7304611fc3
Changes include: * May scale up to intermediate speeds after scaling down, rather than scale to max speed and then only scale down until max speed needed. * Tweaked thresholds at which max speed requested (previously CPU must have been 100% busy since idle exit timer started, now will go max if at least 85% busy) and default minimum sample time raised to 80ms. Tweaking based on UI tests, still in progress. * SMP fixes. * Fixed attempted multiple delete of sysfs group on governor stop. Set a just-in-case-CPU-goes-busy-again timer even if nr_running == 0 at timer function run time, but cancel if that CPU goes idle (and don't re-arm timer if that CPU is currently idle). * Re-evaluate speed if a CPU goes idle while above min speed (and no timer currently set) in case the platform requires all CPUs to be at the same speed. * Realtime workqueues disappeared upstream, convert speed up workqueue to a realtime task. Average scheduling latency measured significantly less than WQ_HIGHPRI. * Timers are not deferrable, must wake CPU from idle, since we now re-evaluate speed for idle CPUs. * CPU load is computed from higher of short-term load since idle exit vs. long-term load since last frequency change, to avoid dropping speed during temporary dips in load on long-term-busy CPU. * Avoid 1 CPU starting new idle exit load eval interval in a race with timer running on another CPU. * New fugly debugging printfs should be reworked or go away eventually. Change-Id: I606b5c1850637c35a7814309df12362d5c044825 via: https://review.source.android.com//#change,15809
646 lines
16 KiB
C
646 lines
16 KiB
C
/*
|
|
* drivers/cpufreq/cpufreq_interactive.c
|
|
*
|
|
* Copyright (C) 2010 Google, Inc.
|
|
*
|
|
* This software is licensed under the terms of the GNU General Public
|
|
* License version 2, as published by the Free Software Foundation, and
|
|
* may be copied, distributed, and modified under those terms.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* Author: Mike Chan (mike@android.com)
|
|
*
|
|
*/
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/kthread.h>
|
|
|
|
#include <asm/cputime.h>
|
|
|
|
static void (*pm_idle_old)(void);
|
|
static atomic_t active_count = ATOMIC_INIT(0);
|
|
|
|
struct cpufreq_interactive_cpuinfo {
|
|
struct timer_list cpu_timer;
|
|
int timer_idlecancel;
|
|
u64 time_in_idle;
|
|
u64 idle_exit_time;
|
|
u64 timer_run_time;
|
|
int idling;
|
|
u64 freq_change_time;
|
|
u64 freq_change_time_in_idle;
|
|
struct cpufreq_policy *policy;
|
|
struct cpufreq_frequency_table *freq_table;
|
|
unsigned int target_freq;
|
|
int governor_enabled;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
|
|
|
|
/* Workqueues handle frequency scaling */
|
|
static struct task_struct *up_task;
|
|
static struct workqueue_struct *down_wq;
|
|
static struct work_struct freq_scale_down_work;
|
|
static cpumask_t up_cpumask;
|
|
static cpumask_t down_cpumask;
|
|
|
|
/*
|
|
* The minimum amount of time to spend at a frequency before we can ramp down.
|
|
*/
|
|
#define DEFAULT_MIN_SAMPLE_TIME 80000;
|
|
static unsigned long min_sample_time;
|
|
|
|
#define LOAD_SCALE_MAX 85
|
|
|
|
#define DEBUG 0
|
|
#define BUFSZ 128
|
|
|
|
#if DEBUG
|
|
#include <linux/proc_fs.h>
|
|
|
|
struct dbgln {
|
|
int cpu;
|
|
unsigned long jiffy;
|
|
unsigned long run;
|
|
char buf[BUFSZ];
|
|
};
|
|
|
|
#define NDBGLNS 256
|
|
|
|
static struct dbgln dbgbuf[NDBGLNS];
|
|
static int dbgbufs;
|
|
static int dbgbufe;
|
|
static struct proc_dir_entry *dbg_proc;
|
|
static spinlock_t dbgpr_lock;
|
|
|
|
static u64 up_request_time;
|
|
static unsigned int up_max_latency;
|
|
|
|
static void dbgpr(char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
int n;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dbgpr_lock, flags);
|
|
n = dbgbufe;
|
|
va_start(args, fmt);
|
|
vsnprintf(dbgbuf[n].buf, BUFSZ, fmt, args);
|
|
va_end(args);
|
|
dbgbuf[n].cpu = smp_processor_id();
|
|
dbgbuf[n].run = nr_running();
|
|
dbgbuf[n].jiffy = jiffies;
|
|
|
|
if (++dbgbufe >= NDBGLNS)
|
|
dbgbufe = 0;
|
|
|
|
if (dbgbufe == dbgbufs)
|
|
if (++dbgbufs >= NDBGLNS)
|
|
dbgbufs = 0;
|
|
|
|
spin_unlock_irqrestore(&dbgpr_lock, flags);
|
|
}
|
|
|
|
static void dbgdump(void)
|
|
{
|
|
int i, j;
|
|
unsigned long flags;
|
|
static struct dbgln prbuf[NDBGLNS];
|
|
|
|
spin_lock_irqsave(&dbgpr_lock, flags);
|
|
i = dbgbufs;
|
|
j = dbgbufe;
|
|
memcpy(prbuf, dbgbuf, sizeof(dbgbuf));
|
|
dbgbufs = 0;
|
|
dbgbufe = 0;
|
|
spin_unlock_irqrestore(&dbgpr_lock, flags);
|
|
|
|
while (i != j)
|
|
{
|
|
printk("%lu %d %lu %s",
|
|
prbuf[i].jiffy, prbuf[i].cpu, prbuf[i].run,
|
|
prbuf[i].buf);
|
|
if (++i == NDBGLNS)
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
static int dbg_proc_read(char *buffer, char **start, off_t offset,
|
|
int count, int *peof, void *dat)
|
|
{
|
|
printk("max up_task latency=%uus\n", up_max_latency);
|
|
dbgdump();
|
|
*peof = 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#else
|
|
#define dbgpr(...) do {} while (0)
|
|
#endif
|
|
|
|
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
|
|
unsigned int event);
|
|
|
|
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
|
|
static
|
|
#endif
|
|
struct cpufreq_governor cpufreq_gov_interactive = {
|
|
.name = "interactive",
|
|
.governor = cpufreq_governor_interactive,
|
|
.max_transition_latency = 10000000,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static void cpufreq_interactive_timer(unsigned long data)
|
|
{
|
|
unsigned int delta_idle;
|
|
unsigned int delta_time;
|
|
int cpu_load;
|
|
int load_since_change;
|
|
u64 time_in_idle;
|
|
u64 idle_exit_time;
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, data);
|
|
u64 now_idle;
|
|
unsigned int new_freq;
|
|
unsigned int index;
|
|
|
|
/*
|
|
* Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
|
|
* this lets idle exit know the current idle time sample has
|
|
* been processed, and idle exit can generate a new sample and
|
|
* re-arm the timer. This prevents a concurrent idle
|
|
* exit on that CPU from writing a new set of info at the same time
|
|
* the timer function runs (the timer function can't use that info
|
|
* until more time passes).
|
|
*/
|
|
time_in_idle = pcpu->time_in_idle;
|
|
idle_exit_time = pcpu->idle_exit_time;
|
|
now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
|
|
smp_wmb();
|
|
|
|
/* If we raced with cancelling a timer, skip. */
|
|
if (!idle_exit_time) {
|
|
dbgpr("timer %d: no valid idle exit sample\n", (int) data);
|
|
goto exit;
|
|
}
|
|
|
|
#if DEBUG
|
|
if ((int) jiffies - (int) pcpu->cpu_timer.expires >= 10)
|
|
dbgpr("timer %d: late by %d ticks\n",
|
|
(int) data, jiffies - pcpu->cpu_timer.expires);
|
|
#endif
|
|
|
|
delta_idle = (unsigned int) cputime64_sub(now_idle, time_in_idle);
|
|
delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
|
|
idle_exit_time);
|
|
|
|
/*
|
|
* If timer ran less than 1ms after short-term sample started, retry.
|
|
*/
|
|
if (delta_time < 1000) {
|
|
dbgpr("timer %d: time delta %u too short exit=%llu now=%llu\n", (int) data,
|
|
delta_time, idle_exit_time, pcpu->timer_run_time);
|
|
goto rearm;
|
|
}
|
|
|
|
if (delta_idle > delta_time)
|
|
cpu_load = 0;
|
|
else
|
|
cpu_load = 100 * (delta_time - delta_idle) / delta_time;
|
|
|
|
delta_idle = (unsigned int) cputime64_sub(now_idle,
|
|
pcpu->freq_change_time_in_idle);
|
|
delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
|
|
pcpu->freq_change_time);
|
|
|
|
if (delta_idle > delta_time)
|
|
load_since_change = 0;
|
|
else
|
|
load_since_change =
|
|
100 * (delta_time - delta_idle) / delta_time;
|
|
|
|
/*
|
|
* Choose greater of short-term load (since last idle timer
|
|
* started or timer function re-armed itself) or long-term load
|
|
* (since last frequency change).
|
|
*/
|
|
if (load_since_change > cpu_load)
|
|
cpu_load = load_since_change;
|
|
|
|
if (cpu_load >= LOAD_SCALE_MAX)
|
|
new_freq = pcpu->policy->max;
|
|
else
|
|
new_freq = pcpu->policy->max * cpu_load / 100;
|
|
|
|
if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
|
|
new_freq, CPUFREQ_RELATION_H,
|
|
&index)) {
|
|
dbgpr("timer %d: cpufreq_frequency_table_target error\n", (int) data);
|
|
goto rearm;
|
|
}
|
|
|
|
new_freq = pcpu->freq_table[index].frequency;
|
|
|
|
if (pcpu->target_freq == new_freq)
|
|
{
|
|
dbgpr("timer %d: load=%d, already at %d\n", (int) data, cpu_load, new_freq);
|
|
goto rearm_if_notmax;
|
|
}
|
|
|
|
/*
|
|
* Do not scale down unless we have been at this frequency for the
|
|
* minimum sample time.
|
|
*/
|
|
if (new_freq < pcpu->target_freq) {
|
|
if (cputime64_sub(pcpu->timer_run_time, pcpu->freq_change_time) <
|
|
min_sample_time) {
|
|
dbgpr("timer %d: load=%d cur=%d tgt=%d not yet\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
|
|
goto rearm;
|
|
}
|
|
}
|
|
|
|
dbgpr("timer %d: load=%d cur=%d tgt=%d queue\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
|
|
|
|
if (new_freq < pcpu->target_freq) {
|
|
pcpu->target_freq = new_freq;
|
|
cpumask_set_cpu(data, &down_cpumask);
|
|
queue_work(down_wq, &freq_scale_down_work);
|
|
} else {
|
|
pcpu->target_freq = new_freq;
|
|
#if DEBUG
|
|
up_request_time = ktime_to_us(ktime_get());
|
|
#endif
|
|
cpumask_set_cpu(data, &up_cpumask);
|
|
wake_up_process(up_task);
|
|
}
|
|
|
|
rearm_if_notmax:
|
|
/*
|
|
* Already set max speed and don't see a need to change that,
|
|
* wait until next idle to re-evaluate, don't need timer.
|
|
*/
|
|
if (pcpu->target_freq == pcpu->policy->max)
|
|
goto exit;
|
|
|
|
rearm:
|
|
if (!timer_pending(&pcpu->cpu_timer)) {
|
|
/*
|
|
* If already at min: if that CPU is idle, don't set timer.
|
|
* Else cancel the timer if that CPU goes idle. We don't
|
|
* need to re-evaluate speed until the next idle exit.
|
|
*/
|
|
if (pcpu->target_freq == pcpu->policy->min) {
|
|
smp_rmb();
|
|
|
|
if (pcpu->idling) {
|
|
dbgpr("timer %d: cpu idle, don't re-arm\n", (int) data);
|
|
goto exit;
|
|
}
|
|
|
|
pcpu->timer_idlecancel = 1;
|
|
}
|
|
|
|
pcpu->time_in_idle = get_cpu_idle_time_us(
|
|
data, &pcpu->idle_exit_time);
|
|
mod_timer(&pcpu->cpu_timer, jiffies + 2);
|
|
dbgpr("timer %d: set timer for %lu exit=%llu\n", (int) data, pcpu->cpu_timer.expires, pcpu->idle_exit_time);
|
|
}
|
|
|
|
exit:
|
|
return;
|
|
}
|
|
|
|
static void cpufreq_interactive_idle(void)
|
|
{
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, smp_processor_id());
|
|
int pending;
|
|
|
|
if (!pcpu->governor_enabled) {
|
|
pm_idle_old();
|
|
return;
|
|
}
|
|
|
|
pcpu->idling = 1;
|
|
smp_wmb();
|
|
pending = timer_pending(&pcpu->cpu_timer);
|
|
|
|
if (pcpu->target_freq != pcpu->policy->min) {
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Entering idle while not at lowest speed. On some
|
|
* platforms this can hold the other CPU(s) at that speed
|
|
* even though the CPU is idle. Set a timer to re-evaluate
|
|
* speed so this idle CPU doesn't hold the other CPUs above
|
|
* min indefinitely. This should probably be a quirk of
|
|
* the CPUFreq driver.
|
|
*/
|
|
if (!pending) {
|
|
pcpu->time_in_idle = get_cpu_idle_time_us(
|
|
smp_processor_id(), &pcpu->idle_exit_time);
|
|
pcpu->timer_idlecancel = 0;
|
|
mod_timer(&pcpu->cpu_timer, jiffies + 2);
|
|
dbgpr("idle: enter at %d, set timer for %lu exit=%llu\n",
|
|
pcpu->target_freq, pcpu->cpu_timer.expires,
|
|
pcpu->idle_exit_time);
|
|
}
|
|
#endif
|
|
} else {
|
|
/*
|
|
* If at min speed and entering idle after load has
|
|
* already been evaluated, and a timer has been set just in
|
|
* case the CPU suddenly goes busy, cancel that timer. The
|
|
* CPU didn't go busy; we'll recheck things upon idle exit.
|
|
*/
|
|
if (pending && pcpu->timer_idlecancel) {
|
|
dbgpr("idle: cancel timer for %lu\n", pcpu->cpu_timer.expires);
|
|
del_timer(&pcpu->cpu_timer);
|
|
/*
|
|
* Ensure last timer run time is after current idle
|
|
* sample start time, so next idle exit will always
|
|
* start a new idle sampling period.
|
|
*/
|
|
pcpu->idle_exit_time = 0;
|
|
pcpu->timer_idlecancel = 0;
|
|
}
|
|
}
|
|
|
|
pm_idle_old();
|
|
pcpu->idling = 0;
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Arm the timer for 1-2 ticks later if not already, and if the timer
|
|
* function has already processed the previous load sampling
|
|
* interval. (If the timer is not pending but has not processed
|
|
* the previous interval, it is probably racing with us on another
|
|
* CPU. Let it compute load based on the previous sample and then
|
|
* re-arm the timer for another interval when it's done, rather
|
|
* than updating the interval start time to be "now", which doesn't
|
|
* give the timer function enough time to make a decision on this
|
|
* run.)
|
|
*/
|
|
if (timer_pending(&pcpu->cpu_timer) == 0 &&
|
|
pcpu->timer_run_time >= pcpu->idle_exit_time) {
|
|
pcpu->time_in_idle =
|
|
get_cpu_idle_time_us(smp_processor_id(),
|
|
&pcpu->idle_exit_time);
|
|
pcpu->timer_idlecancel = 0;
|
|
mod_timer(&pcpu->cpu_timer, jiffies + 2);
|
|
dbgpr("idle: exit, set timer for %lu exit=%llu\n", pcpu->cpu_timer.expires, pcpu->idle_exit_time);
|
|
#if DEBUG
|
|
} else if (timer_pending(&pcpu->cpu_timer) == 0 &&
|
|
pcpu->timer_run_time < pcpu->idle_exit_time) {
|
|
dbgpr("idle: timer not run yet: exit=%llu tmrrun=%llu\n",
|
|
pcpu->idle_exit_time, pcpu->timer_run_time);
|
|
#endif
|
|
}
|
|
|
|
}
|
|
|
|
static int cpufreq_interactive_up_task(void *data)
|
|
{
|
|
unsigned int cpu;
|
|
cpumask_t tmp_mask;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
#if DEBUG
|
|
u64 now;
|
|
u64 then;
|
|
unsigned int lat;
|
|
#endif
|
|
|
|
while (1) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (cpumask_empty(&up_cpumask))
|
|
schedule();
|
|
|
|
set_current_state(TASK_RUNNING);
|
|
|
|
if (kthread_should_stop())
|
|
break;
|
|
#if DEBUG
|
|
then = up_request_time;
|
|
now = ktime_to_us(ktime_get());
|
|
|
|
if (now > then) {
|
|
lat = ktime_to_us(ktime_get()) - then;
|
|
|
|
if (lat > up_max_latency)
|
|
up_max_latency = lat;
|
|
}
|
|
#endif
|
|
|
|
tmp_mask = up_cpumask;
|
|
|
|
for_each_cpu(cpu, &tmp_mask) {
|
|
cpumask_clear_cpu(cpu, &up_cpumask);
|
|
pcpu = &per_cpu(cpuinfo, cpu);
|
|
|
|
if (nr_running() == 1) {
|
|
dbgpr("up %d: tgt=%d nothing else running\n", cpu,
|
|
pcpu->target_freq);
|
|
}
|
|
|
|
__cpufreq_driver_target(pcpu->policy,
|
|
pcpu->target_freq,
|
|
CPUFREQ_RELATION_H);
|
|
pcpu->freq_change_time_in_idle =
|
|
get_cpu_idle_time_us(cpu,
|
|
&pcpu->freq_change_time);
|
|
dbgpr("up %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpufreq_interactive_freq_down(struct work_struct *work)
|
|
{
|
|
unsigned int cpu;
|
|
cpumask_t tmp_mask = down_cpumask;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
|
|
for_each_cpu(cpu, &tmp_mask) {
|
|
cpumask_clear_cpu(cpu, &down_cpumask);
|
|
pcpu = &per_cpu(cpuinfo, cpu);
|
|
|
|
__cpufreq_driver_target(pcpu->policy,
|
|
pcpu->target_freq,
|
|
CPUFREQ_RELATION_H);
|
|
|
|
pcpu->freq_change_time_in_idle =
|
|
get_cpu_idle_time_us(cpu,
|
|
&pcpu->freq_change_time);
|
|
dbgpr("down %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
|
|
}
|
|
}
|
|
|
|
static ssize_t show_min_sample_time(struct kobject *kobj,
|
|
struct attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", min_sample_time);
|
|
}
|
|
|
|
static ssize_t store_min_sample_time(struct kobject *kobj,
|
|
struct attribute *attr, const char *buf, size_t count)
|
|
{
|
|
return strict_strtoul(buf, 0, &min_sample_time);
|
|
}
|
|
|
|
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
|
|
show_min_sample_time, store_min_sample_time);
|
|
|
|
static struct attribute *interactive_attributes[] = {
|
|
&min_sample_time_attr.attr,
|
|
NULL,
|
|
};
|
|
|
|
static struct attribute_group interactive_attr_group = {
|
|
.attrs = interactive_attributes,
|
|
.name = "interactive",
|
|
};
|
|
|
|
static int cpufreq_governor_interactive(struct cpufreq_policy *new_policy,
|
|
unsigned int event)
|
|
{
|
|
int rc;
|
|
struct cpufreq_interactive_cpuinfo *pcpu =
|
|
&per_cpu(cpuinfo, new_policy->cpu);
|
|
|
|
switch (event) {
|
|
case CPUFREQ_GOV_START:
|
|
if (!cpu_online(new_policy->cpu))
|
|
return -EINVAL;
|
|
|
|
pcpu->policy = new_policy;
|
|
pcpu->freq_table = cpufreq_frequency_get_table(new_policy->cpu);
|
|
pcpu->target_freq = new_policy->cur;
|
|
pcpu->freq_change_time_in_idle =
|
|
get_cpu_idle_time_us(new_policy->cpu,
|
|
&pcpu->freq_change_time);
|
|
pcpu->governor_enabled = 1;
|
|
/*
|
|
* Do not register the idle hook and create sysfs
|
|
* entries if we have already done so.
|
|
*/
|
|
if (atomic_inc_return(&active_count) > 1)
|
|
return 0;
|
|
|
|
rc = sysfs_create_group(cpufreq_global_kobject,
|
|
&interactive_attr_group);
|
|
if (rc)
|
|
return rc;
|
|
|
|
pm_idle_old = pm_idle;
|
|
pm_idle = cpufreq_interactive_idle;
|
|
break;
|
|
|
|
case CPUFREQ_GOV_STOP:
|
|
pcpu->governor_enabled = 0;
|
|
|
|
if (atomic_dec_return(&active_count) > 0)
|
|
return 0;
|
|
|
|
sysfs_remove_group(cpufreq_global_kobject,
|
|
&interactive_attr_group);
|
|
|
|
pm_idle = pm_idle_old;
|
|
del_timer(&pcpu->cpu_timer);
|
|
break;
|
|
|
|
case CPUFREQ_GOV_LIMITS:
|
|
if (new_policy->max < new_policy->cur)
|
|
__cpufreq_driver_target(new_policy,
|
|
new_policy->max, CPUFREQ_RELATION_H);
|
|
else if (new_policy->min > new_policy->cur)
|
|
__cpufreq_driver_target(new_policy,
|
|
new_policy->min, CPUFREQ_RELATION_L);
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int __init cpufreq_interactive_init(void)
|
|
{
|
|
unsigned int i;
|
|
struct cpufreq_interactive_cpuinfo *pcpu;
|
|
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
|
|
|
|
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
|
|
|
|
/* Initalize per-cpu timers */
|
|
for_each_possible_cpu(i) {
|
|
pcpu = &per_cpu(cpuinfo, i);
|
|
init_timer(&pcpu->cpu_timer);
|
|
pcpu->cpu_timer.function = cpufreq_interactive_timer;
|
|
pcpu->cpu_timer.data = i;
|
|
}
|
|
|
|
up_task = kthread_create(cpufreq_interactive_up_task, NULL,
|
|
"kinteractiveup");
|
|
if (IS_ERR(up_task))
|
|
return PTR_ERR(up_task);
|
|
|
|
sched_setscheduler_nocheck(up_task, SCHED_FIFO, ¶m);
|
|
get_task_struct(up_task);
|
|
|
|
/* No rescuer thread, bind to CPU queuing the work for possibly
|
|
warm cache (probably doesn't matter much). */
|
|
down_wq = create_workqueue("knteractive_down");
|
|
|
|
if (! down_wq)
|
|
goto err_freeuptask;
|
|
|
|
INIT_WORK(&freq_scale_down_work,
|
|
cpufreq_interactive_freq_down);
|
|
|
|
#if DEBUG
|
|
spin_lock_init(&dbgpr_lock);
|
|
dbg_proc = create_proc_entry("igov", S_IWUSR | S_IRUGO, NULL);
|
|
dbg_proc->read_proc = dbg_proc_read;
|
|
#endif
|
|
|
|
return cpufreq_register_governor(&cpufreq_gov_interactive);
|
|
|
|
err_freeuptask:
|
|
put_task_struct(up_task);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
|
|
fs_initcall(cpufreq_interactive_init);
|
|
#else
|
|
module_init(cpufreq_interactive_init);
|
|
#endif
|
|
|
|
static void __exit cpufreq_interactive_exit(void)
|
|
{
|
|
cpufreq_unregister_governor(&cpufreq_gov_interactive);
|
|
kthread_stop(up_task);
|
|
put_task_struct(up_task);
|
|
destroy_workqueue(down_wq);
|
|
}
|
|
|
|
module_exit(cpufreq_interactive_exit);
|
|
|
|
MODULE_AUTHOR("Mike Chan <mike@android.com>");
|
|
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
|
|
"Latency sensitive workloads");
|
|
MODULE_LICENSE("GPL");
|
|
|