1140 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1140 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
 | |
|  *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
 | |
|  */
 | |
| #include <linux/magic.h>		/* STACK_END_MAGIC		*/
 | |
| #include <linux/sched.h>		/* test_thread_flag(), ...	*/
 | |
| #include <linux/kdebug.h>		/* oops_begin/end, ...		*/
 | |
| #include <linux/module.h>		/* search_exception_table	*/
 | |
| #include <linux/bootmem.h>		/* max_low_pfn			*/
 | |
| #include <linux/kprobes.h>		/* __kprobes, ...		*/
 | |
| #include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
 | |
| #include <linux/perf_event.h>		/* perf_sw_event		*/
 | |
| 
 | |
| #include <asm/traps.h>			/* dotraplinkage, ...		*/
 | |
| #include <asm/pgalloc.h>		/* pgd_*(), ...			*/
 | |
| #include <asm/kmemcheck.h>		/* kmemcheck_*(), ...		*/
 | |
| 
 | |
| /*
 | |
|  * Page fault error code bits:
 | |
|  *
 | |
|  *   bit 0 ==	 0: no page found	1: protection fault
 | |
|  *   bit 1 ==	 0: read access		1: write access
 | |
|  *   bit 2 ==	 0: kernel-mode access	1: user-mode access
 | |
|  *   bit 3 ==				1: use of reserved bit detected
 | |
|  *   bit 4 ==				1: fault was an instruction fetch
 | |
|  */
 | |
| enum x86_pf_error_code {
 | |
| 
 | |
| 	PF_PROT		=		1 << 0,
 | |
| 	PF_WRITE	=		1 << 1,
 | |
| 	PF_USER		=		1 << 2,
 | |
| 	PF_RSVD		=		1 << 3,
 | |
| 	PF_INSTR	=		1 << 4,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Returns 0 if mmiotrace is disabled, or if the fault is not
 | |
|  * handled by mmiotrace:
 | |
|  */
 | |
| static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
 | |
| {
 | |
| 	if (unlikely(is_kmmio_active()))
 | |
| 		if (kmmio_handler(regs, addr) == 1)
 | |
| 			return -1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int notify_page_fault(struct pt_regs *regs)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* kprobe_running() needs smp_processor_id() */
 | |
| 	if (kprobes_built_in() && !user_mode_vm(regs)) {
 | |
| 		preempt_disable();
 | |
| 		if (kprobe_running() && kprobe_fault_handler(regs, 14))
 | |
| 			ret = 1;
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Prefetch quirks:
 | |
|  *
 | |
|  * 32-bit mode:
 | |
|  *
 | |
|  *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
 | |
|  *   Check that here and ignore it.
 | |
|  *
 | |
|  * 64-bit mode:
 | |
|  *
 | |
|  *   Sometimes the CPU reports invalid exceptions on prefetch.
 | |
|  *   Check that here and ignore it.
 | |
|  *
 | |
|  * Opcode checker based on code by Richard Brunner.
 | |
|  */
 | |
| static inline int
 | |
| check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
 | |
| 		      unsigned char opcode, int *prefetch)
 | |
| {
 | |
| 	unsigned char instr_hi = opcode & 0xf0;
 | |
| 	unsigned char instr_lo = opcode & 0x0f;
 | |
| 
 | |
| 	switch (instr_hi) {
 | |
| 	case 0x20:
 | |
| 	case 0x30:
 | |
| 		/*
 | |
| 		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
 | |
| 		 * In X86_64 long mode, the CPU will signal invalid
 | |
| 		 * opcode if some of these prefixes are present so
 | |
| 		 * X86_64 will never get here anyway
 | |
| 		 */
 | |
| 		return ((instr_lo & 7) == 0x6);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	case 0x40:
 | |
| 		/*
 | |
| 		 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
 | |
| 		 * Need to figure out under what instruction mode the
 | |
| 		 * instruction was issued. Could check the LDT for lm,
 | |
| 		 * but for now it's good enough to assume that long
 | |
| 		 * mode only uses well known segments or kernel.
 | |
| 		 */
 | |
| 		return (!user_mode(regs)) || (regs->cs == __USER_CS);
 | |
| #endif
 | |
| 	case 0x60:
 | |
| 		/* 0x64 thru 0x67 are valid prefixes in all modes. */
 | |
| 		return (instr_lo & 0xC) == 0x4;
 | |
| 	case 0xF0:
 | |
| 		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
 | |
| 		return !instr_lo || (instr_lo>>1) == 1;
 | |
| 	case 0x00:
 | |
| 		/* Prefetch instruction is 0x0F0D or 0x0F18 */
 | |
| 		if (probe_kernel_address(instr, opcode))
 | |
| 			return 0;
 | |
| 
 | |
| 		*prefetch = (instr_lo == 0xF) &&
 | |
| 			(opcode == 0x0D || opcode == 0x18);
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 | |
| {
 | |
| 	unsigned char *max_instr;
 | |
| 	unsigned char *instr;
 | |
| 	int prefetch = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If it was a exec (instruction fetch) fault on NX page, then
 | |
| 	 * do not ignore the fault:
 | |
| 	 */
 | |
| 	if (error_code & PF_INSTR)
 | |
| 		return 0;
 | |
| 
 | |
| 	instr = (void *)convert_ip_to_linear(current, regs);
 | |
| 	max_instr = instr + 15;
 | |
| 
 | |
| 	if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
 | |
| 		return 0;
 | |
| 
 | |
| 	while (instr < max_instr) {
 | |
| 		unsigned char opcode;
 | |
| 
 | |
| 		if (probe_kernel_address(instr, opcode))
 | |
| 			break;
 | |
| 
 | |
| 		instr++;
 | |
| 
 | |
| 		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 | |
| 			break;
 | |
| 	}
 | |
| 	return prefetch;
 | |
| }
 | |
| 
 | |
| static void
 | |
| force_sig_info_fault(int si_signo, int si_code, unsigned long address,
 | |
| 		     struct task_struct *tsk)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	info.si_signo	= si_signo;
 | |
| 	info.si_errno	= 0;
 | |
| 	info.si_code	= si_code;
 | |
| 	info.si_addr	= (void __user *)address;
 | |
| 	info.si_addr_lsb = si_code == BUS_MCEERR_AR ? PAGE_SHIFT : 0;
 | |
| 
 | |
| 	force_sig_info(si_signo, &info, tsk);
 | |
| }
 | |
| 
 | |
| DEFINE_SPINLOCK(pgd_lock);
 | |
| LIST_HEAD(pgd_list);
 | |
| 
 | |
| #ifdef CONFIG_X86_32
 | |
| static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 | |
| {
 | |
| 	unsigned index = pgd_index(address);
 | |
| 	pgd_t *pgd_k;
 | |
| 	pud_t *pud, *pud_k;
 | |
| 	pmd_t *pmd, *pmd_k;
 | |
| 
 | |
| 	pgd += index;
 | |
| 	pgd_k = init_mm.pgd + index;
 | |
| 
 | |
| 	if (!pgd_present(*pgd_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
 | |
| 	 * and redundant with the set_pmd() on non-PAE. As would
 | |
| 	 * set_pud.
 | |
| 	 */
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	pud_k = pud_offset(pgd_k, address);
 | |
| 	if (!pud_present(*pud_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	pmd_k = pmd_offset(pud_k, address);
 | |
| 	if (!pmd_present(*pmd_k))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		set_pmd(pmd, *pmd_k);
 | |
| 	else
 | |
| 		BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
 | |
| 
 | |
| 	return pmd_k;
 | |
| }
 | |
| 
 | |
| void vmalloc_sync_all(void)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 
 | |
| 	if (SHARED_KERNEL_PMD)
 | |
| 		return;
 | |
| 
 | |
| 	for (address = VMALLOC_START & PMD_MASK;
 | |
| 	     address >= TASK_SIZE && address < FIXADDR_TOP;
 | |
| 	     address += PMD_SIZE) {
 | |
| 
 | |
| 		unsigned long flags;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		spin_lock_irqsave(&pgd_lock, flags);
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			if (!vmalloc_sync_one(page_address(page), address))
 | |
| 				break;
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 32-bit:
 | |
|  *
 | |
|  *   Handle a fault on the vmalloc or module mapping area
 | |
|  */
 | |
| static noinline int vmalloc_fault(unsigned long address)
 | |
| {
 | |
| 	unsigned long pgd_paddr;
 | |
| 	pmd_t *pmd_k;
 | |
| 	pte_t *pte_k;
 | |
| 
 | |
| 	/* Make sure we are in vmalloc area: */
 | |
| 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronize this task's top level page-table
 | |
| 	 * with the 'reference' page table.
 | |
| 	 *
 | |
| 	 * Do _not_ use "current" here. We might be inside
 | |
| 	 * an interrupt in the middle of a task switch..
 | |
| 	 */
 | |
| 	pgd_paddr = read_cr3();
 | |
| 	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 | |
| 	if (!pmd_k)
 | |
| 		return -1;
 | |
| 
 | |
| 	pte_k = pte_offset_kernel(pmd_k, address);
 | |
| 	if (!pte_present(*pte_k))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Did it hit the DOS screen memory VA from vm86 mode?
 | |
|  */
 | |
| static inline void
 | |
| check_v8086_mode(struct pt_regs *regs, unsigned long address,
 | |
| 		 struct task_struct *tsk)
 | |
| {
 | |
| 	unsigned long bit;
 | |
| 
 | |
| 	if (!v8086_mode(regs))
 | |
| 		return;
 | |
| 
 | |
| 	bit = (address - 0xA0000) >> PAGE_SHIFT;
 | |
| 	if (bit < 32)
 | |
| 		tsk->thread.screen_bitmap |= 1 << bit;
 | |
| }
 | |
| 
 | |
| static bool low_pfn(unsigned long pfn)
 | |
| {
 | |
| 	return pfn < max_low_pfn;
 | |
| }
 | |
| 
 | |
| static void dump_pagetable(unsigned long address)
 | |
| {
 | |
| 	pgd_t *base = __va(read_cr3());
 | |
| 	pgd_t *pgd = &base[pgd_index(address)];
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| #ifdef CONFIG_X86_PAE
 | |
| 	printk("*pdpt = %016Lx ", pgd_val(*pgd));
 | |
| 	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 | |
| 		goto out;
 | |
| #endif
 | |
| 	pmd = pmd_offset(pud_offset(pgd, address), address);
 | |
| 	printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 | |
| 
 | |
| 	/*
 | |
| 	 * We must not directly access the pte in the highpte
 | |
| 	 * case if the page table is located in highmem.
 | |
| 	 * And let's rather not kmap-atomic the pte, just in case
 | |
| 	 * it's allocated already:
 | |
| 	 */
 | |
| 	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 | |
| out:
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_X86_64: */
 | |
| 
 | |
| void vmalloc_sync_all(void)
 | |
| {
 | |
| 	unsigned long address;
 | |
| 
 | |
| 	for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
 | |
| 	     address += PGDIR_SIZE) {
 | |
| 
 | |
| 		const pgd_t *pgd_ref = pgd_offset_k(address);
 | |
| 		unsigned long flags;
 | |
| 		struct page *page;
 | |
| 
 | |
| 		if (pgd_none(*pgd_ref))
 | |
| 			continue;
 | |
| 
 | |
| 		spin_lock_irqsave(&pgd_lock, flags);
 | |
| 		list_for_each_entry(page, &pgd_list, lru) {
 | |
| 			pgd_t *pgd;
 | |
| 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
 | |
| 			if (pgd_none(*pgd))
 | |
| 				set_pgd(pgd, *pgd_ref);
 | |
| 			else
 | |
| 				BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 | |
| 		}
 | |
| 		spin_unlock_irqrestore(&pgd_lock, flags);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 64-bit:
 | |
|  *
 | |
|  *   Handle a fault on the vmalloc area
 | |
|  *
 | |
|  * This assumes no large pages in there.
 | |
|  */
 | |
| static noinline int vmalloc_fault(unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd, *pgd_ref;
 | |
| 	pud_t *pud, *pud_ref;
 | |
| 	pmd_t *pmd, *pmd_ref;
 | |
| 	pte_t *pte, *pte_ref;
 | |
| 
 | |
| 	/* Make sure we are in vmalloc area: */
 | |
| 	if (!(address >= VMALLOC_START && address < VMALLOC_END))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy kernel mappings over when needed. This can also
 | |
| 	 * happen within a race in page table update. In the later
 | |
| 	 * case just flush:
 | |
| 	 */
 | |
| 	pgd = pgd_offset(current->active_mm, address);
 | |
| 	pgd_ref = pgd_offset_k(address);
 | |
| 	if (pgd_none(*pgd_ref))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pgd_none(*pgd))
 | |
| 		set_pgd(pgd, *pgd_ref);
 | |
| 	else
 | |
| 		BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
 | |
| 
 | |
| 	/*
 | |
| 	 * Below here mismatches are bugs because these lower tables
 | |
| 	 * are shared:
 | |
| 	 */
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	pud_ref = pud_offset(pgd_ref, address);
 | |
| 	if (pud_none(*pud_ref))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
 | |
| 		BUG();
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	pmd_ref = pmd_offset(pud_ref, address);
 | |
| 	if (pmd_none(*pmd_ref))
 | |
| 		return -1;
 | |
| 
 | |
| 	if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
 | |
| 		BUG();
 | |
| 
 | |
| 	pte_ref = pte_offset_kernel(pmd_ref, address);
 | |
| 	if (!pte_present(*pte_ref))
 | |
| 		return -1;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't use pte_page here, because the mappings can point
 | |
| 	 * outside mem_map, and the NUMA hash lookup cannot handle
 | |
| 	 * that:
 | |
| 	 */
 | |
| 	if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
 | |
| 		BUG();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char errata93_warning[] =
 | |
| KERN_ERR 
 | |
| "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 | |
| "******* Working around it, but it may cause SEGVs or burn power.\n"
 | |
| "******* Please consider a BIOS update.\n"
 | |
| "******* Disabling USB legacy in the BIOS may also help.\n";
 | |
| 
 | |
| /*
 | |
|  * No vm86 mode in 64-bit mode:
 | |
|  */
 | |
| static inline void
 | |
| check_v8086_mode(struct pt_regs *regs, unsigned long address,
 | |
| 		 struct task_struct *tsk)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int bad_address(void *p)
 | |
| {
 | |
| 	unsigned long dummy;
 | |
| 
 | |
| 	return probe_kernel_address((unsigned long *)p, dummy);
 | |
| }
 | |
| 
 | |
| static void dump_pagetable(unsigned long address)
 | |
| {
 | |
| 	pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
 | |
| 	pgd_t *pgd = base + pgd_index(address);
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (bad_address(pgd))
 | |
| 		goto bad;
 | |
| 
 | |
| 	printk("PGD %lx ", pgd_val(*pgd));
 | |
| 
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (bad_address(pud))
 | |
| 		goto bad;
 | |
| 
 | |
| 	printk("PUD %lx ", pud_val(*pud));
 | |
| 	if (!pud_present(*pud) || pud_large(*pud))
 | |
| 		goto out;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (bad_address(pmd))
 | |
| 		goto bad;
 | |
| 
 | |
| 	printk("PMD %lx ", pmd_val(*pmd));
 | |
| 	if (!pmd_present(*pmd) || pmd_large(*pmd))
 | |
| 		goto out;
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (bad_address(pte))
 | |
| 		goto bad;
 | |
| 
 | |
| 	printk("PTE %lx", pte_val(*pte));
 | |
| out:
 | |
| 	printk("\n");
 | |
| 	return;
 | |
| bad:
 | |
| 	printk("BAD\n");
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_X86_64 */
 | |
| 
 | |
| /*
 | |
|  * Workaround for K8 erratum #93 & buggy BIOS.
 | |
|  *
 | |
|  * BIOS SMM functions are required to use a specific workaround
 | |
|  * to avoid corruption of the 64bit RIP register on C stepping K8.
 | |
|  *
 | |
|  * A lot of BIOS that didn't get tested properly miss this.
 | |
|  *
 | |
|  * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 | |
|  * Try to work around it here.
 | |
|  *
 | |
|  * Note we only handle faults in kernel here.
 | |
|  * Does nothing on 32-bit.
 | |
|  */
 | |
| static int is_errata93(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (address != regs->ip)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((address >> 32) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	address |= 0xffffffffUL << 32;
 | |
| 	if ((address >= (u64)_stext && address <= (u64)_etext) ||
 | |
| 	    (address >= MODULES_VADDR && address <= MODULES_END)) {
 | |
| 		printk_once(errata93_warning);
 | |
| 		regs->ip = address;
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 | |
|  * to illegal addresses >4GB.
 | |
|  *
 | |
|  * We catch this in the page fault handler because these addresses
 | |
|  * are not reachable. Just detect this case and return.  Any code
 | |
|  * segment in LDT is compatibility mode.
 | |
|  */
 | |
| static int is_errata100(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 | |
| 		return 1;
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 | |
| {
 | |
| #ifdef CONFIG_X86_F00F_BUG
 | |
| 	unsigned long nr;
 | |
| 
 | |
| 	/*
 | |
| 	 * Pentium F0 0F C7 C8 bug workaround:
 | |
| 	 */
 | |
| 	if (boot_cpu_data.f00f_bug) {
 | |
| 		nr = (address - idt_descr.address) >> 3;
 | |
| 
 | |
| 		if (nr == 6) {
 | |
| 			do_invalid_op(regs, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const char nx_warning[] = KERN_CRIT
 | |
| "kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
 | |
| 
 | |
| static void
 | |
| show_fault_oops(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address)
 | |
| {
 | |
| 	if (!oops_may_print())
 | |
| 		return;
 | |
| 
 | |
| 	if (error_code & PF_INSTR) {
 | |
| 		unsigned int level;
 | |
| 
 | |
| 		pte_t *pte = lookup_address(address, &level);
 | |
| 
 | |
| 		if (pte && pte_present(*pte) && !pte_exec(*pte))
 | |
| 			printk(nx_warning, current_uid());
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_ALERT "BUG: unable to handle kernel ");
 | |
| 	if (address < PAGE_SIZE)
 | |
| 		printk(KERN_CONT "NULL pointer dereference");
 | |
| 	else
 | |
| 		printk(KERN_CONT "paging request");
 | |
| 
 | |
| 	printk(KERN_CONT " at %p\n", (void *) address);
 | |
| 	printk(KERN_ALERT "IP:");
 | |
| 	printk_address(regs->ip, 1);
 | |
| 
 | |
| 	dump_pagetable(address);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 | |
| 	    unsigned long address)
 | |
| {
 | |
| 	struct task_struct *tsk;
 | |
| 	unsigned long flags;
 | |
| 	int sig;
 | |
| 
 | |
| 	flags = oops_begin();
 | |
| 	tsk = current;
 | |
| 	sig = SIGKILL;
 | |
| 
 | |
| 	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 | |
| 	       tsk->comm, address);
 | |
| 	dump_pagetable(address);
 | |
| 
 | |
| 	tsk->thread.cr2		= address;
 | |
| 	tsk->thread.trap_no	= 14;
 | |
| 	tsk->thread.error_code	= error_code;
 | |
| 
 | |
| 	if (__die("Bad pagetable", regs, error_code))
 | |
| 		sig = 0;
 | |
| 
 | |
| 	oops_end(flags, regs, sig);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| no_context(struct pt_regs *regs, unsigned long error_code,
 | |
| 	   unsigned long address)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	unsigned long *stackend;
 | |
| 	unsigned long flags;
 | |
| 	int sig;
 | |
| 
 | |
| 	/* Are we prepared to handle this kernel fault? */
 | |
| 	if (fixup_exception(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * 32-bit:
 | |
| 	 *
 | |
| 	 *   Valid to do another page fault here, because if this fault
 | |
| 	 *   had been triggered by is_prefetch fixup_exception would have
 | |
| 	 *   handled it.
 | |
| 	 *
 | |
| 	 * 64-bit:
 | |
| 	 *
 | |
| 	 *   Hall of shame of CPU/BIOS bugs.
 | |
| 	 */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	if (is_errata93(regs, address))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Oops. The kernel tried to access some bad page. We'll have to
 | |
| 	 * terminate things with extreme prejudice:
 | |
| 	 */
 | |
| 	flags = oops_begin();
 | |
| 
 | |
| 	show_fault_oops(regs, error_code, address);
 | |
| 
 | |
| 	stackend = end_of_stack(tsk);
 | |
| 	if (*stackend != STACK_END_MAGIC)
 | |
| 		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
 | |
| 
 | |
| 	tsk->thread.cr2		= address;
 | |
| 	tsk->thread.trap_no	= 14;
 | |
| 	tsk->thread.error_code	= error_code;
 | |
| 
 | |
| 	sig = SIGKILL;
 | |
| 	if (__die("Oops", regs, error_code))
 | |
| 		sig = 0;
 | |
| 
 | |
| 	/* Executive summary in case the body of the oops scrolled away */
 | |
| 	printk(KERN_EMERG "CR2: %016lx\n", address);
 | |
| 
 | |
| 	oops_end(flags, regs, sig);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Print out info about fatal segfaults, if the show_unhandled_signals
 | |
|  * sysctl is set:
 | |
|  */
 | |
| static inline void
 | |
| show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 | |
| 		unsigned long address, struct task_struct *tsk)
 | |
| {
 | |
| 	if (!unhandled_signal(tsk, SIGSEGV))
 | |
| 		return;
 | |
| 
 | |
| 	if (!printk_ratelimit())
 | |
| 		return;
 | |
| 
 | |
| 	printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
 | |
| 		task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
 | |
| 		tsk->comm, task_pid_nr(tsk), address,
 | |
| 		(void *)regs->ip, (void *)regs->sp, error_code);
 | |
| 
 | |
| 	print_vma_addr(KERN_CONT " in ", regs->ip);
 | |
| 
 | |
| 	printk(KERN_CONT "\n");
 | |
| }
 | |
| 
 | |
| static void
 | |
| __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 | |
| 		       unsigned long address, int si_code)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 
 | |
| 	/* User mode accesses just cause a SIGSEGV */
 | |
| 	if (error_code & PF_USER) {
 | |
| 		/*
 | |
| 		 * It's possible to have interrupts off here:
 | |
| 		 */
 | |
| 		local_irq_enable();
 | |
| 
 | |
| 		/*
 | |
| 		 * Valid to do another page fault here because this one came
 | |
| 		 * from user space:
 | |
| 		 */
 | |
| 		if (is_prefetch(regs, error_code, address))
 | |
| 			return;
 | |
| 
 | |
| 		if (is_errata100(regs, address))
 | |
| 			return;
 | |
| 
 | |
| 		if (unlikely(show_unhandled_signals))
 | |
| 			show_signal_msg(regs, error_code, address, tsk);
 | |
| 
 | |
| 		/* Kernel addresses are always protection faults: */
 | |
| 		tsk->thread.cr2		= address;
 | |
| 		tsk->thread.error_code	= error_code | (address >= TASK_SIZE);
 | |
| 		tsk->thread.trap_no	= 14;
 | |
| 
 | |
| 		force_sig_info_fault(SIGSEGV, si_code, address, tsk);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_f00f_bug(regs, address))
 | |
| 		return;
 | |
| 
 | |
| 	no_context(regs, error_code, address);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 | |
| 		     unsigned long address)
 | |
| {
 | |
| 	__bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static void
 | |
| __bad_area(struct pt_regs *regs, unsigned long error_code,
 | |
| 	   unsigned long address, int si_code)
 | |
| {
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 
 | |
| 	/*
 | |
| 	 * Something tried to access memory that isn't in our memory map..
 | |
| 	 * Fix it, but check if it's kernel or user first..
 | |
| 	 */
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	__bad_area_nosemaphore(regs, error_code, address, si_code);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	__bad_area(regs, error_code, address, SEGV_MAPERR);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 | |
| 		      unsigned long address)
 | |
| {
 | |
| 	__bad_area(regs, error_code, address, SEGV_ACCERR);
 | |
| }
 | |
| 
 | |
| /* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
 | |
| static void
 | |
| out_of_memory(struct pt_regs *regs, unsigned long error_code,
 | |
| 	      unsigned long address)
 | |
| {
 | |
| 	/*
 | |
| 	 * We ran out of memory, call the OOM killer, and return the userspace
 | |
| 	 * (which will retry the fault, or kill us if we got oom-killed):
 | |
| 	 */
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 	pagefault_out_of_memory();
 | |
| }
 | |
| 
 | |
| static void
 | |
| do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 | |
| 	  unsigned int fault)
 | |
| {
 | |
| 	struct task_struct *tsk = current;
 | |
| 	struct mm_struct *mm = tsk->mm;
 | |
| 	int code = BUS_ADRERR;
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 
 | |
| 	/* Kernel mode? Handle exceptions or die: */
 | |
| 	if (!(error_code & PF_USER))
 | |
| 		no_context(regs, error_code, address);
 | |
| 
 | |
| 	/* User-space => ok to do another page fault: */
 | |
| 	if (is_prefetch(regs, error_code, address))
 | |
| 		return;
 | |
| 
 | |
| 	tsk->thread.cr2		= address;
 | |
| 	tsk->thread.error_code	= error_code;
 | |
| 	tsk->thread.trap_no	= 14;
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_FAILURE
 | |
| 	if (fault & VM_FAULT_HWPOISON) {
 | |
| 		printk(KERN_ERR
 | |
| 	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 | |
| 			tsk->comm, tsk->pid, address);
 | |
| 		code = BUS_MCEERR_AR;
 | |
| 	}
 | |
| #endif
 | |
| 	force_sig_info_fault(SIGBUS, code, address, tsk);
 | |
| }
 | |
| 
 | |
| static noinline void
 | |
| mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 | |
| 	       unsigned long address, unsigned int fault)
 | |
| {
 | |
| 	if (fault & VM_FAULT_OOM) {
 | |
| 		out_of_memory(regs, error_code, address);
 | |
| 	} else {
 | |
| 		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON))
 | |
| 			do_sigbus(regs, error_code, address, fault);
 | |
| 		else
 | |
| 			BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int spurious_fault_check(unsigned long error_code, pte_t *pte)
 | |
| {
 | |
| 	if ((error_code & PF_WRITE) && !pte_write(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((error_code & PF_INSTR) && !pte_exec(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handle a spurious fault caused by a stale TLB entry.
 | |
|  *
 | |
|  * This allows us to lazily refresh the TLB when increasing the
 | |
|  * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
 | |
|  * eagerly is very expensive since that implies doing a full
 | |
|  * cross-processor TLB flush, even if no stale TLB entries exist
 | |
|  * on other processors.
 | |
|  *
 | |
|  * There are no security implications to leaving a stale TLB when
 | |
|  * increasing the permissions on a page.
 | |
|  */
 | |
| static noinline int
 | |
| spurious_fault(unsigned long error_code, unsigned long address)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Reserved-bit violation or user access to kernel space? */
 | |
| 	if (error_code & (PF_USER | PF_RSVD))
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = init_mm.pgd + pgd_index(address);
 | |
| 	if (!pgd_present(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(pgd, address);
 | |
| 	if (!pud_present(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pud_large(*pud))
 | |
| 		return spurious_fault_check(error_code, (pte_t *) pud);
 | |
| 
 | |
| 	pmd = pmd_offset(pud, address);
 | |
| 	if (!pmd_present(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return spurious_fault_check(error_code, (pte_t *) pmd);
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, address);
 | |
| 	if (!pte_present(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	ret = spurious_fault_check(error_code, pte);
 | |
| 	if (!ret)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure we have permissions in PMD.
 | |
| 	 * If not, then there's a bug in the page tables:
 | |
| 	 */
 | |
| 	ret = spurious_fault_check(error_code, (pte_t *) pmd);
 | |
| 	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int show_unhandled_signals = 1;
 | |
| 
 | |
| static inline int
 | |
| access_error(unsigned long error_code, int write, struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (write) {
 | |
| 		/* write, present and write, not present: */
 | |
| 		if (unlikely(!(vma->vm_flags & VM_WRITE)))
 | |
| 			return 1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* read, present: */
 | |
| 	if (unlikely(error_code & PF_PROT))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* read, not present: */
 | |
| 	if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int fault_in_kernel_space(unsigned long address)
 | |
| {
 | |
| 	return address >= TASK_SIZE_MAX;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine handles page faults.  It determines the address,
 | |
|  * and the problem, and then passes it off to one of the appropriate
 | |
|  * routines.
 | |
|  */
 | |
| dotraplinkage void __kprobes
 | |
| do_page_fault(struct pt_regs *regs, unsigned long error_code)
 | |
| {
 | |
| 	struct vm_area_struct *vma;
 | |
| 	struct task_struct *tsk;
 | |
| 	unsigned long address;
 | |
| 	struct mm_struct *mm;
 | |
| 	int write;
 | |
| 	int fault;
 | |
| 
 | |
| 	tsk = current;
 | |
| 	mm = tsk->mm;
 | |
| 
 | |
| 	/* Get the faulting address: */
 | |
| 	address = read_cr2();
 | |
| 
 | |
| 	/*
 | |
| 	 * Detect and handle instructions that would cause a page fault for
 | |
| 	 * both a tracked kernel page and a userspace page.
 | |
| 	 */
 | |
| 	if (kmemcheck_active(regs))
 | |
| 		kmemcheck_hide(regs);
 | |
| 	prefetchw(&mm->mmap_sem);
 | |
| 
 | |
| 	if (unlikely(kmmio_fault(regs, address)))
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * We fault-in kernel-space virtual memory on-demand. The
 | |
| 	 * 'reference' page table is init_mm.pgd.
 | |
| 	 *
 | |
| 	 * NOTE! We MUST NOT take any locks for this case. We may
 | |
| 	 * be in an interrupt or a critical region, and should
 | |
| 	 * only copy the information from the master page table,
 | |
| 	 * nothing more.
 | |
| 	 *
 | |
| 	 * This verifies that the fault happens in kernel space
 | |
| 	 * (error_code & 4) == 0, and that the fault was not a
 | |
| 	 * protection error (error_code & 9) == 0.
 | |
| 	 */
 | |
| 	if (unlikely(fault_in_kernel_space(address))) {
 | |
| 		if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
 | |
| 			if (vmalloc_fault(address) >= 0)
 | |
| 				return;
 | |
| 
 | |
| 			if (kmemcheck_fault(regs, address, error_code))
 | |
| 				return;
 | |
| 		}
 | |
| 
 | |
| 		/* Can handle a stale RO->RW TLB: */
 | |
| 		if (spurious_fault(error_code, address))
 | |
| 			return;
 | |
| 
 | |
| 		/* kprobes don't want to hook the spurious faults: */
 | |
| 		if (notify_page_fault(regs))
 | |
| 			return;
 | |
| 		/*
 | |
| 		 * Don't take the mm semaphore here. If we fixup a prefetch
 | |
| 		 * fault we could otherwise deadlock:
 | |
| 		 */
 | |
| 		bad_area_nosemaphore(regs, error_code, address);
 | |
| 
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* kprobes don't want to hook the spurious faults: */
 | |
| 	if (unlikely(notify_page_fault(regs)))
 | |
| 		return;
 | |
| 	/*
 | |
| 	 * It's safe to allow irq's after cr2 has been saved and the
 | |
| 	 * vmalloc fault has been handled.
 | |
| 	 *
 | |
| 	 * User-mode registers count as a user access even for any
 | |
| 	 * potential system fault or CPU buglet:
 | |
| 	 */
 | |
| 	if (user_mode_vm(regs)) {
 | |
| 		local_irq_enable();
 | |
| 		error_code |= PF_USER;
 | |
| 	} else {
 | |
| 		if (regs->flags & X86_EFLAGS_IF)
 | |
| 			local_irq_enable();
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(error_code & PF_RSVD))
 | |
| 		pgtable_bad(regs, error_code, address);
 | |
| 
 | |
| 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're in an interrupt, have no user context or are running
 | |
| 	 * in an atomic region then we must not take the fault:
 | |
| 	 */
 | |
| 	if (unlikely(in_atomic() || !mm)) {
 | |
| 		bad_area_nosemaphore(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * When running in the kernel we expect faults to occur only to
 | |
| 	 * addresses in user space.  All other faults represent errors in
 | |
| 	 * the kernel and should generate an OOPS.  Unfortunately, in the
 | |
| 	 * case of an erroneous fault occurring in a code path which already
 | |
| 	 * holds mmap_sem we will deadlock attempting to validate the fault
 | |
| 	 * against the address space.  Luckily the kernel only validly
 | |
| 	 * references user space from well defined areas of code, which are
 | |
| 	 * listed in the exceptions table.
 | |
| 	 *
 | |
| 	 * As the vast majority of faults will be valid we will only perform
 | |
| 	 * the source reference check when there is a possibility of a
 | |
| 	 * deadlock. Attempt to lock the address space, if we cannot we then
 | |
| 	 * validate the source. If this is invalid we can skip the address
 | |
| 	 * space check, thus avoiding the deadlock:
 | |
| 	 */
 | |
| 	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
 | |
| 		if ((error_code & PF_USER) == 0 &&
 | |
| 		    !search_exception_tables(regs->ip)) {
 | |
| 			bad_area_nosemaphore(regs, error_code, address);
 | |
| 			return;
 | |
| 		}
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * The above down_read_trylock() might have succeeded in
 | |
| 		 * which case we'll have missed the might_sleep() from
 | |
| 		 * down_read():
 | |
| 		 */
 | |
| 		might_sleep();
 | |
| 	}
 | |
| 
 | |
| 	vma = find_vma(mm, address);
 | |
| 	if (unlikely(!vma)) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (likely(vma->vm_start <= address))
 | |
| 		goto good_area;
 | |
| 	if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (error_code & PF_USER) {
 | |
| 		/*
 | |
| 		 * Accessing the stack below %sp is always a bug.
 | |
| 		 * The large cushion allows instructions like enter
 | |
| 		 * and pusha to work. ("enter $65535, $31" pushes
 | |
| 		 * 32 pointers and then decrements %sp by 65535.)
 | |
| 		 */
 | |
| 		if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
 | |
| 			bad_area(regs, error_code, address);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (unlikely(expand_stack(vma, address))) {
 | |
| 		bad_area(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Ok, we have a good vm_area for this memory access, so
 | |
| 	 * we can handle it..
 | |
| 	 */
 | |
| good_area:
 | |
| 	write = error_code & PF_WRITE;
 | |
| 
 | |
| 	if (unlikely(access_error(error_code, write, vma))) {
 | |
| 		bad_area_access_error(regs, error_code, address);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * If for any reason at all we couldn't handle the fault,
 | |
| 	 * make sure we exit gracefully rather than endlessly redo
 | |
| 	 * the fault:
 | |
| 	 */
 | |
| 	fault = handle_mm_fault(mm, vma, address, write ? FAULT_FLAG_WRITE : 0);
 | |
| 
 | |
| 	if (unlikely(fault & VM_FAULT_ERROR)) {
 | |
| 		mm_fault_error(regs, error_code, address, fault);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (fault & VM_FAULT_MAJOR) {
 | |
| 		tsk->maj_flt++;
 | |
| 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
 | |
| 				     regs, address);
 | |
| 	} else {
 | |
| 		tsk->min_flt++;
 | |
| 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
 | |
| 				     regs, address);
 | |
| 	}
 | |
| 
 | |
| 	check_v8086_mode(regs, address, tsk);
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| }
 |