1721 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1721 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Cell Broadband Engine OProfile Support
 | |
|  *
 | |
|  * (C) Copyright IBM Corporation 2006
 | |
|  *
 | |
|  * Author: David Erb (djerb@us.ibm.com)
 | |
|  * Modifications:
 | |
|  *	   Carl Love <carll@us.ibm.com>
 | |
|  *	   Maynard Johnson <maynardj@us.ibm.com>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/oprofile.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/timer.h>
 | |
| #include <asm/cell-pmu.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/oprofile_impl.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/ptrace.h>
 | |
| #include <asm/reg.h>
 | |
| #include <asm/rtas.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/cell-regs.h>
 | |
| 
 | |
| #include "../platforms/cell/interrupt.h"
 | |
| #include "cell/pr_util.h"
 | |
| 
 | |
| #define PPU_PROFILING            0
 | |
| #define SPU_PROFILING_CYCLES     1
 | |
| #define SPU_PROFILING_EVENTS     2
 | |
| 
 | |
| #define SPU_EVENT_NUM_START      4100
 | |
| #define SPU_EVENT_NUM_STOP       4399
 | |
| #define SPU_PROFILE_EVENT_ADDR          4363  /* spu, address trace, decimal */
 | |
| #define SPU_PROFILE_EVENT_ADDR_MASK_A   0x146 /* sub unit set to zero */
 | |
| #define SPU_PROFILE_EVENT_ADDR_MASK_B   0x186 /* sub unit set to zero */
 | |
| 
 | |
| #define NUM_SPUS_PER_NODE    8
 | |
| #define SPU_CYCLES_EVENT_NUM 2	/*  event number for SPU_CYCLES */
 | |
| 
 | |
| #define PPU_CYCLES_EVENT_NUM 1	/*  event number for CYCLES */
 | |
| #define PPU_CYCLES_GRP_NUM   1	/* special group number for identifying
 | |
| 				 * PPU_CYCLES event
 | |
| 				 */
 | |
| #define CBE_COUNT_ALL_CYCLES 0x42800000 /* PPU cycle event specifier */
 | |
| 
 | |
| #define NUM_THREADS 2         /* number of physical threads in
 | |
| 			       * physical processor
 | |
| 			       */
 | |
| #define NUM_DEBUG_BUS_WORDS 4
 | |
| #define NUM_INPUT_BUS_WORDS 2
 | |
| 
 | |
| #define MAX_SPU_COUNT 0xFFFFFF	/* maximum 24 bit LFSR value */
 | |
| 
 | |
| /* Minumum HW interval timer setting to send value to trace buffer is 10 cycle.
 | |
|  * To configure counter to send value every N cycles set counter to
 | |
|  * 2^32 - 1 - N.
 | |
|  */
 | |
| #define NUM_INTERVAL_CYC  0xFFFFFFFF - 10
 | |
| 
 | |
| /*
 | |
|  * spu_cycle_reset is the number of cycles between samples.
 | |
|  * This variable is used for SPU profiling and should ONLY be set
 | |
|  * at the beginning of cell_reg_setup; otherwise, it's read-only.
 | |
|  */
 | |
| static unsigned int spu_cycle_reset;
 | |
| static unsigned int profiling_mode;
 | |
| static int spu_evnt_phys_spu_indx;
 | |
| 
 | |
| struct pmc_cntrl_data {
 | |
| 	unsigned long vcntr;
 | |
| 	unsigned long evnts;
 | |
| 	unsigned long masks;
 | |
| 	unsigned long enabled;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * ibm,cbe-perftools rtas parameters
 | |
|  */
 | |
| struct pm_signal {
 | |
| 	u16 cpu;		/* Processor to modify */
 | |
| 	u16 sub_unit;		/* hw subunit this applies to (if applicable)*/
 | |
| 	short int signal_group; /* Signal Group to Enable/Disable */
 | |
| 	u8 bus_word;		/* Enable/Disable on this Trace/Trigger/Event
 | |
| 				 * Bus Word(s) (bitmask)
 | |
| 				 */
 | |
| 	u8 bit;			/* Trigger/Event bit (if applicable) */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * rtas call arguments
 | |
|  */
 | |
| enum {
 | |
| 	SUBFUNC_RESET = 1,
 | |
| 	SUBFUNC_ACTIVATE = 2,
 | |
| 	SUBFUNC_DEACTIVATE = 3,
 | |
| 
 | |
| 	PASSTHRU_IGNORE = 0,
 | |
| 	PASSTHRU_ENABLE = 1,
 | |
| 	PASSTHRU_DISABLE = 2,
 | |
| };
 | |
| 
 | |
| struct pm_cntrl {
 | |
| 	u16 enable;
 | |
| 	u16 stop_at_max;
 | |
| 	u16 trace_mode;
 | |
| 	u16 freeze;
 | |
| 	u16 count_mode;
 | |
| 	u16 spu_addr_trace;
 | |
| 	u8  trace_buf_ovflw;
 | |
| };
 | |
| 
 | |
| static struct {
 | |
| 	u32 group_control;
 | |
| 	u32 debug_bus_control;
 | |
| 	struct pm_cntrl pm_cntrl;
 | |
| 	u32 pm07_cntrl[NR_PHYS_CTRS];
 | |
| } pm_regs;
 | |
| 
 | |
| #define GET_SUB_UNIT(x) ((x & 0x0000f000) >> 12)
 | |
| #define GET_BUS_WORD(x) ((x & 0x000000f0) >> 4)
 | |
| #define GET_BUS_TYPE(x) ((x & 0x00000300) >> 8)
 | |
| #define GET_POLARITY(x) ((x & 0x00000002) >> 1)
 | |
| #define GET_COUNT_CYCLES(x) (x & 0x00000001)
 | |
| #define GET_INPUT_CONTROL(x) ((x & 0x00000004) >> 2)
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long[NR_PHYS_CTRS], pmc_values);
 | |
| static unsigned long spu_pm_cnt[MAX_NUMNODES * NUM_SPUS_PER_NODE];
 | |
| static struct pmc_cntrl_data pmc_cntrl[NUM_THREADS][NR_PHYS_CTRS];
 | |
| 
 | |
| /*
 | |
|  * The CELL profiling code makes rtas calls to setup the debug bus to
 | |
|  * route the performance signals.  Additionally, SPU profiling requires
 | |
|  * a second rtas call to setup the hardware to capture the SPU PCs.
 | |
|  * The EIO error value is returned if the token lookups or the rtas
 | |
|  * call fail.  The EIO error number is the best choice of the existing
 | |
|  * error numbers.  The probability of rtas related error is very low.  But
 | |
|  * by returning EIO and printing additional information to dmsg the user
 | |
|  * will know that OProfile did not start and dmesg will tell them why.
 | |
|  * OProfile does not support returning errors on Stop.	Not a huge issue
 | |
|  * since failure to reset the debug bus or stop the SPU PC collection is
 | |
|  * not a fatel issue.  Chances are if the Stop failed, Start doesn't work
 | |
|  * either.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Interpetation of hdw_thread:
 | |
|  * 0 - even virtual cpus 0, 2, 4,...
 | |
|  * 1 - odd virtual cpus 1, 3, 5, ...
 | |
|  *
 | |
|  * FIXME: this is strictly wrong, we need to clean this up in a number
 | |
|  * of places. It works for now. -arnd
 | |
|  */
 | |
| static u32 hdw_thread;
 | |
| 
 | |
| static u32 virt_cntr_inter_mask;
 | |
| static struct timer_list timer_virt_cntr;
 | |
| static struct timer_list timer_spu_event_swap;
 | |
| 
 | |
| /*
 | |
|  * pm_signal needs to be global since it is initialized in
 | |
|  * cell_reg_setup at the time when the necessary information
 | |
|  * is available.
 | |
|  */
 | |
| static struct pm_signal pm_signal[NR_PHYS_CTRS];
 | |
| static int pm_rtas_token;    /* token for debug bus setup call */
 | |
| static int spu_rtas_token;   /* token for SPU cycle profiling */
 | |
| 
 | |
| static u32 reset_value[NR_PHYS_CTRS];
 | |
| static int num_counters;
 | |
| static int oprofile_running;
 | |
| static DEFINE_SPINLOCK(cntr_lock);
 | |
| 
 | |
| static u32 ctr_enabled;
 | |
| 
 | |
| static unsigned char input_bus[NUM_INPUT_BUS_WORDS];
 | |
| 
 | |
| /*
 | |
|  * Firmware interface functions
 | |
|  */
 | |
| static int
 | |
| rtas_ibm_cbe_perftools(int subfunc, int passthru,
 | |
| 		       void *address, unsigned long length)
 | |
| {
 | |
| 	u64 paddr = __pa(address);
 | |
| 
 | |
| 	return rtas_call(pm_rtas_token, 5, 1, NULL, subfunc,
 | |
| 			 passthru, paddr >> 32, paddr & 0xffffffff, length);
 | |
| }
 | |
| 
 | |
| static void pm_rtas_reset_signals(u32 node)
 | |
| {
 | |
| 	int ret;
 | |
| 	struct pm_signal pm_signal_local;
 | |
| 
 | |
| 	/*
 | |
| 	 * The debug bus is being set to the passthru disable state.
 | |
| 	 * However, the FW still expects atleast one legal signal routing
 | |
| 	 * entry or it will return an error on the arguments.	If we don't
 | |
| 	 * supply a valid entry, we must ignore all return values.  Ignoring
 | |
| 	 * all return values means we might miss an error we should be
 | |
| 	 * concerned about.
 | |
| 	 */
 | |
| 
 | |
| 	/*  fw expects physical cpu #. */
 | |
| 	pm_signal_local.cpu = node;
 | |
| 	pm_signal_local.signal_group = 21;
 | |
| 	pm_signal_local.bus_word = 1;
 | |
| 	pm_signal_local.sub_unit = 0;
 | |
| 	pm_signal_local.bit = 0;
 | |
| 
 | |
| 	ret = rtas_ibm_cbe_perftools(SUBFUNC_RESET, PASSTHRU_DISABLE,
 | |
| 				     &pm_signal_local,
 | |
| 				     sizeof(struct pm_signal));
 | |
| 
 | |
| 	if (unlikely(ret))
 | |
| 		/*
 | |
| 		 * Not a fatal error. For Oprofile stop, the oprofile
 | |
| 		 * functions do not support returning an error for
 | |
| 		 * failure to stop OProfile.
 | |
| 		 */
 | |
| 		printk(KERN_WARNING "%s: rtas returned: %d\n",
 | |
| 		       __func__, ret);
 | |
| }
 | |
| 
 | |
| static int pm_rtas_activate_signals(u32 node, u32 count)
 | |
| {
 | |
| 	int ret;
 | |
| 	int i, j;
 | |
| 	struct pm_signal pm_signal_local[NR_PHYS_CTRS];
 | |
| 
 | |
| 	/*
 | |
| 	 * There is no debug setup required for the cycles event.
 | |
| 	 * Note that only events in the same group can be used.
 | |
| 	 * Otherwise, there will be conflicts in correctly routing
 | |
| 	 * the signals on the debug bus.  It is the responsiblity
 | |
| 	 * of the OProfile user tool to check the events are in
 | |
| 	 * the same group.
 | |
| 	 */
 | |
| 	i = 0;
 | |
| 	for (j = 0; j < count; j++) {
 | |
| 		if (pm_signal[j].signal_group != PPU_CYCLES_GRP_NUM) {
 | |
| 
 | |
| 			/* fw expects physical cpu # */
 | |
| 			pm_signal_local[i].cpu = node;
 | |
| 			pm_signal_local[i].signal_group
 | |
| 				= pm_signal[j].signal_group;
 | |
| 			pm_signal_local[i].bus_word = pm_signal[j].bus_word;
 | |
| 			pm_signal_local[i].sub_unit = pm_signal[j].sub_unit;
 | |
| 			pm_signal_local[i].bit = pm_signal[j].bit;
 | |
| 			i++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (i != 0) {
 | |
| 		ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE, PASSTHRU_ENABLE,
 | |
| 					     pm_signal_local,
 | |
| 					     i * sizeof(struct pm_signal));
 | |
| 
 | |
| 		if (unlikely(ret)) {
 | |
| 			printk(KERN_WARNING "%s: rtas returned: %d\n",
 | |
| 			       __func__, ret);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PM Signal functions
 | |
|  */
 | |
| static void set_pm_event(u32 ctr, int event, u32 unit_mask)
 | |
| {
 | |
| 	struct pm_signal *p;
 | |
| 	u32 signal_bit;
 | |
| 	u32 bus_word, bus_type, count_cycles, polarity, input_control;
 | |
| 	int j, i;
 | |
| 
 | |
| 	if (event == PPU_CYCLES_EVENT_NUM) {
 | |
| 		/* Special Event: Count all cpu cycles */
 | |
| 		pm_regs.pm07_cntrl[ctr] = CBE_COUNT_ALL_CYCLES;
 | |
| 		p = &(pm_signal[ctr]);
 | |
| 		p->signal_group = PPU_CYCLES_GRP_NUM;
 | |
| 		p->bus_word = 1;
 | |
| 		p->sub_unit = 0;
 | |
| 		p->bit = 0;
 | |
| 		goto out;
 | |
| 	} else {
 | |
| 		pm_regs.pm07_cntrl[ctr] = 0;
 | |
| 	}
 | |
| 
 | |
| 	bus_word = GET_BUS_WORD(unit_mask);
 | |
| 	bus_type = GET_BUS_TYPE(unit_mask);
 | |
| 	count_cycles = GET_COUNT_CYCLES(unit_mask);
 | |
| 	polarity = GET_POLARITY(unit_mask);
 | |
| 	input_control = GET_INPUT_CONTROL(unit_mask);
 | |
| 	signal_bit = (event % 100);
 | |
| 
 | |
| 	p = &(pm_signal[ctr]);
 | |
| 
 | |
| 	p->signal_group = event / 100;
 | |
| 	p->bus_word = bus_word;
 | |
| 	p->sub_unit = GET_SUB_UNIT(unit_mask);
 | |
| 
 | |
| 	pm_regs.pm07_cntrl[ctr] = 0;
 | |
| 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_COUNT_CYCLES(count_cycles);
 | |
| 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_POLARITY(polarity);
 | |
| 	pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_CONTROL(input_control);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some of the islands signal selection is based on 64 bit words.
 | |
| 	 * The debug bus words are 32 bits, the input words to the performance
 | |
| 	 * counters are defined as 32 bits.  Need to convert the 64 bit island
 | |
| 	 * specification to the appropriate 32 input bit and bus word for the
 | |
| 	 * performance counter event selection.	 See the CELL Performance
 | |
| 	 * monitoring signals manual and the Perf cntr hardware descriptions
 | |
| 	 * for the details.
 | |
| 	 */
 | |
| 	if (input_control == 0) {
 | |
| 		if (signal_bit > 31) {
 | |
| 			signal_bit -= 32;
 | |
| 			if (bus_word == 0x3)
 | |
| 				bus_word = 0x2;
 | |
| 			else if (bus_word == 0xc)
 | |
| 				bus_word = 0x8;
 | |
| 		}
 | |
| 
 | |
| 		if ((bus_type == 0) && p->signal_group >= 60)
 | |
| 			bus_type = 2;
 | |
| 		if ((bus_type == 1) && p->signal_group >= 50)
 | |
| 			bus_type = 0;
 | |
| 
 | |
| 		pm_regs.pm07_cntrl[ctr] |= PM07_CTR_INPUT_MUX(signal_bit);
 | |
| 	} else {
 | |
| 		pm_regs.pm07_cntrl[ctr] = 0;
 | |
| 		p->bit = signal_bit;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NUM_DEBUG_BUS_WORDS; i++) {
 | |
| 		if (bus_word & (1 << i)) {
 | |
| 			pm_regs.debug_bus_control |=
 | |
| 				(bus_type << (30 - (2 * i)));
 | |
| 
 | |
| 			for (j = 0; j < NUM_INPUT_BUS_WORDS; j++) {
 | |
| 				if (input_bus[j] == 0xff) {
 | |
| 					input_bus[j] = i;
 | |
| 					pm_regs.group_control |=
 | |
| 						(i << (30 - (2 * j)));
 | |
| 
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| out:
 | |
| 	;
 | |
| }
 | |
| 
 | |
| static void write_pm_cntrl(int cpu)
 | |
| {
 | |
| 	/*
 | |
| 	 * Oprofile will use 32 bit counters, set bits 7:10 to 0
 | |
| 	 * pmregs.pm_cntrl is a global
 | |
| 	 */
 | |
| 
 | |
| 	u32 val = 0;
 | |
| 	if (pm_regs.pm_cntrl.enable == 1)
 | |
| 		val |= CBE_PM_ENABLE_PERF_MON;
 | |
| 
 | |
| 	if (pm_regs.pm_cntrl.stop_at_max == 1)
 | |
| 		val |= CBE_PM_STOP_AT_MAX;
 | |
| 
 | |
| 	if (pm_regs.pm_cntrl.trace_mode != 0)
 | |
| 		val |= CBE_PM_TRACE_MODE_SET(pm_regs.pm_cntrl.trace_mode);
 | |
| 
 | |
| 	if (pm_regs.pm_cntrl.trace_buf_ovflw == 1)
 | |
| 		val |= CBE_PM_TRACE_BUF_OVFLW(pm_regs.pm_cntrl.trace_buf_ovflw);
 | |
| 	if (pm_regs.pm_cntrl.freeze == 1)
 | |
| 		val |= CBE_PM_FREEZE_ALL_CTRS;
 | |
| 
 | |
| 	val |= CBE_PM_SPU_ADDR_TRACE_SET(pm_regs.pm_cntrl.spu_addr_trace);
 | |
| 
 | |
| 	/*
 | |
| 	 * Routine set_count_mode must be called previously to set
 | |
| 	 * the count mode based on the user selection of user and kernel.
 | |
| 	 */
 | |
| 	val |= CBE_PM_COUNT_MODE_SET(pm_regs.pm_cntrl.count_mode);
 | |
| 	cbe_write_pm(cpu, pm_control, val);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| set_count_mode(u32 kernel, u32 user)
 | |
| {
 | |
| 	/*
 | |
| 	 * The user must specify user and kernel if they want them. If
 | |
| 	 *  neither is specified, OProfile will count in hypervisor mode.
 | |
| 	 *  pm_regs.pm_cntrl is a global
 | |
| 	 */
 | |
| 	if (kernel) {
 | |
| 		if (user)
 | |
| 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_ALL_MODES;
 | |
| 		else
 | |
| 			pm_regs.pm_cntrl.count_mode =
 | |
| 				CBE_COUNT_SUPERVISOR_MODE;
 | |
| 	} else {
 | |
| 		if (user)
 | |
| 			pm_regs.pm_cntrl.count_mode = CBE_COUNT_PROBLEM_MODE;
 | |
| 		else
 | |
| 			pm_regs.pm_cntrl.count_mode =
 | |
| 				CBE_COUNT_HYPERVISOR_MODE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void enable_ctr(u32 cpu, u32 ctr, u32 *pm07_cntrl)
 | |
| {
 | |
| 
 | |
| 	pm07_cntrl[ctr] |= CBE_PM_CTR_ENABLE;
 | |
| 	cbe_write_pm07_control(cpu, ctr, pm07_cntrl[ctr]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Oprofile is expected to collect data on all CPUs simultaneously.
 | |
|  * However, there is one set of performance counters per node.	There are
 | |
|  * two hardware threads or virtual CPUs on each node.  Hence, OProfile must
 | |
|  * multiplex in time the performance counter collection on the two virtual
 | |
|  * CPUs.  The multiplexing of the performance counters is done by this
 | |
|  * virtual counter routine.
 | |
|  *
 | |
|  * The pmc_values used below is defined as 'per-cpu' but its use is
 | |
|  * more akin to 'per-node'.  We need to store two sets of counter
 | |
|  * values per node -- one for the previous run and one for the next.
 | |
|  * The per-cpu[NR_PHYS_CTRS] gives us the storage we need.  Each odd/even
 | |
|  * pair of per-cpu arrays is used for storing the previous and next
 | |
|  * pmc values for a given node.
 | |
|  * NOTE: We use the per-cpu variable to improve cache performance.
 | |
|  *
 | |
|  * This routine will alternate loading the virtual counters for
 | |
|  * virtual CPUs
 | |
|  */
 | |
| static void cell_virtual_cntr(unsigned long data)
 | |
| {
 | |
| 	int i, prev_hdw_thread, next_hdw_thread;
 | |
| 	u32 cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the interrupt_hander and the virt counter are
 | |
| 	 * not both playing with the counters on the same node.
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock_irqsave(&cntr_lock, flags);
 | |
| 
 | |
| 	prev_hdw_thread = hdw_thread;
 | |
| 
 | |
| 	/* switch the cpu handling the interrupts */
 | |
| 	hdw_thread = 1 ^ hdw_thread;
 | |
| 	next_hdw_thread = hdw_thread;
 | |
| 
 | |
| 	pm_regs.group_control = 0;
 | |
| 	pm_regs.debug_bus_control = 0;
 | |
| 
 | |
| 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
 | |
| 		input_bus[i] = 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * There are some per thread events.  Must do the
 | |
| 	 * set event, for the thread that is being started
 | |
| 	 */
 | |
| 	for (i = 0; i < num_counters; i++)
 | |
| 		set_pm_event(i,
 | |
| 			pmc_cntrl[next_hdw_thread][i].evnts,
 | |
| 			pmc_cntrl[next_hdw_thread][i].masks);
 | |
| 
 | |
| 	/*
 | |
| 	 * The following is done only once per each node, but
 | |
| 	 * we need cpu #, not node #, to pass to the cbe_xxx functions.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * stop counters, save counter values, restore counts
 | |
| 		 * for previous thread
 | |
| 		 */
 | |
| 		cbe_disable_pm(cpu);
 | |
| 		cbe_disable_pm_interrupts(cpu);
 | |
| 		for (i = 0; i < num_counters; i++) {
 | |
| 			per_cpu(pmc_values, cpu + prev_hdw_thread)[i]
 | |
| 				= cbe_read_ctr(cpu, i);
 | |
| 
 | |
| 			if (per_cpu(pmc_values, cpu + next_hdw_thread)[i]
 | |
| 			    == 0xFFFFFFFF)
 | |
| 				/* If the cntr value is 0xffffffff, we must
 | |
| 				 * reset that to 0xfffffff0 when the current
 | |
| 				 * thread is restarted.	 This will generate a
 | |
| 				 * new interrupt and make sure that we never
 | |
| 				 * restore the counters to the max value.  If
 | |
| 				 * the counters were restored to the max value,
 | |
| 				 * they do not increment and no interrupts are
 | |
| 				 * generated.  Hence no more samples will be
 | |
| 				 * collected on that cpu.
 | |
| 				 */
 | |
| 				cbe_write_ctr(cpu, i, 0xFFFFFFF0);
 | |
| 			else
 | |
| 				cbe_write_ctr(cpu, i,
 | |
| 					      per_cpu(pmc_values,
 | |
| 						      cpu +
 | |
| 						      next_hdw_thread)[i]);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Switch to the other thread. Change the interrupt
 | |
| 		 * and control regs to be scheduled on the CPU
 | |
| 		 * corresponding to the thread to execute.
 | |
| 		 */
 | |
| 		for (i = 0; i < num_counters; i++) {
 | |
| 			if (pmc_cntrl[next_hdw_thread][i].enabled) {
 | |
| 				/*
 | |
| 				 * There are some per thread events.
 | |
| 				 * Must do the set event, enable_cntr
 | |
| 				 * for each cpu.
 | |
| 				 */
 | |
| 				enable_ctr(cpu, i,
 | |
| 					   pm_regs.pm07_cntrl);
 | |
| 			} else {
 | |
| 				cbe_write_pm07_control(cpu, i, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Enable interrupts on the CPU thread that is starting */
 | |
| 		cbe_enable_pm_interrupts(cpu, next_hdw_thread,
 | |
| 					 virt_cntr_inter_mask);
 | |
| 		cbe_enable_pm(cpu);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&cntr_lock, flags);
 | |
| 
 | |
| 	mod_timer(&timer_virt_cntr, jiffies + HZ / 10);
 | |
| }
 | |
| 
 | |
| static void start_virt_cntrs(void)
 | |
| {
 | |
| 	init_timer(&timer_virt_cntr);
 | |
| 	timer_virt_cntr.function = cell_virtual_cntr;
 | |
| 	timer_virt_cntr.data = 0UL;
 | |
| 	timer_virt_cntr.expires = jiffies + HZ / 10;
 | |
| 	add_timer(&timer_virt_cntr);
 | |
| }
 | |
| 
 | |
| static int cell_reg_setup_spu_cycles(struct op_counter_config *ctr,
 | |
| 			struct op_system_config *sys, int num_ctrs)
 | |
| {
 | |
| 	spu_cycle_reset = ctr[0].count;
 | |
| 
 | |
| 	/*
 | |
| 	 * Each node will need to make the rtas call to start
 | |
| 	 * and stop SPU profiling.  Get the token once and store it.
 | |
| 	 */
 | |
| 	spu_rtas_token = rtas_token("ibm,cbe-spu-perftools");
 | |
| 
 | |
| 	if (unlikely(spu_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: rtas token ibm,cbe-spu-perftools unknown\n",
 | |
| 		       __func__);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* Unfortunately, the hardware will only support event profiling
 | |
|  * on one SPU per node at a time.  Therefore, we must time slice
 | |
|  * the profiling across all SPUs in the node.  Note, we do this
 | |
|  * in parallel for each node.  The following routine is called
 | |
|  * periodically based on kernel timer to switch which SPU is
 | |
|  * being monitored in a round robbin fashion.
 | |
|  */
 | |
| static void spu_evnt_swap(unsigned long data)
 | |
| {
 | |
| 	int node;
 | |
| 	int cur_phys_spu, nxt_phys_spu, cur_spu_evnt_phys_spu_indx;
 | |
| 	unsigned long flags;
 | |
| 	int cpu;
 | |
| 	int ret;
 | |
| 	u32 interrupt_mask;
 | |
| 
 | |
| 
 | |
| 	/* enable interrupts on cntr 0 */
 | |
| 	interrupt_mask = CBE_PM_CTR_OVERFLOW_INTR(0);
 | |
| 
 | |
| 	hdw_thread = 0;
 | |
| 
 | |
| 	/* Make sure spu event interrupt handler and spu event swap
 | |
| 	 * don't access the counters simultaneously.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&cntr_lock, flags);
 | |
| 
 | |
| 	cur_spu_evnt_phys_spu_indx = spu_evnt_phys_spu_indx;
 | |
| 
 | |
| 	if (++(spu_evnt_phys_spu_indx) == NUM_SPUS_PER_NODE)
 | |
| 		spu_evnt_phys_spu_indx = 0;
 | |
| 
 | |
| 	pm_signal[0].sub_unit = spu_evnt_phys_spu_indx;
 | |
| 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
 | |
| 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
 | |
| 
 | |
| 	/* switch the SPU being profiled on each node */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		node = cbe_cpu_to_node(cpu);
 | |
| 		cur_phys_spu = (node * NUM_SPUS_PER_NODE)
 | |
| 			+ cur_spu_evnt_phys_spu_indx;
 | |
| 		nxt_phys_spu = (node * NUM_SPUS_PER_NODE)
 | |
| 			+ spu_evnt_phys_spu_indx;
 | |
| 
 | |
| 		/*
 | |
| 		 * stop counters, save counter values, restore counts
 | |
| 		 * for previous physical SPU
 | |
| 		 */
 | |
| 		cbe_disable_pm(cpu);
 | |
| 		cbe_disable_pm_interrupts(cpu);
 | |
| 
 | |
| 		spu_pm_cnt[cur_phys_spu]
 | |
| 			= cbe_read_ctr(cpu, 0);
 | |
| 
 | |
| 		/* restore previous count for the next spu to sample */
 | |
| 		/* NOTE, hardware issue, counter will not start if the
 | |
| 		 * counter value is at max (0xFFFFFFFF).
 | |
| 		 */
 | |
| 		if (spu_pm_cnt[nxt_phys_spu] >= 0xFFFFFFFF)
 | |
| 			cbe_write_ctr(cpu, 0, 0xFFFFFFF0);
 | |
| 		 else
 | |
| 			 cbe_write_ctr(cpu, 0, spu_pm_cnt[nxt_phys_spu]);
 | |
| 
 | |
| 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
 | |
| 
 | |
| 		/* setup the debug bus measure the one event and
 | |
| 		 * the two events to route the next SPU's PC on
 | |
| 		 * the debug bus
 | |
| 		 */
 | |
| 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu), 3);
 | |
| 		if (ret)
 | |
| 			printk(KERN_ERR "%s: pm_rtas_activate_signals failed, "
 | |
| 			       "SPU event swap\n", __func__);
 | |
| 
 | |
| 		/* clear the trace buffer, don't want to take PC for
 | |
| 		 * previous SPU*/
 | |
| 		cbe_write_pm(cpu, trace_address, 0);
 | |
| 
 | |
| 		enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
 | |
| 
 | |
| 		/* Enable interrupts on the CPU thread that is starting */
 | |
| 		cbe_enable_pm_interrupts(cpu, hdw_thread,
 | |
| 					 interrupt_mask);
 | |
| 		cbe_enable_pm(cpu);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock_irqrestore(&cntr_lock, flags);
 | |
| 
 | |
| 	/* swap approximately every 0.1 seconds */
 | |
| 	mod_timer(&timer_spu_event_swap, jiffies + HZ / 25);
 | |
| }
 | |
| 
 | |
| static void start_spu_event_swap(void)
 | |
| {
 | |
| 	init_timer(&timer_spu_event_swap);
 | |
| 	timer_spu_event_swap.function = spu_evnt_swap;
 | |
| 	timer_spu_event_swap.data = 0UL;
 | |
| 	timer_spu_event_swap.expires = jiffies + HZ / 25;
 | |
| 	add_timer(&timer_spu_event_swap);
 | |
| }
 | |
| 
 | |
| static int cell_reg_setup_spu_events(struct op_counter_config *ctr,
 | |
| 			struct op_system_config *sys, int num_ctrs)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/* routine is called once for all nodes */
 | |
| 
 | |
| 	spu_evnt_phys_spu_indx = 0;
 | |
| 	/*
 | |
| 	 * For all events except PPU CYCLEs, each node will need to make
 | |
| 	 * the rtas cbe-perftools call to setup and reset the debug bus.
 | |
| 	 * Make the token lookup call once and store it in the global
 | |
| 	 * variable pm_rtas_token.
 | |
| 	 */
 | |
| 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
 | |
| 
 | |
| 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: rtas token ibm,cbe-perftools unknown\n",
 | |
| 		       __func__);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* setup the pm_control register settings,
 | |
| 	 * settings will be written per node by the
 | |
| 	 * cell_cpu_setup() function.
 | |
| 	 */
 | |
| 	pm_regs.pm_cntrl.trace_buf_ovflw = 1;
 | |
| 
 | |
| 	/* Use the occurrence trace mode to have SPU PC saved
 | |
| 	 * to the trace buffer.  Occurrence data in trace buffer
 | |
| 	 * is not used.  Bit 2 must be set to store SPU addresses.
 | |
| 	 */
 | |
| 	pm_regs.pm_cntrl.trace_mode = 2;
 | |
| 
 | |
| 	pm_regs.pm_cntrl.spu_addr_trace = 0x1;  /* using debug bus
 | |
| 						   event 2 & 3 */
 | |
| 
 | |
| 	/* setup the debug bus event array with the SPU PC routing events.
 | |
| 	*  Note, pm_signal[0] will be filled in by set_pm_event() call below.
 | |
| 	*/
 | |
| 	pm_signal[1].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
 | |
| 	pm_signal[1].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_A);
 | |
| 	pm_signal[1].bit = SPU_PROFILE_EVENT_ADDR % 100;
 | |
| 	pm_signal[1].sub_unit = spu_evnt_phys_spu_indx;
 | |
| 
 | |
| 	pm_signal[2].signal_group = SPU_PROFILE_EVENT_ADDR / 100;
 | |
| 	pm_signal[2].bus_word = GET_BUS_WORD(SPU_PROFILE_EVENT_ADDR_MASK_B);
 | |
| 	pm_signal[2].bit = SPU_PROFILE_EVENT_ADDR % 100;
 | |
| 	pm_signal[2].sub_unit = spu_evnt_phys_spu_indx;
 | |
| 
 | |
| 	/* Set the user selected spu event to profile on,
 | |
| 	 * note, only one SPU profiling event is supported
 | |
| 	 */
 | |
| 	num_counters = 1;  /* Only support one SPU event at a time */
 | |
| 	set_pm_event(0, ctr[0].event, ctr[0].unit_mask);
 | |
| 
 | |
| 	reset_value[0] = 0xFFFFFFFF - ctr[0].count;
 | |
| 
 | |
| 	/* global, used by cell_cpu_setup */
 | |
| 	ctr_enabled |= 1;
 | |
| 
 | |
| 	/* Initialize the count for each SPU to the reset value */
 | |
| 	for (i=0; i < MAX_NUMNODES * NUM_SPUS_PER_NODE; i++)
 | |
| 		spu_pm_cnt[i] = reset_value[0];
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cell_reg_setup_ppu(struct op_counter_config *ctr,
 | |
| 			struct op_system_config *sys, int num_ctrs)
 | |
| {
 | |
| 	/* routine is called once for all nodes */
 | |
| 	int i, j, cpu;
 | |
| 
 | |
| 	num_counters = num_ctrs;
 | |
| 
 | |
| 	if (unlikely(num_ctrs > NR_PHYS_CTRS)) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: Oprofile, number of specified events " \
 | |
| 		       "exceeds number of physical counters\n",
 | |
| 		       __func__);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	set_count_mode(sys->enable_kernel, sys->enable_user);
 | |
| 
 | |
| 	/* Setup the thread 0 events */
 | |
| 	for (i = 0; i < num_ctrs; ++i) {
 | |
| 
 | |
| 		pmc_cntrl[0][i].evnts = ctr[i].event;
 | |
| 		pmc_cntrl[0][i].masks = ctr[i].unit_mask;
 | |
| 		pmc_cntrl[0][i].enabled = ctr[i].enabled;
 | |
| 		pmc_cntrl[0][i].vcntr = i;
 | |
| 
 | |
| 		for_each_possible_cpu(j)
 | |
| 			per_cpu(pmc_values, j)[i] = 0;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup the thread 1 events, map the thread 0 event to the
 | |
| 	 * equivalent thread 1 event.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_ctrs; ++i) {
 | |
| 		if ((ctr[i].event >= 2100) && (ctr[i].event <= 2111))
 | |
| 			pmc_cntrl[1][i].evnts = ctr[i].event + 19;
 | |
| 		else if (ctr[i].event == 2203)
 | |
| 			pmc_cntrl[1][i].evnts = ctr[i].event;
 | |
| 		else if ((ctr[i].event >= 2200) && (ctr[i].event <= 2215))
 | |
| 			pmc_cntrl[1][i].evnts = ctr[i].event + 16;
 | |
| 		else
 | |
| 			pmc_cntrl[1][i].evnts = ctr[i].event;
 | |
| 
 | |
| 		pmc_cntrl[1][i].masks = ctr[i].unit_mask;
 | |
| 		pmc_cntrl[1][i].enabled = ctr[i].enabled;
 | |
| 		pmc_cntrl[1][i].vcntr = i;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < NUM_INPUT_BUS_WORDS; i++)
 | |
| 		input_bus[i] = 0xff;
 | |
| 
 | |
| 	/*
 | |
| 	 * Our counters count up, and "count" refers to
 | |
| 	 * how much before the next interrupt, and we interrupt
 | |
| 	 * on overflow.	 So we calculate the starting value
 | |
| 	 * which will give us "count" until overflow.
 | |
| 	 * Then we set the events on the enabled counters.
 | |
| 	 */
 | |
| 	for (i = 0; i < num_counters; ++i) {
 | |
| 		/* start with virtual counter set 0 */
 | |
| 		if (pmc_cntrl[0][i].enabled) {
 | |
| 			/* Using 32bit counters, reset max - count */
 | |
| 			reset_value[i] = 0xFFFFFFFF - ctr[i].count;
 | |
| 			set_pm_event(i,
 | |
| 				     pmc_cntrl[0][i].evnts,
 | |
| 				     pmc_cntrl[0][i].masks);
 | |
| 
 | |
| 			/* global, used by cell_cpu_setup */
 | |
| 			ctr_enabled |= (1 << i);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* initialize the previous counts for the virtual cntrs */
 | |
| 	for_each_online_cpu(cpu)
 | |
| 		for (i = 0; i < num_counters; ++i) {
 | |
| 			per_cpu(pmc_values, cpu)[i] = reset_value[i];
 | |
| 		}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* This function is called once for all cpus combined */
 | |
| static int cell_reg_setup(struct op_counter_config *ctr,
 | |
| 			struct op_system_config *sys, int num_ctrs)
 | |
| {
 | |
| 	int ret=0;
 | |
| 	spu_cycle_reset = 0;
 | |
| 
 | |
| 	/* initialize the spu_arr_trace value, will be reset if
 | |
| 	 * doing spu event profiling.
 | |
| 	 */
 | |
| 	pm_regs.group_control = 0;
 | |
| 	pm_regs.debug_bus_control = 0;
 | |
| 	pm_regs.pm_cntrl.stop_at_max = 1;
 | |
| 	pm_regs.pm_cntrl.trace_mode = 0;
 | |
| 	pm_regs.pm_cntrl.freeze = 1;
 | |
| 	pm_regs.pm_cntrl.trace_buf_ovflw = 0;
 | |
| 	pm_regs.pm_cntrl.spu_addr_trace = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * For all events except PPU CYCLEs, each node will need to make
 | |
| 	 * the rtas cbe-perftools call to setup and reset the debug bus.
 | |
| 	 * Make the token lookup call once and store it in the global
 | |
| 	 * variable pm_rtas_token.
 | |
| 	 */
 | |
| 	pm_rtas_token = rtas_token("ibm,cbe-perftools");
 | |
| 
 | |
| 	if (unlikely(pm_rtas_token == RTAS_UNKNOWN_SERVICE)) {
 | |
| 		printk(KERN_ERR
 | |
| 		       "%s: rtas token ibm,cbe-perftools unknown\n",
 | |
| 		       __func__);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (ctr[0].event == SPU_CYCLES_EVENT_NUM) {
 | |
| 		profiling_mode = SPU_PROFILING_CYCLES;
 | |
| 		ret = cell_reg_setup_spu_cycles(ctr, sys, num_ctrs);
 | |
| 	} else if ((ctr[0].event >= SPU_EVENT_NUM_START) &&
 | |
| 		   (ctr[0].event <= SPU_EVENT_NUM_STOP)) {
 | |
| 		profiling_mode = SPU_PROFILING_EVENTS;
 | |
| 		spu_cycle_reset = ctr[0].count;
 | |
| 
 | |
| 		/* for SPU event profiling, need to setup the
 | |
| 		 * pm_signal array with the events to route the
 | |
| 		 * SPU PC before making the FW call.  Note, only
 | |
| 		 * one SPU event for profiling can be specified
 | |
| 		 * at a time.
 | |
| 		 */
 | |
| 		cell_reg_setup_spu_events(ctr, sys, num_ctrs);
 | |
| 	} else {
 | |
| 		profiling_mode = PPU_PROFILING;
 | |
| 		ret = cell_reg_setup_ppu(ctr, sys, num_ctrs);
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /* This function is called once for each cpu */
 | |
| static int cell_cpu_setup(struct op_counter_config *cntr)
 | |
| {
 | |
| 	u32 cpu = smp_processor_id();
 | |
| 	u32 num_enabled = 0;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Cycle based SPU profiling does not use the performance
 | |
| 	 * counters.  The trace array is configured to collect
 | |
| 	 * the data.
 | |
| 	 */
 | |
| 	if (profiling_mode == SPU_PROFILING_CYCLES)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* There is one performance monitor per processor chip (i.e. node),
 | |
| 	 * so we only need to perform this function once per node.
 | |
| 	 */
 | |
| 	if (cbe_get_hw_thread_id(cpu))
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Stop all counters */
 | |
| 	cbe_disable_pm(cpu);
 | |
| 	cbe_disable_pm_interrupts(cpu);
 | |
| 
 | |
| 	cbe_write_pm(cpu, pm_start_stop, 0);
 | |
| 	cbe_write_pm(cpu, group_control, pm_regs.group_control);
 | |
| 	cbe_write_pm(cpu, debug_bus_control, pm_regs.debug_bus_control);
 | |
| 	write_pm_cntrl(cpu);
 | |
| 
 | |
| 	for (i = 0; i < num_counters; ++i) {
 | |
| 		if (ctr_enabled & (1 << i)) {
 | |
| 			pm_signal[num_enabled].cpu = cbe_cpu_to_node(cpu);
 | |
| 			num_enabled++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * The pm_rtas_activate_signals will return -EIO if the FW
 | |
| 	 * call failed.
 | |
| 	 */
 | |
| 	if (profiling_mode == SPU_PROFILING_EVENTS) {
 | |
| 		/* For SPU event profiling also need to setup the
 | |
| 		 * pm interval timer
 | |
| 		 */
 | |
| 		ret = pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
 | |
| 					       num_enabled+2);
 | |
| 		/* store PC from debug bus to Trace buffer as often
 | |
| 		 * as possible (every 10 cycles)
 | |
| 		 */
 | |
| 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
 | |
| 		return ret;
 | |
| 	} else
 | |
| 		return pm_rtas_activate_signals(cbe_cpu_to_node(cpu),
 | |
| 						num_enabled);
 | |
| }
 | |
| 
 | |
| #define ENTRIES	 303
 | |
| #define MAXLFSR	 0xFFFFFF
 | |
| 
 | |
| /* precomputed table of 24 bit LFSR values */
 | |
| static int initial_lfsr[] = {
 | |
|  8221349, 12579195, 5379618, 10097839, 7512963, 7519310, 3955098, 10753424,
 | |
|  15507573, 7458917, 285419, 2641121, 9780088, 3915503, 6668768, 1548716,
 | |
|  4885000, 8774424, 9650099, 2044357, 2304411, 9326253, 10332526, 4421547,
 | |
|  3440748, 10179459, 13332843, 10375561, 1313462, 8375100, 5198480, 6071392,
 | |
|  9341783, 1526887, 3985002, 1439429, 13923762, 7010104, 11969769, 4547026,
 | |
|  2040072, 4025602, 3437678, 7939992, 11444177, 4496094, 9803157, 10745556,
 | |
|  3671780, 4257846, 5662259, 13196905, 3237343, 12077182, 16222879, 7587769,
 | |
|  14706824, 2184640, 12591135, 10420257, 7406075, 3648978, 11042541, 15906893,
 | |
|  11914928, 4732944, 10695697, 12928164, 11980531, 4430912, 11939291, 2917017,
 | |
|  6119256, 4172004, 9373765, 8410071, 14788383, 5047459, 5474428, 1737756,
 | |
|  15967514, 13351758, 6691285, 8034329, 2856544, 14394753, 11310160, 12149558,
 | |
|  7487528, 7542781, 15668898, 12525138, 12790975, 3707933, 9106617, 1965401,
 | |
|  16219109, 12801644, 2443203, 4909502, 8762329, 3120803, 6360315, 9309720,
 | |
|  15164599, 10844842, 4456529, 6667610, 14924259, 884312, 6234963, 3326042,
 | |
|  15973422, 13919464, 5272099, 6414643, 3909029, 2764324, 5237926, 4774955,
 | |
|  10445906, 4955302, 5203726, 10798229, 11443419, 2303395, 333836, 9646934,
 | |
|  3464726, 4159182, 568492, 995747, 10318756, 13299332, 4836017, 8237783,
 | |
|  3878992, 2581665, 11394667, 5672745, 14412947, 3159169, 9094251, 16467278,
 | |
|  8671392, 15230076, 4843545, 7009238, 15504095, 1494895, 9627886, 14485051,
 | |
|  8304291, 252817, 12421642, 16085736, 4774072, 2456177, 4160695, 15409741,
 | |
|  4902868, 5793091, 13162925, 16039714, 782255, 11347835, 14884586, 366972,
 | |
|  16308990, 11913488, 13390465, 2958444, 10340278, 1177858, 1319431, 10426302,
 | |
|  2868597, 126119, 5784857, 5245324, 10903900, 16436004, 3389013, 1742384,
 | |
|  14674502, 10279218, 8536112, 10364279, 6877778, 14051163, 1025130, 6072469,
 | |
|  1988305, 8354440, 8216060, 16342977, 13112639, 3976679, 5913576, 8816697,
 | |
|  6879995, 14043764, 3339515, 9364420, 15808858, 12261651, 2141560, 5636398,
 | |
|  10345425, 10414756, 781725, 6155650, 4746914, 5078683, 7469001, 6799140,
 | |
|  10156444, 9667150, 10116470, 4133858, 2121972, 1124204, 1003577, 1611214,
 | |
|  14304602, 16221850, 13878465, 13577744, 3629235, 8772583, 10881308, 2410386,
 | |
|  7300044, 5378855, 9301235, 12755149, 4977682, 8083074, 10327581, 6395087,
 | |
|  9155434, 15501696, 7514362, 14520507, 15808945, 3244584, 4741962, 9658130,
 | |
|  14336147, 8654727, 7969093, 15759799, 14029445, 5038459, 9894848, 8659300,
 | |
|  13699287, 8834306, 10712885, 14753895, 10410465, 3373251, 309501, 9561475,
 | |
|  5526688, 14647426, 14209836, 5339224, 207299, 14069911, 8722990, 2290950,
 | |
|  3258216, 12505185, 6007317, 9218111, 14661019, 10537428, 11731949, 9027003,
 | |
|  6641507, 9490160, 200241, 9720425, 16277895, 10816638, 1554761, 10431375,
 | |
|  7467528, 6790302, 3429078, 14633753, 14428997, 11463204, 3576212, 2003426,
 | |
|  6123687, 820520, 9992513, 15784513, 5778891, 6428165, 8388607
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The hardware uses an LFSR counting sequence to determine when to capture
 | |
|  * the SPU PCs.	 An LFSR sequence is like a puesdo random number sequence
 | |
|  * where each number occurs once in the sequence but the sequence is not in
 | |
|  * numerical order. The SPU PC capture is done when the LFSR sequence reaches
 | |
|  * the last value in the sequence.  Hence the user specified value N
 | |
|  * corresponds to the LFSR number that is N from the end of the sequence.
 | |
|  *
 | |
|  * To avoid the time to compute the LFSR, a lookup table is used.  The 24 bit
 | |
|  * LFSR sequence is broken into four ranges.  The spacing of the precomputed
 | |
|  * values is adjusted in each range so the error between the user specifed
 | |
|  * number (N) of events between samples and the actual number of events based
 | |
|  * on the precomputed value will be les then about 6.2%.  Note, if the user
 | |
|  * specifies N < 2^16, the LFSR value that is 2^16 from the end will be used.
 | |
|  * This is to prevent the loss of samples because the trace buffer is full.
 | |
|  *
 | |
|  *	   User specified N		     Step between	   Index in
 | |
|  *					 precomputed values	 precomputed
 | |
|  *								    table
 | |
|  * 0		    to	2^16-1			----		      0
 | |
|  * 2^16	    to	2^16+2^19-1		2^12		    1 to 128
 | |
|  * 2^16+2^19	    to	2^16+2^19+2^22-1	2^15		  129 to 256
 | |
|  * 2^16+2^19+2^22  to	2^24-1			2^18		  257 to 302
 | |
|  *
 | |
|  *
 | |
|  * For example, the LFSR values in the second range are computed for 2^16,
 | |
|  * 2^16+2^12, ... , 2^19-2^16, 2^19 and stored in the table at indicies
 | |
|  * 1, 2,..., 127, 128.
 | |
|  *
 | |
|  * The 24 bit LFSR value for the nth number in the sequence can be
 | |
|  * calculated using the following code:
 | |
|  *
 | |
|  * #define size 24
 | |
|  * int calculate_lfsr(int n)
 | |
|  * {
 | |
|  *	int i;
 | |
|  *	unsigned int newlfsr0;
 | |
|  *	unsigned int lfsr = 0xFFFFFF;
 | |
|  *	unsigned int howmany = n;
 | |
|  *
 | |
|  *	for (i = 2; i < howmany + 2; i++) {
 | |
|  *		newlfsr0 = (((lfsr >> (size - 1 - 0)) & 1) ^
 | |
|  *		((lfsr >> (size - 1 - 1)) & 1) ^
 | |
|  *		(((lfsr >> (size - 1 - 6)) & 1) ^
 | |
|  *		((lfsr >> (size - 1 - 23)) & 1)));
 | |
|  *
 | |
|  *		lfsr >>= 1;
 | |
|  *		lfsr = lfsr | (newlfsr0 << (size - 1));
 | |
|  *	}
 | |
|  *	return lfsr;
 | |
|  * }
 | |
|  */
 | |
| 
 | |
| #define V2_16  (0x1 << 16)
 | |
| #define V2_19  (0x1 << 19)
 | |
| #define V2_22  (0x1 << 22)
 | |
| 
 | |
| static int calculate_lfsr(int n)
 | |
| {
 | |
| 	/*
 | |
| 	 * The ranges and steps are in powers of 2 so the calculations
 | |
| 	 * can be done using shifts rather then divide.
 | |
| 	 */
 | |
| 	int index;
 | |
| 
 | |
| 	if ((n >> 16) == 0)
 | |
| 		index = 0;
 | |
| 	else if (((n - V2_16) >> 19) == 0)
 | |
| 		index = ((n - V2_16) >> 12) + 1;
 | |
| 	else if (((n - V2_16 - V2_19) >> 22) == 0)
 | |
| 		index = ((n - V2_16 - V2_19) >> 15 ) + 1 + 128;
 | |
| 	else if (((n - V2_16 - V2_19 - V2_22) >> 24) == 0)
 | |
| 		index = ((n - V2_16 - V2_19 - V2_22) >> 18 ) + 1 + 256;
 | |
| 	else
 | |
| 		index = ENTRIES-1;
 | |
| 
 | |
| 	/* make sure index is valid */
 | |
| 	if ((index > ENTRIES) || (index < 0))
 | |
| 		index = ENTRIES-1;
 | |
| 
 | |
| 	return initial_lfsr[index];
 | |
| }
 | |
| 
 | |
| static int pm_rtas_activate_spu_profiling(u32 node)
 | |
| {
 | |
| 	int ret, i;
 | |
| 	struct pm_signal pm_signal_local[NUM_SPUS_PER_NODE];
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the rtas call to configure the debug bus to
 | |
| 	 * route the SPU PCs.  Setup the pm_signal for each SPU
 | |
| 	 */
 | |
| 	for (i = 0; i < ARRAY_SIZE(pm_signal_local); i++) {
 | |
| 		pm_signal_local[i].cpu = node;
 | |
| 		pm_signal_local[i].signal_group = 41;
 | |
| 		/* spu i on word (i/2) */
 | |
| 		pm_signal_local[i].bus_word = 1 << i / 2;
 | |
| 		/* spu i */
 | |
| 		pm_signal_local[i].sub_unit = i;
 | |
| 		pm_signal_local[i].bit = 63;
 | |
| 	}
 | |
| 
 | |
| 	ret = rtas_ibm_cbe_perftools(SUBFUNC_ACTIVATE,
 | |
| 				     PASSTHRU_ENABLE, pm_signal_local,
 | |
| 				     (ARRAY_SIZE(pm_signal_local)
 | |
| 				      * sizeof(struct pm_signal)));
 | |
| 
 | |
| 	if (unlikely(ret)) {
 | |
| 		printk(KERN_WARNING "%s: rtas returned: %d\n",
 | |
| 		       __func__, ret);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| static int
 | |
| oprof_cpufreq_notify(struct notifier_block *nb, unsigned long val, void *data)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct cpufreq_freqs *frq = data;
 | |
| 	if ((val == CPUFREQ_PRECHANGE && frq->old < frq->new) ||
 | |
| 	    (val == CPUFREQ_POSTCHANGE && frq->old > frq->new) ||
 | |
| 	    (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE))
 | |
| 		set_spu_profiling_frequency(frq->new, spu_cycle_reset);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block cpu_freq_notifier_block = {
 | |
| 	.notifier_call	= oprof_cpufreq_notify
 | |
| };
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Note the generic OProfile stop calls do not support returning
 | |
|  * an error on stop.  Hence, will not return an error if the FW
 | |
|  * calls fail on stop.	Failure to reset the debug bus is not an issue.
 | |
|  * Failure to disable the SPU profiling is not an issue.  The FW calls
 | |
|  * to enable the performance counters and debug bus will work even if
 | |
|  * the hardware was not cleanly reset.
 | |
|  */
 | |
| static void cell_global_stop_spu_cycles(void)
 | |
| {
 | |
| 	int subfunc, rtn_value;
 | |
| 	unsigned int lfsr_value;
 | |
| 	int cpu;
 | |
| 
 | |
| 	oprofile_running = 0;
 | |
| 	smp_wmb();
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| 	cpufreq_unregister_notifier(&cpu_freq_notifier_block,
 | |
| 				    CPUFREQ_TRANSITION_NOTIFIER);
 | |
| #endif
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		subfunc = 3;	/*
 | |
| 				 * 2 - activate SPU tracing,
 | |
| 				 * 3 - deactivate
 | |
| 				 */
 | |
| 		lfsr_value = 0x8f100000;
 | |
| 
 | |
| 		rtn_value = rtas_call(spu_rtas_token, 3, 1, NULL,
 | |
| 				      subfunc, cbe_cpu_to_node(cpu),
 | |
| 				      lfsr_value);
 | |
| 
 | |
| 		if (unlikely(rtn_value != 0)) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "%s: rtas call ibm,cbe-spu-perftools " \
 | |
| 			       "failed, return = %d\n",
 | |
| 			       __func__, rtn_value);
 | |
| 		}
 | |
| 
 | |
| 		/* Deactivate the signals */
 | |
| 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
 | |
| 	}
 | |
| 
 | |
| 	stop_spu_profiling_cycles();
 | |
| }
 | |
| 
 | |
| static void cell_global_stop_spu_events(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 	oprofile_running = 0;
 | |
| 
 | |
| 	stop_spu_profiling_events();
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		cbe_sync_irq(cbe_cpu_to_node(cpu));
 | |
| 		/* Stop the counters */
 | |
| 		cbe_disable_pm(cpu);
 | |
| 		cbe_write_pm07_control(cpu, 0, 0);
 | |
| 
 | |
| 		/* Deactivate the signals */
 | |
| 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
 | |
| 
 | |
| 		/* Deactivate interrupts */
 | |
| 		cbe_disable_pm_interrupts(cpu);
 | |
| 	}
 | |
| 	del_timer_sync(&timer_spu_event_swap);
 | |
| }
 | |
| 
 | |
| static void cell_global_stop_ppu(void)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * This routine will be called once for the system.
 | |
| 	 * There is one performance monitor per node, so we
 | |
| 	 * only need to perform this function once per node.
 | |
| 	 */
 | |
| 	del_timer_sync(&timer_virt_cntr);
 | |
| 	oprofile_running = 0;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		cbe_sync_irq(cbe_cpu_to_node(cpu));
 | |
| 		/* Stop the counters */
 | |
| 		cbe_disable_pm(cpu);
 | |
| 
 | |
| 		/* Deactivate the signals */
 | |
| 		pm_rtas_reset_signals(cbe_cpu_to_node(cpu));
 | |
| 
 | |
| 		/* Deactivate interrupts */
 | |
| 		cbe_disable_pm_interrupts(cpu);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void cell_global_stop(void)
 | |
| {
 | |
| 	if (profiling_mode == PPU_PROFILING)
 | |
| 		cell_global_stop_ppu();
 | |
| 	else if (profiling_mode == SPU_PROFILING_EVENTS)
 | |
| 		cell_global_stop_spu_events();
 | |
| 	else
 | |
| 		cell_global_stop_spu_cycles();
 | |
| }
 | |
| 
 | |
| static int cell_global_start_spu_cycles(struct op_counter_config *ctr)
 | |
| {
 | |
| 	int subfunc;
 | |
| 	unsigned int lfsr_value;
 | |
| 	int cpu;
 | |
| 	int ret;
 | |
| 	int rtas_error;
 | |
| 	unsigned int cpu_khzfreq = 0;
 | |
| 
 | |
| 	/* The SPU profiling uses time-based profiling based on
 | |
| 	 * cpu frequency, so if configured with the CPU_FREQ
 | |
| 	 * option, we should detect frequency changes and react
 | |
| 	 * accordingly.
 | |
| 	 */
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| 	ret = cpufreq_register_notifier(&cpu_freq_notifier_block,
 | |
| 					CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	if (ret < 0)
 | |
| 		/* this is not a fatal error */
 | |
| 		printk(KERN_ERR "CPU freq change registration failed: %d\n",
 | |
| 		       ret);
 | |
| 
 | |
| 	else
 | |
| 		cpu_khzfreq = cpufreq_quick_get(smp_processor_id());
 | |
| #endif
 | |
| 
 | |
| 	set_spu_profiling_frequency(cpu_khzfreq, spu_cycle_reset);
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Setup SPU cycle-based profiling.
 | |
| 		 * Set perf_mon_control bit 0 to a zero before
 | |
| 		 * enabling spu collection hardware.
 | |
| 		 */
 | |
| 		cbe_write_pm(cpu, pm_control, 0);
 | |
| 
 | |
| 		if (spu_cycle_reset > MAX_SPU_COUNT)
 | |
| 			/* use largest possible value */
 | |
| 			lfsr_value = calculate_lfsr(MAX_SPU_COUNT-1);
 | |
| 		else
 | |
| 			lfsr_value = calculate_lfsr(spu_cycle_reset);
 | |
| 
 | |
| 		/* must use a non zero value. Zero disables data collection. */
 | |
| 		if (lfsr_value == 0)
 | |
| 			lfsr_value = calculate_lfsr(1);
 | |
| 
 | |
| 		lfsr_value = lfsr_value << 8; /* shift lfsr to correct
 | |
| 						* register location
 | |
| 						*/
 | |
| 
 | |
| 		/* debug bus setup */
 | |
| 		ret = pm_rtas_activate_spu_profiling(cbe_cpu_to_node(cpu));
 | |
| 
 | |
| 		if (unlikely(ret)) {
 | |
| 			rtas_error = ret;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 
 | |
| 		subfunc = 2;	/* 2 - activate SPU tracing, 3 - deactivate */
 | |
| 
 | |
| 		/* start profiling */
 | |
| 		ret = rtas_call(spu_rtas_token, 3, 1, NULL, subfunc,
 | |
| 				cbe_cpu_to_node(cpu), lfsr_value);
 | |
| 
 | |
| 		if (unlikely(ret != 0)) {
 | |
| 			printk(KERN_ERR
 | |
| 			       "%s: rtas call ibm,cbe-spu-perftools failed, " \
 | |
| 			       "return = %d\n", __func__, ret);
 | |
| 			rtas_error = -EIO;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rtas_error = start_spu_profiling_cycles(spu_cycle_reset);
 | |
| 	if (rtas_error)
 | |
| 		goto out_stop;
 | |
| 
 | |
| 	oprofile_running = 1;
 | |
| 	return 0;
 | |
| 
 | |
| out_stop:
 | |
| 	cell_global_stop_spu_cycles();	/* clean up the PMU/debug bus */
 | |
| out:
 | |
| 	return rtas_error;
 | |
| }
 | |
| 
 | |
| static int cell_global_start_spu_events(struct op_counter_config *ctr)
 | |
| {
 | |
| 	int cpu;
 | |
| 	u32 interrupt_mask = 0;
 | |
| 	int rtn = 0;
 | |
| 
 | |
| 	hdw_thread = 0;
 | |
| 
 | |
| 	/* spu event profiling, uses the performance counters to generate
 | |
| 	 * an interrupt.  The hardware is setup to store the SPU program
 | |
| 	 * counter into the trace array.  The occurrence mode is used to
 | |
| 	 * enable storing data to the trace buffer.  The bits are set
 | |
| 	 * to send/store the SPU address in the trace buffer.  The debug
 | |
| 	 * bus must be setup to route the SPU program counter onto the
 | |
| 	 * debug bus.  The occurrence data in the trace buffer is not used.
 | |
| 	 */
 | |
| 
 | |
| 	/* This routine gets called once for the system.
 | |
| 	 * There is one performance monitor per node, so we
 | |
| 	 * only need to perform this function once per node.
 | |
| 	 */
 | |
| 
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * Setup SPU event-based profiling.
 | |
| 		 * Set perf_mon_control bit 0 to a zero before
 | |
| 		 * enabling spu collection hardware.
 | |
| 		 *
 | |
| 		 * Only support one SPU event on one SPU per node.
 | |
| 		 */
 | |
| 		if (ctr_enabled & 1) {
 | |
| 			cbe_write_ctr(cpu, 0, reset_value[0]);
 | |
| 			enable_ctr(cpu, 0, pm_regs.pm07_cntrl);
 | |
| 			interrupt_mask |=
 | |
| 				CBE_PM_CTR_OVERFLOW_INTR(0);
 | |
| 		} else {
 | |
| 			/* Disable counter */
 | |
| 			cbe_write_pm07_control(cpu, 0, 0);
 | |
| 		}
 | |
| 
 | |
| 		cbe_get_and_clear_pm_interrupts(cpu);
 | |
| 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
 | |
| 		cbe_enable_pm(cpu);
 | |
| 
 | |
| 		/* clear the trace buffer */
 | |
| 		cbe_write_pm(cpu, trace_address, 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Start the timer to time slice collecting the event profile
 | |
| 	 * on each of the SPUs.  Note, can collect profile on one SPU
 | |
| 	 * per node at a time.
 | |
| 	 */
 | |
| 	start_spu_event_swap();
 | |
| 	start_spu_profiling_events();
 | |
| 	oprofile_running = 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	return rtn;
 | |
| }
 | |
| 
 | |
| static int cell_global_start_ppu(struct op_counter_config *ctr)
 | |
| {
 | |
| 	u32 cpu, i;
 | |
| 	u32 interrupt_mask = 0;
 | |
| 
 | |
| 	/* This routine gets called once for the system.
 | |
| 	 * There is one performance monitor per node, so we
 | |
| 	 * only need to perform this function once per node.
 | |
| 	 */
 | |
| 	for_each_online_cpu(cpu) {
 | |
| 		if (cbe_get_hw_thread_id(cpu))
 | |
| 			continue;
 | |
| 
 | |
| 		interrupt_mask = 0;
 | |
| 
 | |
| 		for (i = 0; i < num_counters; ++i) {
 | |
| 			if (ctr_enabled & (1 << i)) {
 | |
| 				cbe_write_ctr(cpu, i, reset_value[i]);
 | |
| 				enable_ctr(cpu, i, pm_regs.pm07_cntrl);
 | |
| 				interrupt_mask |= CBE_PM_CTR_OVERFLOW_INTR(i);
 | |
| 			} else {
 | |
| 				/* Disable counter */
 | |
| 				cbe_write_pm07_control(cpu, i, 0);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cbe_get_and_clear_pm_interrupts(cpu);
 | |
| 		cbe_enable_pm_interrupts(cpu, hdw_thread, interrupt_mask);
 | |
| 		cbe_enable_pm(cpu);
 | |
| 	}
 | |
| 
 | |
| 	virt_cntr_inter_mask = interrupt_mask;
 | |
| 	oprofile_running = 1;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * NOTE: start_virt_cntrs will result in cell_virtual_cntr() being
 | |
| 	 * executed which manipulates the PMU.	We start the "virtual counter"
 | |
| 	 * here so that we do not need to synchronize access to the PMU in
 | |
| 	 * the above for-loop.
 | |
| 	 */
 | |
| 	start_virt_cntrs();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int cell_global_start(struct op_counter_config *ctr)
 | |
| {
 | |
| 	if (profiling_mode == SPU_PROFILING_CYCLES)
 | |
| 		return cell_global_start_spu_cycles(ctr);
 | |
| 	else if (profiling_mode == SPU_PROFILING_EVENTS)
 | |
| 		return cell_global_start_spu_events(ctr);
 | |
| 	else
 | |
| 		return cell_global_start_ppu(ctr);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The SPU interrupt handler
 | |
|  *
 | |
|  * SPU event profiling works as follows:
 | |
|  * The pm_signal[0] holds the one SPU event to be measured.  It is routed on
 | |
|  * the debug bus using word 0 or 1.  The value of pm_signal[1] and
 | |
|  * pm_signal[2] contain the necessary events to route the SPU program
 | |
|  * counter for the selected SPU onto the debug bus using words 2 and 3.
 | |
|  * The pm_interval register is setup to write the SPU PC value into the
 | |
|  * trace buffer at the maximum rate possible.  The trace buffer is configured
 | |
|  * to store the PCs, wrapping when it is full.  The performance counter is
 | |
|  * intialized to the max hardware count minus the number of events, N, between
 | |
|  * samples.  Once the N events have occured, a HW counter overflow occurs
 | |
|  * causing the generation of a HW counter interrupt which also stops the
 | |
|  * writing of the SPU PC values to the trace buffer.  Hence the last PC
 | |
|  * written to the trace buffer is the SPU PC that we want.  Unfortunately,
 | |
|  * we have to read from the beginning of the trace buffer to get to the
 | |
|  * last value written.  We just hope the PPU has nothing better to do then
 | |
|  * service this interrupt. The PC for the specific SPU being profiled is
 | |
|  * extracted from the trace buffer processed and stored.  The trace buffer
 | |
|  * is cleared, interrupts are cleared, the counter is reset to max - N.
 | |
|  * A kernel timer is used to periodically call the routine spu_evnt_swap()
 | |
|  * to switch to the next physical SPU in the node to profile in round robbin
 | |
|  * order.  This way data is collected for all SPUs on the node. It does mean
 | |
|  * that we need to use a relatively small value of N to ensure enough samples
 | |
|  * on each SPU are collected each SPU is being profiled 1/8 of the time.
 | |
|  * It may also be necessary to use a longer sample collection period.
 | |
|  */
 | |
| static void cell_handle_interrupt_spu(struct pt_regs *regs,
 | |
| 				      struct op_counter_config *ctr)
 | |
| {
 | |
| 	u32 cpu, cpu_tmp;
 | |
| 	u64 trace_entry;
 | |
| 	u32 interrupt_mask;
 | |
| 	u64 trace_buffer[2];
 | |
| 	u64 last_trace_buffer;
 | |
| 	u32 sample;
 | |
| 	u32 trace_addr;
 | |
| 	unsigned long sample_array_lock_flags;
 | |
| 	int spu_num;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/* Make sure spu event interrupt handler and spu event swap
 | |
| 	 * don't access the counters simultaneously.
 | |
| 	 */
 | |
| 	cpu = smp_processor_id();
 | |
| 	spin_lock_irqsave(&cntr_lock, flags);
 | |
| 
 | |
| 	cpu_tmp = cpu;
 | |
| 	cbe_disable_pm(cpu);
 | |
| 
 | |
| 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
 | |
| 
 | |
| 	sample = 0xABCDEF;
 | |
| 	trace_entry = 0xfedcba;
 | |
| 	last_trace_buffer = 0xdeadbeaf;
 | |
| 
 | |
| 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
 | |
| 		/* disable writes to trace buff */
 | |
| 		cbe_write_pm(cpu, pm_interval, 0);
 | |
| 
 | |
| 		/* only have one perf cntr being used, cntr 0 */
 | |
| 		if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(0))
 | |
| 		    && ctr[0].enabled)
 | |
| 			/* The SPU PC values will be read
 | |
| 			 * from the trace buffer, reset counter
 | |
| 			 */
 | |
| 
 | |
| 			cbe_write_ctr(cpu, 0, reset_value[0]);
 | |
| 
 | |
| 		trace_addr = cbe_read_pm(cpu, trace_address);
 | |
| 
 | |
| 		while (!(trace_addr & CBE_PM_TRACE_BUF_EMPTY)) {
 | |
| 			/* There is data in the trace buffer to process
 | |
| 			 * Read the buffer until you get to the last
 | |
| 			 * entry.  This is the value we want.
 | |
| 			 */
 | |
| 
 | |
| 			cbe_read_trace_buffer(cpu, trace_buffer);
 | |
| 			trace_addr = cbe_read_pm(cpu, trace_address);
 | |
| 		}
 | |
| 
 | |
| 		/* SPU Address 16 bit count format for 128 bit
 | |
| 		 * HW trace buffer is used for the SPU PC storage
 | |
| 		 *    HDR bits          0:15
 | |
| 		 *    SPU Addr 0 bits   16:31
 | |
| 		 *    SPU Addr 1 bits   32:47
 | |
| 		 *    unused bits       48:127
 | |
| 		 *
 | |
| 		 * HDR: bit4 = 1 SPU Address 0 valid
 | |
| 		 * HDR: bit5 = 1 SPU Address 1 valid
 | |
| 		 *  - unfortunately, the valid bits don't seem to work
 | |
| 		 *
 | |
| 		 * Note trace_buffer[0] holds bits 0:63 of the HW
 | |
| 		 * trace buffer, trace_buffer[1] holds bits 64:127
 | |
| 		 */
 | |
| 
 | |
| 		trace_entry = trace_buffer[0]
 | |
| 			& 0x00000000FFFF0000;
 | |
| 
 | |
| 		/* only top 16 of the 18 bit SPU PC address
 | |
| 		 * is stored in trace buffer, hence shift right
 | |
| 		 * by 16 -2 bits */
 | |
| 		sample = trace_entry >> 14;
 | |
| 		last_trace_buffer = trace_buffer[0];
 | |
| 
 | |
| 		spu_num = spu_evnt_phys_spu_indx
 | |
| 			+ (cbe_cpu_to_node(cpu) * NUM_SPUS_PER_NODE);
 | |
| 
 | |
| 		/* make sure only one process at a time is calling
 | |
| 		 * spu_sync_buffer()
 | |
| 		 */
 | |
| 		spin_lock_irqsave(&oprof_spu_smpl_arry_lck,
 | |
| 				  sample_array_lock_flags);
 | |
| 		spu_sync_buffer(spu_num, &sample, 1);
 | |
| 		spin_unlock_irqrestore(&oprof_spu_smpl_arry_lck,
 | |
| 				       sample_array_lock_flags);
 | |
| 
 | |
| 		smp_wmb();    /* insure spu event buffer updates are written
 | |
| 			       * don't want events intermingled... */
 | |
| 
 | |
| 		/* The counters were frozen by the interrupt.
 | |
| 		 * Reenable the interrupt and restart the counters.
 | |
| 		 */
 | |
| 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
 | |
| 		cbe_enable_pm_interrupts(cpu, hdw_thread,
 | |
| 					 virt_cntr_inter_mask);
 | |
| 
 | |
| 		/* clear the trace buffer, re-enable writes to trace buff */
 | |
| 		cbe_write_pm(cpu, trace_address, 0);
 | |
| 		cbe_write_pm(cpu, pm_interval, NUM_INTERVAL_CYC);
 | |
| 
 | |
| 		/* The writes to the various performance counters only writes
 | |
| 		 * to a latch.  The new values (interrupt setting bits, reset
 | |
| 		 * counter value etc.) are not copied to the actual registers
 | |
| 		 * until the performance monitor is enabled.  In order to get
 | |
| 		 * this to work as desired, the permormance monitor needs to
 | |
| 		 * be disabled while writing to the latches.  This is a
 | |
| 		 * HW design issue.
 | |
| 		 */
 | |
| 		write_pm_cntrl(cpu);
 | |
| 		cbe_enable_pm(cpu);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cntr_lock, flags);
 | |
| }
 | |
| 
 | |
| static void cell_handle_interrupt_ppu(struct pt_regs *regs,
 | |
| 				      struct op_counter_config *ctr)
 | |
| {
 | |
| 	u32 cpu;
 | |
| 	u64 pc;
 | |
| 	int is_kernel;
 | |
| 	unsigned long flags = 0;
 | |
| 	u32 interrupt_mask;
 | |
| 	int i;
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to make sure the interrupt handler and the virt counter
 | |
| 	 * routine are not running at the same time. See the
 | |
| 	 * cell_virtual_cntr() routine for additional comments.
 | |
| 	 */
 | |
| 	spin_lock_irqsave(&cntr_lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * Need to disable and reenable the performance counters
 | |
| 	 * to get the desired behavior from the hardware.  This
 | |
| 	 * is hardware specific.
 | |
| 	 */
 | |
| 
 | |
| 	cbe_disable_pm(cpu);
 | |
| 
 | |
| 	interrupt_mask = cbe_get_and_clear_pm_interrupts(cpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the interrupt mask has been cleared, then the virt cntr
 | |
| 	 * has cleared the interrupt.  When the thread that generated
 | |
| 	 * the interrupt is restored, the data count will be restored to
 | |
| 	 * 0xffffff0 to cause the interrupt to be regenerated.
 | |
| 	 */
 | |
| 
 | |
| 	if ((oprofile_running == 1) && (interrupt_mask != 0)) {
 | |
| 		pc = regs->nip;
 | |
| 		is_kernel = is_kernel_addr(pc);
 | |
| 
 | |
| 		for (i = 0; i < num_counters; ++i) {
 | |
| 			if ((interrupt_mask & CBE_PM_CTR_OVERFLOW_INTR(i))
 | |
| 			    && ctr[i].enabled) {
 | |
| 				oprofile_add_ext_sample(pc, regs, i, is_kernel);
 | |
| 				cbe_write_ctr(cpu, i, reset_value[i]);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * The counters were frozen by the interrupt.
 | |
| 		 * Reenable the interrupt and restart the counters.
 | |
| 		 * If there was a race between the interrupt handler and
 | |
| 		 * the virtual counter routine.	 The virutal counter
 | |
| 		 * routine may have cleared the interrupts.  Hence must
 | |
| 		 * use the virt_cntr_inter_mask to re-enable the interrupts.
 | |
| 		 */
 | |
| 		cbe_enable_pm_interrupts(cpu, hdw_thread,
 | |
| 					 virt_cntr_inter_mask);
 | |
| 
 | |
| 		/*
 | |
| 		 * The writes to the various performance counters only writes
 | |
| 		 * to a latch.	The new values (interrupt setting bits, reset
 | |
| 		 * counter value etc.) are not copied to the actual registers
 | |
| 		 * until the performance monitor is enabled.  In order to get
 | |
| 		 * this to work as desired, the permormance monitor needs to
 | |
| 		 * be disabled while writing to the latches.  This is a
 | |
| 		 * HW design issue.
 | |
| 		 */
 | |
| 		cbe_enable_pm(cpu);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&cntr_lock, flags);
 | |
| }
 | |
| 
 | |
| static void cell_handle_interrupt(struct pt_regs *regs,
 | |
| 				  struct op_counter_config *ctr)
 | |
| {
 | |
| 	if (profiling_mode == PPU_PROFILING)
 | |
| 		cell_handle_interrupt_ppu(regs, ctr);
 | |
| 	else
 | |
| 		cell_handle_interrupt_spu(regs, ctr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called from the generic OProfile
 | |
|  * driver.  When profiling PPUs, we need to do the
 | |
|  * generic sync start; otherwise, do spu_sync_start.
 | |
|  */
 | |
| static int cell_sync_start(void)
 | |
| {
 | |
| 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
 | |
| 	    (profiling_mode == SPU_PROFILING_EVENTS))
 | |
| 		return spu_sync_start();
 | |
| 	else
 | |
| 		return DO_GENERIC_SYNC;
 | |
| }
 | |
| 
 | |
| static int cell_sync_stop(void)
 | |
| {
 | |
| 	if ((profiling_mode == SPU_PROFILING_CYCLES) ||
 | |
| 	    (profiling_mode == SPU_PROFILING_EVENTS))
 | |
| 		return spu_sync_stop();
 | |
| 	else
 | |
| 		return 1;
 | |
| }
 | |
| 
 | |
| struct op_powerpc_model op_model_cell = {
 | |
| 	.reg_setup = cell_reg_setup,
 | |
| 	.cpu_setup = cell_cpu_setup,
 | |
| 	.global_start = cell_global_start,
 | |
| 	.global_stop = cell_global_stop,
 | |
| 	.sync_start = cell_sync_start,
 | |
| 	.sync_stop = cell_sync_stop,
 | |
| 	.handle_interrupt = cell_handle_interrupt,
 | |
| };
 |