android_kernel_cmhtcleo/drivers/infiniband/hw/ehca/ipz_pt_fn.c
2010-08-27 11:19:57 +02:00

294 lines
7.6 KiB
C

/*
* IBM eServer eHCA Infiniband device driver for Linux on POWER
*
* internal queue handling
*
* Authors: Waleri Fomin <fomin@de.ibm.com>
* Reinhard Ernst <rernst@de.ibm.com>
* Christoph Raisch <raisch@de.ibm.com>
*
* Copyright (c) 2005 IBM Corporation
*
* This source code is distributed under a dual license of GPL v2.0 and OpenIB
* BSD.
*
* OpenIB BSD License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "ehca_tools.h"
#include "ipz_pt_fn.h"
#include "ehca_classes.h"
#define PAGES_PER_KPAGE (PAGE_SIZE >> EHCA_PAGESHIFT)
struct kmem_cache *small_qp_cache;
void *ipz_qpageit_get_inc(struct ipz_queue *queue)
{
void *ret = ipz_qeit_get(queue);
queue->current_q_offset += queue->pagesize;
if (queue->current_q_offset > queue->queue_length) {
queue->current_q_offset -= queue->pagesize;
ret = NULL;
}
if (((u64)ret) % queue->pagesize) {
ehca_gen_err("ERROR!! not at PAGE-Boundary");
return NULL;
}
return ret;
}
void *ipz_qeit_eq_get_inc(struct ipz_queue *queue)
{
void *ret = ipz_qeit_get(queue);
u64 last_entry_in_q = queue->queue_length - queue->qe_size;
queue->current_q_offset += queue->qe_size;
if (queue->current_q_offset > last_entry_in_q) {
queue->current_q_offset = 0;
queue->toggle_state = (~queue->toggle_state) & 1;
}
return ret;
}
int ipz_queue_abs_to_offset(struct ipz_queue *queue, u64 addr, u64 *q_offset)
{
int i;
for (i = 0; i < queue->queue_length / queue->pagesize; i++) {
u64 page = (u64)virt_to_abs(queue->queue_pages[i]);
if (addr >= page && addr < page + queue->pagesize) {
*q_offset = addr - page + i * queue->pagesize;
return 0;
}
}
return -EINVAL;
}
#if PAGE_SHIFT < EHCA_PAGESHIFT
#error Kernel pages must be at least as large than eHCA pages (4K) !
#endif
/*
* allocate pages for queue:
* outer loop allocates whole kernel pages (page aligned) and
* inner loop divides a kernel page into smaller hca queue pages
*/
static int alloc_queue_pages(struct ipz_queue *queue, const u32 nr_of_pages)
{
int k, f = 0;
u8 *kpage;
while (f < nr_of_pages) {
kpage = (u8 *)get_zeroed_page(GFP_KERNEL);
if (!kpage)
goto out;
for (k = 0; k < PAGES_PER_KPAGE && f < nr_of_pages; k++) {
queue->queue_pages[f] = (struct ipz_page *)kpage;
kpage += EHCA_PAGESIZE;
f++;
}
}
return 1;
out:
for (f = 0; f < nr_of_pages && queue->queue_pages[f];
f += PAGES_PER_KPAGE)
free_page((unsigned long)(queue->queue_pages)[f]);
return 0;
}
static int alloc_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd)
{
int order = ilog2(queue->pagesize) - 9;
struct ipz_small_queue_page *page;
unsigned long bit;
mutex_lock(&pd->lock);
if (!list_empty(&pd->free[order]))
page = list_entry(pd->free[order].next,
struct ipz_small_queue_page, list);
else {
page = kmem_cache_zalloc(small_qp_cache, GFP_KERNEL);
if (!page)
goto out;
page->page = get_zeroed_page(GFP_KERNEL);
if (!page->page) {
kmem_cache_free(small_qp_cache, page);
goto out;
}
list_add(&page->list, &pd->free[order]);
}
bit = find_first_zero_bit(page->bitmap, IPZ_SPAGE_PER_KPAGE >> order);
__set_bit(bit, page->bitmap);
page->fill++;
if (page->fill == IPZ_SPAGE_PER_KPAGE >> order)
list_move(&page->list, &pd->full[order]);
mutex_unlock(&pd->lock);
queue->queue_pages[0] = (void *)(page->page | (bit << (order + 9)));
queue->small_page = page;
queue->offset = bit << (order + 9);
return 1;
out:
ehca_err(pd->ib_pd.device, "failed to allocate small queue page");
mutex_unlock(&pd->lock);
return 0;
}
static void free_small_queue_page(struct ipz_queue *queue, struct ehca_pd *pd)
{
int order = ilog2(queue->pagesize) - 9;
struct ipz_small_queue_page *page = queue->small_page;
unsigned long bit;
int free_page = 0;
bit = ((unsigned long)queue->queue_pages[0] & ~PAGE_MASK)
>> (order + 9);
mutex_lock(&pd->lock);
__clear_bit(bit, page->bitmap);
page->fill--;
if (page->fill == 0) {
list_del(&page->list);
free_page = 1;
}
if (page->fill == (IPZ_SPAGE_PER_KPAGE >> order) - 1)
/* the page was full until we freed the chunk */
list_move_tail(&page->list, &pd->free[order]);
mutex_unlock(&pd->lock);
if (free_page) {
free_page(page->page);
kmem_cache_free(small_qp_cache, page);
}
}
int ipz_queue_ctor(struct ehca_pd *pd, struct ipz_queue *queue,
const u32 nr_of_pages, const u32 pagesize,
const u32 qe_size, const u32 nr_of_sg,
int is_small)
{
if (pagesize > PAGE_SIZE) {
ehca_gen_err("FATAL ERROR: pagesize=%x "
"is greater than kernel page size", pagesize);
return 0;
}
/* init queue fields */
queue->queue_length = nr_of_pages * pagesize;
queue->pagesize = pagesize;
queue->qe_size = qe_size;
queue->act_nr_of_sg = nr_of_sg;
queue->current_q_offset = 0;
queue->toggle_state = 1;
queue->small_page = NULL;
/* allocate queue page pointers */
queue->queue_pages = kmalloc(nr_of_pages * sizeof(void *), GFP_KERNEL);
if (!queue->queue_pages) {
queue->queue_pages = vmalloc(nr_of_pages * sizeof(void *));
if (!queue->queue_pages) {
ehca_gen_err("Couldn't allocate queue page list");
return 0;
}
}
memset(queue->queue_pages, 0, nr_of_pages * sizeof(void *));
/* allocate actual queue pages */
if (is_small) {
if (!alloc_small_queue_page(queue, pd))
goto ipz_queue_ctor_exit0;
} else
if (!alloc_queue_pages(queue, nr_of_pages))
goto ipz_queue_ctor_exit0;
return 1;
ipz_queue_ctor_exit0:
ehca_gen_err("Couldn't alloc pages queue=%p "
"nr_of_pages=%x", queue, nr_of_pages);
if (is_vmalloc_addr(queue->queue_pages))
vfree(queue->queue_pages);
else
kfree(queue->queue_pages);
return 0;
}
int ipz_queue_dtor(struct ehca_pd *pd, struct ipz_queue *queue)
{
int i, nr_pages;
if (!queue || !queue->queue_pages) {
ehca_gen_dbg("queue or queue_pages is NULL");
return 0;
}
if (queue->small_page)
free_small_queue_page(queue, pd);
else {
nr_pages = queue->queue_length / queue->pagesize;
for (i = 0; i < nr_pages; i += PAGES_PER_KPAGE)
free_page((unsigned long)queue->queue_pages[i]);
}
if (is_vmalloc_addr(queue->queue_pages))
vfree(queue->queue_pages);
else
kfree(queue->queue_pages);
return 1;
}
int ehca_init_small_qp_cache(void)
{
small_qp_cache = kmem_cache_create("ehca_cache_small_qp",
sizeof(struct ipz_small_queue_page),
0, SLAB_HWCACHE_ALIGN, NULL);
if (!small_qp_cache)
return -ENOMEM;
return 0;
}
void ehca_cleanup_small_qp_cache(void)
{
kmem_cache_destroy(small_qp_cache);
}