android_kernel_cmhtcleo/sound/aoa/codecs/tas.c
2010-08-27 11:19:57 +02:00

1040 lines
26 KiB
C

/*
* Apple Onboard Audio driver for tas codec
*
* Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
*
* GPL v2, can be found in COPYING.
*
* Open questions:
* - How to distinguish between 3004 and versions?
*
* FIXMEs:
* - This codec driver doesn't honour the 'connected'
* property of the aoa_codec struct, hence if
* it is used in machines where not everything is
* connected it will display wrong mixer elements.
* - Driver assumes that the microphone is always
* monaureal and connected to the right channel of
* the input. This should also be a codec-dependent
* flag, maybe the codec should have 3 different
* bits for the three different possibilities how
* it can be hooked up...
* But as long as I don't see any hardware hooked
* up that way...
* - As Apple notes in their code, the tas3004 seems
* to delay the right channel by one sample. You can
* see this when for example recording stereo in
* audacity, or recording the tas output via cable
* on another machine (use a sinus generator or so).
* I tried programming the BiQuads but couldn't
* make the delay work, maybe someone can read the
* datasheet and fix it. The relevant Apple comment
* is in AppleTAS3004Audio.cpp lines 1637 ff. Note
* that their comment describing how they program
* the filters sucks...
*
* Other things:
* - this should actually register *two* aoa_codec
* structs since it has two inputs. Then it must
* use the prepare callback to forbid running the
* secondary output on a different clock.
* Also, whatever bus knows how to do this must
* provide two soundbus_dev devices and the fabric
* must be able to link them correctly.
*
* I don't even know if Apple ever uses the second
* port on the tas3004 though, I don't think their
* i2s controllers can even do it. OTOH, they all
* derive the clocks from common clocks, so it
* might just be possible. The framework allows the
* codec to refine the transfer_info items in the
* usable callback, so we can simply remove the
* rates the second instance is not using when it
* actually is in use.
* Maybe we'll need to make the sound busses have
* a 'clock group id' value so the codec can
* determine if the two outputs can be driven at
* the same time. But that is likely overkill, up
* to the fabric to not link them up incorrectly,
* and up to the hardware designer to not wire
* them up in some weird unusable way.
*/
#include <stddef.h>
#include <linux/i2c.h>
#include <asm/pmac_low_i2c.h>
#include <asm/prom.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/mutex.h>
MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("tas codec driver for snd-aoa");
#include "tas.h"
#include "tas-gain-table.h"
#include "tas-basstreble.h"
#include "../aoa.h"
#include "../soundbus/soundbus.h"
#define PFX "snd-aoa-codec-tas: "
struct tas {
struct aoa_codec codec;
struct i2c_client *i2c;
u32 mute_l:1, mute_r:1 ,
controls_created:1 ,
drc_enabled:1,
hw_enabled:1;
u8 cached_volume_l, cached_volume_r;
u8 mixer_l[3], mixer_r[3];
u8 bass, treble;
u8 acr;
int drc_range;
/* protects hardware access against concurrency from
* userspace when hitting controls and during
* codec init/suspend/resume */
struct mutex mtx;
};
static int tas_reset_init(struct tas *tas);
static struct tas *codec_to_tas(struct aoa_codec *codec)
{
return container_of(codec, struct tas, codec);
}
static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
{
if (len == 1)
return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
else
return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
}
static void tas3004_set_drc(struct tas *tas)
{
unsigned char val[6];
if (tas->drc_enabled)
val[0] = 0x50; /* 3:1 above threshold */
else
val[0] = 0x51; /* disabled */
val[1] = 0x02; /* 1:1 below threshold */
if (tas->drc_range > 0xef)
val[2] = 0xef;
else if (tas->drc_range < 0)
val[2] = 0x00;
else
val[2] = tas->drc_range;
val[3] = 0xb0;
val[4] = 0x60;
val[5] = 0xa0;
tas_write_reg(tas, TAS_REG_DRC, 6, val);
}
static void tas_set_treble(struct tas *tas)
{
u8 tmp;
tmp = tas3004_treble(tas->treble);
tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
}
static void tas_set_bass(struct tas *tas)
{
u8 tmp;
tmp = tas3004_bass(tas->bass);
tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
}
static void tas_set_volume(struct tas *tas)
{
u8 block[6];
int tmp;
u8 left, right;
left = tas->cached_volume_l;
right = tas->cached_volume_r;
if (left > 177) left = 177;
if (right > 177) right = 177;
if (tas->mute_l) left = 0;
if (tas->mute_r) right = 0;
/* analysing the volume and mixer tables shows
* that they are similar enough when we shift
* the mixer table down by 4 bits. The error
* is miniscule, in just one item the error
* is 1, at a value of 0x07f17b (mixer table
* value is 0x07f17a) */
tmp = tas_gaintable[left];
block[0] = tmp>>20;
block[1] = tmp>>12;
block[2] = tmp>>4;
tmp = tas_gaintable[right];
block[3] = tmp>>20;
block[4] = tmp>>12;
block[5] = tmp>>4;
tas_write_reg(tas, TAS_REG_VOL, 6, block);
}
static void tas_set_mixer(struct tas *tas)
{
u8 block[9];
int tmp, i;
u8 val;
for (i=0;i<3;i++) {
val = tas->mixer_l[i];
if (val > 177) val = 177;
tmp = tas_gaintable[val];
block[3*i+0] = tmp>>16;
block[3*i+1] = tmp>>8;
block[3*i+2] = tmp;
}
tas_write_reg(tas, TAS_REG_LMIX, 9, block);
for (i=0;i<3;i++) {
val = tas->mixer_r[i];
if (val > 177) val = 177;
tmp = tas_gaintable[val];
block[3*i+0] = tmp>>16;
block[3*i+1] = tmp>>8;
block[3*i+2] = tmp;
}
tas_write_reg(tas, TAS_REG_RMIX, 9, block);
}
/* alsa stuff */
static int tas_dev_register(struct snd_device *dev)
{
return 0;
}
static struct snd_device_ops ops = {
.dev_register = tas_dev_register,
};
static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 177;
return 0;
}
static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->cached_volume_l;
ucontrol->value.integer.value[1] = tas->cached_volume_r;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < 0 ||
ucontrol->value.integer.value[0] > 177)
return -EINVAL;
if (ucontrol->value.integer.value[1] < 0 ||
ucontrol->value.integer.value[1] > 177)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->cached_volume_l == ucontrol->value.integer.value[0]
&& tas->cached_volume_r == ucontrol->value.integer.value[1]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->cached_volume_l = ucontrol->value.integer.value[0];
tas->cached_volume_r = ucontrol->value.integer.value[1];
if (tas->hw_enabled)
tas_set_volume(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new volume_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_vol_info,
.get = tas_snd_vol_get,
.put = tas_snd_vol_put,
};
#define tas_snd_mute_info snd_ctl_boolean_stereo_info
static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = !tas->mute_l;
ucontrol->value.integer.value[1] = !tas->mute_r;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
if (tas->mute_l == !ucontrol->value.integer.value[0]
&& tas->mute_r == !ucontrol->value.integer.value[1]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->mute_l = !ucontrol->value.integer.value[0];
tas->mute_r = !ucontrol->value.integer.value[1];
if (tas->hw_enabled)
tas_set_volume(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new mute_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_mute_info,
.get = tas_snd_mute_get,
.put = tas_snd_mute_put,
};
static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 177;
return 0;
}
static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->mixer_l[idx];
ucontrol->value.integer.value[1] = tas->mixer_r[idx];
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
int idx = kcontrol->private_value;
mutex_lock(&tas->mtx);
if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
&& tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->mixer_l[idx] = ucontrol->value.integer.value[0];
tas->mixer_r[idx] = ucontrol->value.integer.value[1];
if (tas->hw_enabled)
tas_set_mixer(tas);
mutex_unlock(&tas->mtx);
return 1;
}
#define MIXER_CONTROL(n,descr,idx) \
static struct snd_kcontrol_new n##_control = { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = descr " Playback Volume", \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
.info = tas_snd_mixer_info, \
.get = tas_snd_mixer_get, \
.put = tas_snd_mixer_put, \
.private_value = idx, \
}
MIXER_CONTROL(pcm1, "PCM", 0);
MIXER_CONTROL(monitor, "Monitor", 2);
static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = TAS3004_DRC_MAX;
return 0;
}
static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->drc_range;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < 0 ||
ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->drc_range == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->drc_range = ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas3004_set_drc(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new drc_range_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_drc_range_info,
.get = tas_snd_drc_range_get,
.put = tas_snd_drc_range_put,
};
#define tas_snd_drc_switch_info snd_ctl_boolean_mono_info
static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->drc_enabled;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->drc_enabled = !!ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas3004_set_drc(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new drc_switch_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DRC Range Switch",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_drc_switch_info,
.get = tas_snd_drc_switch_get,
.put = tas_snd_drc_switch_put,
};
static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
static char *texts[] = { "Line-In", "Microphone" };
uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
uinfo->count = 1;
uinfo->value.enumerated.items = 2;
if (uinfo->value.enumerated.item > 1)
uinfo->value.enumerated.item = 1;
strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
return 0;
}
static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
int oldacr;
if (ucontrol->value.enumerated.item[0] > 1)
return -EINVAL;
mutex_lock(&tas->mtx);
oldacr = tas->acr;
/*
* Despite what the data sheet says in one place, the
* TAS_ACR_B_MONAUREAL bit forces mono output even when
* input A (line in) is selected.
*/
tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
if (ucontrol->value.enumerated.item[0])
tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
TAS_ACR_B_MON_SEL_RIGHT;
if (oldacr == tas->acr) {
mutex_unlock(&tas->mtx);
return 0;
}
if (tas->hw_enabled)
tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new capture_source_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
/* If we name this 'Input Source', it properly shows up in
* alsamixer as a selection, * but it's shown under the
* 'Playback' category.
* If I name it 'Capture Source', it shows up in strange
* ways (two bools of which one can be selected at a
* time) but at least it's shown in the 'Capture'
* category.
* I was told that this was due to backward compatibility,
* but I don't understand then why the mangling is *not*
* done when I name it "Input Source".....
*/
.name = "Capture Source",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_capture_source_info,
.get = tas_snd_capture_source_get,
.put = tas_snd_capture_source_put,
};
static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = TAS3004_TREBLE_MIN;
uinfo->value.integer.max = TAS3004_TREBLE_MAX;
return 0;
}
static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->treble;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->treble == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->treble = ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas_set_treble(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new treble_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Treble",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_treble_info,
.get = tas_snd_treble_get,
.put = tas_snd_treble_put,
};
static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = TAS3004_BASS_MIN;
uinfo->value.integer.max = TAS3004_BASS_MAX;
return 0;
}
static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
mutex_lock(&tas->mtx);
ucontrol->value.integer.value[0] = tas->bass;
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct tas *tas = snd_kcontrol_chip(kcontrol);
if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
return -EINVAL;
mutex_lock(&tas->mtx);
if (tas->bass == ucontrol->value.integer.value[0]) {
mutex_unlock(&tas->mtx);
return 0;
}
tas->bass = ucontrol->value.integer.value[0];
if (tas->hw_enabled)
tas_set_bass(tas);
mutex_unlock(&tas->mtx);
return 1;
}
static struct snd_kcontrol_new bass_control = {
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Bass",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = tas_snd_bass_info,
.get = tas_snd_bass_get,
.put = tas_snd_bass_put,
};
static struct transfer_info tas_transfers[] = {
{
/* input */
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.transfer_in = 1,
},
{
/* output */
.formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
.rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
.transfer_in = 0,
},
{}
};
static int tas_usable(struct codec_info_item *cii,
struct transfer_info *ti,
struct transfer_info *out)
{
return 1;
}
static int tas_reset_init(struct tas *tas)
{
u8 tmp;
tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
msleep(5);
tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
msleep(5);
tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
msleep(20);
tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
msleep(10);
tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
goto outerr;
tas->acr |= TAS_ACR_ANALOG_PDOWN;
if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
goto outerr;
tmp = 0;
if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
goto outerr;
tas3004_set_drc(tas);
/* Set treble & bass to 0dB */
tas->treble = TAS3004_TREBLE_ZERO;
tas->bass = TAS3004_BASS_ZERO;
tas_set_treble(tas);
tas_set_bass(tas);
tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
goto outerr;
return 0;
outerr:
return -ENODEV;
}
static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
{
struct tas *tas = cii->codec_data;
switch(clock) {
case CLOCK_SWITCH_PREPARE_SLAVE:
/* Clocks are going away, mute mute mute */
tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
tas->hw_enabled = 0;
break;
case CLOCK_SWITCH_SLAVE:
/* Clocks are back, re-init the codec */
mutex_lock(&tas->mtx);
tas_reset_init(tas);
tas_set_volume(tas);
tas_set_mixer(tas);
tas->hw_enabled = 1;
tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
mutex_unlock(&tas->mtx);
break;
default:
/* doesn't happen as of now */
return -EINVAL;
}
return 0;
}
#ifdef CONFIG_PM
/* we are controlled via i2c and assume that is always up
* If that wasn't the case, we'd have to suspend once
* our i2c device is suspended, and then take note of that! */
static int tas_suspend(struct tas *tas)
{
mutex_lock(&tas->mtx);
tas->hw_enabled = 0;
tas->acr |= TAS_ACR_ANALOG_PDOWN;
tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
mutex_unlock(&tas->mtx);
return 0;
}
static int tas_resume(struct tas *tas)
{
/* reset codec */
mutex_lock(&tas->mtx);
tas_reset_init(tas);
tas_set_volume(tas);
tas_set_mixer(tas);
tas->hw_enabled = 1;
mutex_unlock(&tas->mtx);
return 0;
}
static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
{
return tas_suspend(cii->codec_data);
}
static int _tas_resume(struct codec_info_item *cii)
{
return tas_resume(cii->codec_data);
}
#else /* CONFIG_PM */
#define _tas_suspend NULL
#define _tas_resume NULL
#endif /* CONFIG_PM */
static struct codec_info tas_codec_info = {
.transfers = tas_transfers,
/* in theory, we can drive it at 512 too...
* but so far the framework doesn't allow
* for that and I don't see much point in it. */
.sysclock_factor = 256,
/* same here, could be 32 for just one 16 bit format */
.bus_factor = 64,
.owner = THIS_MODULE,
.usable = tas_usable,
.switch_clock = tas_switch_clock,
.suspend = _tas_suspend,
.resume = _tas_resume,
};
static int tas_init_codec(struct aoa_codec *codec)
{
struct tas *tas = codec_to_tas(codec);
int err;
if (!tas->codec.gpio || !tas->codec.gpio->methods) {
printk(KERN_ERR PFX "gpios not assigned!!\n");
return -EINVAL;
}
mutex_lock(&tas->mtx);
if (tas_reset_init(tas)) {
printk(KERN_ERR PFX "tas failed to initialise\n");
mutex_unlock(&tas->mtx);
return -ENXIO;
}
tas->hw_enabled = 1;
mutex_unlock(&tas->mtx);
if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
aoa_get_card(),
&tas_codec_info, tas)) {
printk(KERN_ERR PFX "error attaching tas to soundbus\n");
return -ENODEV;
}
if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) {
printk(KERN_ERR PFX "failed to create tas snd device!\n");
return -ENODEV;
}
err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
if (err)
goto error;
err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
if (err)
goto error;
return 0;
error:
tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
snd_device_free(aoa_get_card(), tas);
return err;
}
static void tas_exit_codec(struct aoa_codec *codec)
{
struct tas *tas = codec_to_tas(codec);
if (!tas->codec.soundbus_dev)
return;
tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
}
static int tas_create(struct i2c_adapter *adapter,
struct device_node *node,
int addr)
{
struct i2c_board_info info;
struct i2c_client *client;
memset(&info, 0, sizeof(struct i2c_board_info));
strlcpy(info.type, "aoa_codec_tas", I2C_NAME_SIZE);
info.addr = addr;
info.platform_data = node;
client = i2c_new_device(adapter, &info);
if (!client)
return -ENODEV;
/*
* We know the driver is already loaded, so the device should be
* already bound. If not it means binding failed, and then there
* is no point in keeping the device instantiated.
*/
if (!client->driver) {
i2c_unregister_device(client);
return -ENODEV;
}
/*
* Let i2c-core delete that device on driver removal.
* This is safe because i2c-core holds the core_lock mutex for us.
*/
list_add_tail(&client->detected, &client->driver->clients);
return 0;
}
static int tas_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device_node *node = client->dev.platform_data;
struct tas *tas;
tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
if (!tas)
return -ENOMEM;
mutex_init(&tas->mtx);
tas->i2c = client;
i2c_set_clientdata(client, tas);
/* seems that half is a saner default */
tas->drc_range = TAS3004_DRC_MAX / 2;
strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
tas->codec.owner = THIS_MODULE;
tas->codec.init = tas_init_codec;
tas->codec.exit = tas_exit_codec;
tas->codec.node = of_node_get(node);
if (aoa_codec_register(&tas->codec)) {
goto fail;
}
printk(KERN_DEBUG
"snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
(unsigned int)client->addr, node->full_name);
return 0;
fail:
mutex_destroy(&tas->mtx);
kfree(tas);
return -EINVAL;
}
static int tas_i2c_attach(struct i2c_adapter *adapter)
{
struct device_node *busnode, *dev = NULL;
struct pmac_i2c_bus *bus;
bus = pmac_i2c_adapter_to_bus(adapter);
if (bus == NULL)
return -ENODEV;
busnode = pmac_i2c_get_bus_node(bus);
while ((dev = of_get_next_child(busnode, dev)) != NULL) {
if (of_device_is_compatible(dev, "tas3004")) {
const u32 *addr;
printk(KERN_DEBUG PFX "found tas3004\n");
addr = of_get_property(dev, "reg", NULL);
if (!addr)
continue;
return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f);
}
/* older machines have no 'codec' node with a 'compatible'
* property that says 'tas3004', they just have a 'deq'
* node without any such property... */
if (strcmp(dev->name, "deq") == 0) {
const u32 *_addr;
u32 addr;
printk(KERN_DEBUG PFX "found 'deq' node\n");
_addr = of_get_property(dev, "i2c-address", NULL);
if (!_addr)
continue;
addr = ((*_addr) >> 1) & 0x7f;
/* now, if the address doesn't match any of the two
* that a tas3004 can have, we cannot handle this.
* I doubt it ever happens but hey. */
if (addr != 0x34 && addr != 0x35)
continue;
return tas_create(adapter, dev, addr);
}
}
return -ENODEV;
}
static int tas_i2c_remove(struct i2c_client *client)
{
struct tas *tas = i2c_get_clientdata(client);
u8 tmp = TAS_ACR_ANALOG_PDOWN;
aoa_codec_unregister(&tas->codec);
of_node_put(tas->codec.node);
/* power down codec chip */
tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
mutex_destroy(&tas->mtx);
kfree(tas);
return 0;
}
static const struct i2c_device_id tas_i2c_id[] = {
{ "aoa_codec_tas", 0 },
{ }
};
static struct i2c_driver tas_driver = {
.driver = {
.name = "aoa_codec_tas",
.owner = THIS_MODULE,
},
.attach_adapter = tas_i2c_attach,
.probe = tas_i2c_probe,
.remove = tas_i2c_remove,
.id_table = tas_i2c_id,
};
static int __init tas_init(void)
{
return i2c_add_driver(&tas_driver);
}
static void __exit tas_exit(void)
{
i2c_del_driver(&tas_driver);
}
module_init(tas_init);
module_exit(tas_exit);