MediaHeader which says otherwise */
 | |
| 	/* Actually, we won't.  The new DiskOnChip driver has already scanned
 | |
| 	   the MediaHeader and adjusted the virtual erasesize it presents in
 | |
| 	   the mtd device accordingly.  We could even get rid of
 | |
| 	   nftl->EraseSize if there were any point in doing so. */
 | |
| 	nftl->EraseSize = nftl->mbd.mtd->erasesize;
 | |
|         nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
 | |
| 
 | |
| 	nftl->MediaUnit = BLOCK_NIL;
 | |
| 	nftl->SpareMediaUnit = BLOCK_NIL;
 | |
| 
 | |
| 	/* search for a valid boot record */
 | |
| 	for (block = 0; block < nftl->nb_blocks; block++) {
 | |
| 		int ret;
 | |
| 
 | |
| 		/* Check for ANAND header first. Then can whinge if it's found but later
 | |
| 		   checks fail */
 | |
| 		ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
 | |
| 				&retlen, buf);
 | |
| 		/* We ignore ret in case the ECC of the MediaHeader is invalid
 | |
| 		   (which is apparently acceptable) */
 | |
| 		if (retlen != SECTORSIZE) {
 | |
| 			static int warncount = 5;
 | |
| 
 | |
| 			if (warncount) {
 | |
| 				printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
 | |
| 				       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 | |
| 				if (!--warncount)
 | |
| 					printk(KERN_WARNING "Further failures for this block will not be printed\n");
 | |
| 			}
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
 | |
| 			/* ANAND\0 not found. Continue */
 | |
| #if 0
 | |
| 			printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
 | |
| 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
 | |
| #endif
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* To be safer with BIOS, also use erase mark as discriminant */
 | |
| 		if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize +
 | |
| 					 SECTORSIZE + 8, 8, &retlen,
 | |
| 					 (char *)&h1) < 0)) {
 | |
| 			printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
 | |
| 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| #if 0 /* Some people seem to have devices without ECC or erase marks
 | |
| 	 on the Media Header blocks. There are enough other sanity
 | |
| 	 checks in here that we can probably do without it.
 | |
|       */
 | |
| 		if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
 | |
| 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
 | |
| 			       block * nftl->EraseSize, nftl->mbd.mtd->index,
 | |
| 			       le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Finally reread to check ECC */
 | |
| 		if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
 | |
| 				     &retlen, buf) < 0)) {
 | |
| 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
 | |
| 			       block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* Paranoia. Check the ANAND header is still there after the ECC read */
 | |
| 		if (memcmp(buf, "ANAND", 6)) {
 | |
| 			printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
 | |
| 			       block * nftl->EraseSize, nftl->mbd.mtd->index);
 | |
| 			printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
 | |
| 			       buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
 | |
| 			continue;
 | |
| 		}
 | |
| #endif
 | |
| 		/* OK, we like it. */
 | |
| 
 | |
| 		if (boot_record_count) {
 | |
| 			/* We've already processed one. So we just check if
 | |
| 			   this one is the same as the first one we found */
 | |
| 			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
 | |
| 				printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
 | |
| 				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
 | |
| 				/* if (debug) Print both side by side */
 | |
| 				if (boot_record_count < 2) {
 | |
| 					/* We haven't yet seen two real ones */
 | |
| 					return -1;
 | |
| 				}
 | |
| 				continue;
 | |
| 			}
 | |
| 			if (boot_record_count == 1)
 | |
| 				nftl->SpareMediaUnit = block;
 | |
| 
 | |
| 			/* Mark this boot record (NFTL MediaHeader) block as reserved */
 | |
| 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
 | |
| 
 | |
| 
 | |
| 			boot_record_count++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		/* This is the first we've seen. Copy the media header structure into place */
 | |
| 		memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
 | |
| 
 | |
| 		/* Do some sanity checks on it */
 | |
| #if 0
 | |
| The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
 | |
| erasesize based on UnitSizeFactor.  So the erasesize we read from the mtd
 | |
| device is already correct.
 | |
| 		if (mh->UnitSizeFactor == 0) {
 | |
| 			printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
 | |
| 		} else if (mh->UnitSizeFactor < 0xfc) {
 | |
| 			printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
 | |
| 			       mh->UnitSizeFactor);
 | |
| 			return -1;
 | |
| 		} else if (mh->UnitSizeFactor != 0xff) {
 | |
| 			printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
 | |
| 			       mh->UnitSizeFactor);
 | |
| 			nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
 | |
| 			nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
 | |
| 		}
 | |
| #endif
 | |
| 		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN);
 | |
| 		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
 | |
| 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
 | |
| 			printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
 | |
| 			       nftl->nb_boot_blocks, nftl->nb_blocks);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
 | |
| 		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
 | |
| 			printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
 | |
| 			printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
 | |
| 			       nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		nftl->mbd.size  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
 | |
| 
 | |
| 		/* If we're not using the last sectors in the device for some reason,
 | |
| 		   reduce nb_blocks accordingly so we forget they're there */
 | |
| 		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN);
 | |
| 
 | |
| 		/* XXX: will be suppressed */
 | |
| 		nftl->lastEUN = nftl->nb_blocks - 1;
 | |
| 
 | |
| 		/* memory alloc */
 | |
| 		nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 | |
| 		if (!nftl->EUNtable) {
 | |
| 			printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
 | |
| 		if (!nftl->ReplUnitTable) {
 | |
| 			kfree(nftl->EUNtable);
 | |
| 			printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
 | |
| 			return -ENOMEM;
 | |
| 		}
 | |
| 
 | |
| 		/* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
 | |
| 		for (i = 0; i < nftl->nb_boot_blocks; i++)
 | |
| 			nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 | |
| 		/* mark all remaining blocks as potentially containing data */
 | |
| 		for (; i < nftl->nb_blocks; i++) {
 | |
| 			nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED;
 | |
| 		}
 | |
| 
 | |
| 		/* Mark this boot record (NFTL MediaHeader) block as reserved */
 | |
| 		nftl->ReplUnitTable[block] = BLOCK_RESERVED;
 | |
| 
 | |
| 		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
 | |
| 		for (i = 0; i < nftl->nb_blocks; i++) {
 | |
| #if 0
 | |
| The new DiskOnChip driver already scanned the bad block table.  Just query it.
 | |
| 			if ((i & (SECTORSIZE - 1)) == 0) {
 | |
| 				/* read one sector for every SECTORSIZE of blocks */
 | |
| 				if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize +
 | |
| 						     i + SECTORSIZE, SECTORSIZE, &retlen,
 | |
| 						     buf)) < 0) {
 | |
| 					printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
 | |
| 					       ret);
 | |
| 					kfree(nftl->ReplUnitTable);
 | |
| 					kfree(nftl->EUNtable);
 | |
| 					return -1;
 | |
| 				}
 | |
| 			}
 | |
| 			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
 | |
| 			if (buf[i & (SECTORSIZE - 1)] != 0xff)
 | |
| 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 | |
| #endif
 | |
| 			if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize))
 | |
| 				nftl->ReplUnitTable[i] = BLOCK_RESERVED;
 | |
| 		}
 | |
| 
 | |
| 		nftl->MediaUnit = block;
 | |
| 		boot_record_count++;
 | |
| 
 | |
| 	} /* foreach (block) */
 | |
| 
 | |
| 	return boot_record_count?0:-1;
 | |
| }
 | |
| 
 | |
| static int memcmpb(void *a, int c, int n)
 | |
| {
 | |
| 	int i;
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		if (c != ((unsigned char *)a)[i])
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
 | |
| static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
 | |
| 			      int check_oob)
 | |
| {
 | |
| 	u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
 | |
| 	struct mtd_info *mtd = nftl->mbd.mtd;
 | |
| 	size_t retlen;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < len; i += SECTORSIZE) {
 | |
| 		if (mtd->read(mtd, address, SECTORSIZE, &retlen, buf))
 | |
| 			return -1;
 | |
| 		if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		if (check_oob) {
 | |
| 			if(nftl_read_oob(mtd, address, mtd->oobsize,
 | |
| 					 &retlen, &buf[SECTORSIZE]) < 0)
 | |
| 				return -1;
 | |
| 			if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
 | |
| 				return -1;
 | |
| 		}
 | |
| 		address += SECTORSIZE;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
 | |
|  *              Update NFTL metadata. Each erase operation is checked with check_free_sectors
 | |
|  *
 | |
|  * Return: 0 when succeed, -1 on error.
 | |
|  *
 | |
|  *  ToDo: 1. Is it neceressary to check_free_sector after erasing ??
 | |
|  */
 | |
| int NFTL_formatblock(struct NFTLrecord *nftl, int block)
 | |
| {
 | |
| 	size_t retlen;
 | |
| 	unsigned int nb_erases, erase_mark;
 | |
| 	struct nftl_uci1 uci;
 | |
| 	struct erase_info *instr = &nftl->instr;
 | |
| 	struct mtd_info *mtd = nftl->mbd.mtd;
 | |
| 
 | |
| 	/* Read the Unit Control Information #1 for Wear-Leveling */
 | |
| 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
 | |
| 			  8, &retlen, (char *)&uci) < 0)
 | |
| 		goto default_uci1;
 | |
| 
 | |
| 	erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
 | |
| 	if (erase_mark != ERASE_MARK) {
 | |
| 	default_uci1:
 | |
| 		uci.EraseMark = cpu_to_le16(ERASE_MARK);
 | |
| 		uci.EraseMark1 = cpu_to_le16(ERASE_MARK);
 | |
| 		uci.WearInfo = cpu_to_le32(0);
 | |
| 	}
 | |
| 
 | |
| 	memset(instr, 0, sizeof(struct erase_info));
 | |
| 
 | |
| 	/* XXX: use async erase interface, XXX: test return code */
 | |
| 	instr->mtd = nftl->mbd.mtd;
 | |
| 	instr->addr = block * nftl->EraseSize;
 | |
| 	instr->len = nftl->EraseSize;
 | |
| 	mtd->erase(mtd, instr);
 | |
| 
 | |
| 	if (instr->state == MTD_ERASE_FAILED) {
 | |
| 		printk("Error while formatting block %d\n", block);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 		/* increase and write Wear-Leveling info */
 | |
| 		nb_erases = le32_to_cpu(uci.WearInfo);
 | |
| 		nb_erases++;
 | |
| 
 | |
| 		/* wrap (almost impossible with current flashs) or free block */
 | |
| 		if (nb_erases == 0)
 | |
| 			nb_erases = 1;
 | |
| 
 | |
| 		/* check the "freeness" of Erase Unit before updating metadata
 | |
| 		 * FixMe:  is this check really necessary ? since we have check the
 | |
| 		 *         return code after the erase operation. */
 | |
| 		if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
 | |
| 			goto fail;
 | |
| 
 | |
| 		uci.WearInfo = le32_to_cpu(nb_erases);
 | |
| 		if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
 | |
| 				   8, 8, &retlen, (char *)&uci) < 0)
 | |
| 			goto fail;
 | |
| 		return 0;
 | |
| fail:
 | |
| 	/* could not format, update the bad block table (caller is responsible
 | |
| 	   for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
 | |
| 	nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
 | |
|  *	Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
 | |
|  *	was being folded when NFTL was interrupted.
 | |
|  *
 | |
|  *	The check_free_sectors in this function is neceressary. There is a possible
 | |
|  *	situation that after writing the Data area, the Block Control Information is
 | |
|  *	not updated according (due to power failure or something) which leaves the block
 | |
|  *	in an umconsistent state. So we have to check if a block is really FREE in this
 | |
|  *	case. */
 | |
| static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
 | |
| {
 | |
| 	struct mtd_info *mtd = nftl->mbd.mtd;
 | |
| 	unsigned int block, i, status;
 | |
| 	struct nftl_bci bci;
 | |
| 	int sectors_per_block;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	sectors_per_block = nftl->EraseSize / SECTORSIZE;
 | |
| 	block = first_block;
 | |
| 	for (;;) {
 | |
| 		for (i = 0; i < sectors_per_block; i++) {
 | |
| 			if (nftl_read_oob(mtd,
 | |
| 					  block * nftl->EraseSize + i * SECTORSIZE,
 | |
| 					  8, &retlen, (char *)&bci) < 0)
 | |
| 				status = SECTOR_IGNORE;
 | |
| 			else
 | |
| 				status = bci.Status | bci.Status1;
 | |
| 
 | |
| 			switch(status) {
 | |
| 			case SECTOR_FREE:
 | |
| 				/* verify that the sector is really free. If not, mark
 | |
| 				   as ignore */
 | |
| 				if (memcmpb(&bci, 0xff, 8) != 0 ||
 | |
| 				    check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
 | |
| 						       SECTORSIZE, 0) != 0) {
 | |
| 					printk("Incorrect free sector %d in block %d: "
 | |
| 					       "marking it as ignored\n",
 | |
| 					       i, block);
 | |
| 
 | |
| 					/* sector not free actually : mark it as SECTOR_IGNORE  */
 | |
| 					bci.Status = SECTOR_IGNORE;
 | |
| 					bci.Status1 = SECTOR_IGNORE;
 | |
| 					nftl_write_oob(mtd, block *
 | |
| 						       nftl->EraseSize +
 | |
| 						       i * SECTORSIZE, 8,
 | |
| 						       &retlen, (char *)&bci);
 | |
| 				}
 | |
| 				break;
 | |
| 			default:
 | |
| 				break;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* proceed to next Erase Unit on the chain */
 | |
| 		block = nftl->ReplUnitTable[block];
 | |
| 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
 | |
| 			printk("incorrect ReplUnitTable[] : %d\n", block);
 | |
| 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
 | |
| static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
 | |
| {
 | |
| 	unsigned int length = 0, block = first_block;
 | |
| 
 | |
| 	for (;;) {
 | |
| 		length++;
 | |
| 		/* avoid infinite loops, although this is guaranted not to
 | |
| 		   happen because of the previous checks */
 | |
| 		if (length >= nftl->nb_blocks) {
 | |
| 			printk("nftl: length too long %d !\n", length);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		block = nftl->ReplUnitTable[block];
 | |
| 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
 | |
| 			printk("incorrect ReplUnitTable[] : %d\n", block);
 | |
| 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
 | |
| 			break;
 | |
| 	}
 | |
| 	return length;
 | |
| }
 | |
| 
 | |
| /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
 | |
|  *	Virtual Unit Chain, i.e. all the units are disconnected.
 | |
|  *
 | |
|  *	It is not stricly correct to begin from the first block of the chain because
 | |
|  *	if we stop the code, we may see again a valid chain if there was a first_block
 | |
|  *	flag in a block inside it. But is it really a problem ?
 | |
|  *
 | |
|  * FixMe: Figure out what the last statesment means. What if power failure when we are
 | |
|  *	in the for (;;) loop formatting blocks ??
 | |
|  */
 | |
| static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
 | |
| {
 | |
| 	unsigned int block = first_block, block1;
 | |
| 
 | |
| 	printk("Formatting chain at block %d\n", first_block);
 | |
| 
 | |
| 	for (;;) {
 | |
| 		block1 = nftl->ReplUnitTable[block];
 | |
| 
 | |
| 		printk("Formatting block %d\n", block);
 | |
| 		if (NFTL_formatblock(nftl, block) < 0) {
 | |
| 			/* cannot format !!!! Mark it as Bad Unit */
 | |
| 			nftl->ReplUnitTable[block] = BLOCK_RESERVED;
 | |
| 		} else {
 | |
| 			nftl->ReplUnitTable[block] = BLOCK_FREE;
 | |
| 		}
 | |
| 
 | |
| 		/* goto next block on the chain */
 | |
| 		block = block1;
 | |
| 
 | |
| 		if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
 | |
| 			printk("incorrect ReplUnitTable[] : %d\n", block);
 | |
| 		if (block == BLOCK_NIL || block >= nftl->nb_blocks)
 | |
| 			break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
 | |
|  *	totally free (only 0xff).
 | |
|  *
 | |
|  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
 | |
|  *	following critia:
 | |
|  *	1. */
 | |
| static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
 | |
| {
 | |
| 	struct mtd_info *mtd = nftl->mbd.mtd;
 | |
| 	struct nftl_uci1 h1;
 | |
| 	unsigned int erase_mark;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	/* check erase mark. */
 | |
| 	if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
 | |
| 			  &retlen, (char *)&h1) < 0)
 | |
| 		return -1;
 | |
| 
 | |
| 	erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
 | |
| 	if (erase_mark != ERASE_MARK) {
 | |
| 		/* if no erase mark, the block must be totally free. This is
 | |
| 		   possible in two cases : empty filsystem or interrupted erase (very unlikely) */
 | |
| 		if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		/* free block : write erase mark */
 | |
| 		h1.EraseMark = cpu_to_le16(ERASE_MARK);
 | |
| 		h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
 | |
| 		h1.WearInfo = cpu_to_le32(0);
 | |
| 		if (nftl_write_oob(mtd,
 | |
| 				   block * nftl->EraseSize + SECTORSIZE + 8, 8,
 | |
| 				   &retlen, (char *)&h1) < 0)
 | |
| 			return -1;
 | |
| 	} else {
 | |
| #if 0
 | |
| 		/* if erase mark present, need to skip it when doing check */
 | |
| 		for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
 | |
| 			/* check free sector */
 | |
| 			if (check_free_sectors (nftl, block * nftl->EraseSize + i,
 | |
| 						SECTORSIZE, 0) != 0)
 | |
| 				return -1;
 | |
| 
 | |
| 			if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
 | |
| 					  16, &retlen, buf) < 0)
 | |
| 				return -1;
 | |
| 			if (i == SECTORSIZE) {
 | |
| 				/* skip erase mark */
 | |
| 				if (memcmpb(buf, 0xff, 8))
 | |
| 					return -1;
 | |
| 			} else {
 | |
| 				if (memcmpb(buf, 0xff, 16))
 | |
| 					return -1;
 | |
| 			}
 | |
| 		}
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
 | |
|  *	to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
 | |
|  *	is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
 | |
|  *	for some reason. A clean up/check of the VUC is neceressary in this case.
 | |
|  *
 | |
|  * WARNING: return 0 if read error
 | |
|  */
 | |
| static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
 | |
| {
 | |
| 	struct mtd_info *mtd = nftl->mbd.mtd;
 | |
| 	struct nftl_uci2 uci;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
 | |
| 			  8, &retlen, (char *)&uci) < 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
 | |
| }
 | |
| 
 | |
| int NFTL_mount(struct NFTLrecord *s)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
 | |
| 	unsigned int block, first_block, is_first_block;
 | |
| 	int chain_length, do_format_chain;
 | |
| 	struct nftl_uci0 h0;
 | |
| 	struct nftl_uci1 h1;
 | |
| 	struct mtd_info *mtd = s->mbd.mtd;
 | |
| 	size_t retlen;
 | |
| 
 | |
| 	/* search for NFTL MediaHeader and Spare NFTL Media Header */
 | |
| 	if (find_boot_record(s) < 0) {
 | |
| 		printk("Could not find valid boot record\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* init the logical to physical table */
 | |
| 	for (i = 0; i < s->nb_blocks; i++) {
 | |
| 		s->EUNtable[i] = BLOCK_NIL;
 | |
| 	}
 | |
| 
 | |
| 	/* first pass : explore each block chain */
 | |
| 	first_logical_block = 0;
 | |
| 	for (first_block = 0; first_block < s->nb_blocks; first_block++) {
 | |
| 		/* if the block was not already explored, we can look at it */
 | |
| 		if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
 | |
| 			block = first_block;
 | |
| 			chain_length = 0;
 | |
| 			do_format_chain = 0;
 | |
| 
 | |
| 			for (;;) {
 | |
| 				/* read the block header. If error, we format the chain */
 | |
| 				if (nftl_read_oob(mtd,
 | |
| 						  block * s->EraseSize + 8, 8,
 | |
| 						  &retlen, (char *)&h0) < 0 ||
 | |
| 				    nftl_read_oob(mtd,
 | |
| 						  block * s->EraseSize +
 | |
| 						  SECTORSIZE + 8, 8,
 | |
| 						  &retlen, (char *)&h1) < 0) {
 | |
| 					s->ReplUnitTable[block] = BLOCK_NIL;
 | |
| 					do_format_chain = 1;
 | |
| 					break;
 | |
| 				}
 | |
| 
 | |
| 				logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
 | |
| 				rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
 | |
| 				nb_erases = le32_to_cpu (h1.WearInfo);
 | |
| 				erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
 | |
| 
 | |
| 				is_first_block = !(logical_block >> 15);
 | |
| 				logical_block = logical_block & 0x7fff;
 | |
| 
 | |
| 				/* invalid/free block test */
 | |
| 				if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
 | |
| 					if (chain_length == 0) {
 | |
| 						/* if not currently in a chain, we can handle it safely */
 | |
| 						if (check_and_mark_free_block(s, block) < 0) {
 | |
| 							/* not really free: format it */
 | |
| 							printk("Formatting block %d\n", block);
 | |
| 							if (NFTL_formatblock(s, block) < 0) {
 | |
| 								/* could not format: reserve the block */
 | |
| 								s->ReplUnitTable[block] = BLOCK_RESERVED;
 | |
| 							} else {
 | |
| 								s->ReplUnitTable[block] = BLOCK_FREE;
 | |
| 							}
 | |
| 						} else {
 | |
| 							/* free block: mark it */
 | |
| 							s->ReplUnitTable[block] = BLOCK_FREE;
 | |
| 						}
 | |
| 						/* directly examine the next block. */
 | |
| 						goto examine_ReplUnitTable;
 | |
| 					} else {
 | |
| 						/* the block was in a chain : this is bad. We
 | |
| 						   must format all the chain */
 | |
| 						printk("Block %d: free but referenced in chain %d\n",
 | |
| 						       block, first_block);
 | |
| 						s->ReplUnitTable[block] = BLOCK_NIL;
 | |
| 						do_format_chain = 1;
 | |
| 						break;
 | |
| 					}
 | |
| 				}
 | |
| 
 | |
| 				/* we accept only first blocks here */
 | |
| 				if (chain_length == 0) {
 | |
| 					/* this block is not the first block in chain :
 | |
| 					   ignore it, it will be included in a chain
 | |
| 					   later, or marked as not explored */
 | |
| 					if (!is_first_block)
 | |
| 						goto examine_ReplUnitTable;
 | |
| 					first_logical_block = logical_block;
 | |
| 				} else {
 | |
| 					if (logical_block != first_logical_block) {
 | |
| 						printk("Block %d: incorrect logical block: %d expected: %d\n",
 | |
| 						       block, logical_block, first_logical_block);
 | |
| 						/* the chain is incorrect : we must format it,
 | |
| 						   but we need to read it completly */
 | |
| 						do_format_chain = 1;
 | |
| 					}
 | |
| 					if (is_first_block) {
 | |
| 						/* we accept that a block is marked as first
 | |
| 						   block while being last block in a chain
 | |
| 						   only if the chain is being folded */
 | |
| 						if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
 | |
| 						    rep_block != 0xffff) {
 | |
| 							printk("Block %d: incorrectly marked as first block in chain\n",
 | |
| 							       block);
 | |
| 							/* the chain is incorrect : we must format it,
 | |
| 							   but we need to read it completly */
 | |
| 							do_format_chain = 1;
 | |
| 						} else {
 | |
| 							printk("Block %d: folding in progress - ignoring first block flag\n",
 | |
| 							       block);
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				chain_length++;
 | |
| 				if (rep_block == 0xffff) {
 | |
| 					/* no more blocks after */
 | |
| 					s->ReplUnitTable[block] = BLOCK_NIL;
 | |
| 					break;
 | |
| 				} else if (rep_block >= s->nb_blocks) {
 | |
| 					printk("Block %d: referencing invalid block %d\n",
 | |
| 					       block, rep_block);
 | |
| 					do_format_chain = 1;
 | |
| 					s->ReplUnitTable[block] = BLOCK_NIL;
 | |
| 					break;
 | |
| 				} else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
 | |
| 					/* same problem as previous 'is_first_block' test:
 | |
| 					   we accept that the last block of a chain has
 | |
| 					   the first_block flag set if folding is in
 | |
| 					   progress. We handle here the case where the
 | |
| 					   last block appeared first */
 | |
| 					if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
 | |
| 					    s->EUNtable[first_logical_block] == rep_block &&
 | |
| 					    get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
 | |
| 						/* EUNtable[] will be set after */
 | |
| 						printk("Block %d: folding in progress - ignoring first block flag\n",
 | |
| 						       rep_block);
 | |
| 						s->ReplUnitTable[block] = rep_block;
 | |
| 						s->EUNtable[first_logical_block] = BLOCK_NIL;
 | |
| 					} else {
 | |
| 						printk("Block %d: referencing block %d already in another chain\n",
 | |
| 						       block, rep_block);
 | |
| 						/* XXX: should handle correctly fold in progress chains */
 | |
| 						do_format_chain = 1;
 | |
| 						s->ReplUnitTable[block] = BLOCK_NIL;
 | |
| 					}
 | |
| 					break;
 | |
| 				} else {
 | |
| 					/* this is OK */
 | |
| 					s->ReplUnitTable[block] = rep_block;
 | |
| 					block = rep_block;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* the chain was completely explored. Now we can decide
 | |
| 			   what to do with it */
 | |
| 			if (do_format_chain) {
 | |
| 				/* invalid chain : format it */
 | |
| 				format_chain(s, first_block);
 | |
| 			} else {
 | |
| 				unsigned int first_block1, chain_to_format, chain_length1;
 | |
| 				int fold_mark;
 | |
| 
 | |
| 				/* valid chain : get foldmark */
 | |
| 				fold_mark = get_fold_mark(s, first_block);
 | |
| 				if (fold_mark == 0) {
 | |
| 					/* cannot get foldmark : format the chain */
 | |
| 					printk("Could read foldmark at block %d\n", first_block);
 | |
| 					format_chain(s, first_block);
 | |
| 				} else {
 | |
| 					if (fold_mark == FOLD_MARK_IN_PROGRESS)
 | |
| 						check_sectors_in_chain(s, first_block);
 | |
| 
 | |
| 					/* now handle the case where we find two chains at the
 | |
| 					   same virtual address : we select the longer one,
 | |
| 					   because the shorter one is the one which was being
 | |
| 					   folded if the folding was not done in place */
 | |
| 					first_block1 = s->EUNtable[first_logical_block];
 | |
| 					if (first_block1 != BLOCK_NIL) {
 | |
| 						/* XXX: what to do if same length ? */
 | |
| 						chain_length1 = calc_chain_length(s, first_block1);
 | |
| 						printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
 | |
| 						       first_block1, chain_length1, first_block, chain_length);
 | |
| 
 | |
| 						if (chain_length >= chain_length1) {
 | |
| 							chain_to_format = first_block1;
 | |
| 							s->EUNtable[first_logical_block] = first_block;
 | |
| 						} else {
 | |
| 							chain_to_format = first_block;
 | |
| 						}
 | |
| 						format_chain(s, chain_to_format);
 | |
| 					} else {
 | |
| 						s->EUNtable[first_logical_block] = first_block;
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	examine_ReplUnitTable:;
 | |
| 	}
 | |
| 
 | |
| 	/* second pass to format unreferenced blocks  and init free block count */
 | |
| 	s->numfreeEUNs = 0;
 | |
| 	s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
 | |
| 
 | |
| 	for (block = 0; block < s->nb_blocks; block++) {
 | |
| 		if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
 | |
| 			printk("Unreferenced block %d, formatting it\n", block);
 | |
| 			if (NFTL_formatblock(s, block) < 0)
 | |
| 				s->ReplUnitTable[block] = BLOCK_RESERVED;
 | |
| 			else
 | |
| 				s->ReplUnitTable[block] = BLOCK_FREE;
 | |
| 		}
 | |
| 		if (s->ReplUnitTable[block] == BLOCK_FREE) {
 | |
| 			s->numfreeEUNs++;
 | |
| 			s->LastFreeEUN = block;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 |