android_kernel_cmhtcleo/drivers/cpufreq/cpufreq_interactive.c
2010-11-05 12:15:26 +01:00

325 lines
8.2 KiB
C

/*
* drivers/cpufreq/cpufreq_interactive.c
*
* Copyright (C) 2010 Google, Inc.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Mike Chan (mike@android.com)
*
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/cpufreq.h>
#include <linux/mutex.h>
#include <linux/sched.h>
#include <linux/tick.h>
#include <linux/timer.h>
#include <linux/workqueue.h>
#include <asm/cputime.h>
static void (*pm_idle_old)(void);
static atomic_t active_count = ATOMIC_INIT(0);
static DEFINE_PER_CPU(struct timer_list, cpu_timer);
static DEFINE_PER_CPU(u64, time_in_idle);
static DEFINE_PER_CPU(u64, idle_exit_time);
static struct cpufreq_policy *policy;
static unsigned int target_freq;
/* Workqueues handle frequency scaling */
static struct workqueue_struct *up_wq;
static struct workqueue_struct *down_wq;
static struct work_struct freq_scale_work;
static u64 freq_change_time;
static u64 freq_change_time_in_idle;
static cpumask_t work_cpumask;
/*
* The minimum ammount of time to spend at a frequency before we can ramp down,
* default is 50ms.
*/
#define DEFAULT_MIN_SAMPLE_TIME 50000;
static unsigned long min_sample_time;
static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
static
#endif
struct cpufreq_governor cpufreq_gov_interactive = {
.name = "interactive",
.governor = cpufreq_governor_interactive,
.max_transition_latency = 10000000,
.owner = THIS_MODULE,
};
static void cpufreq_interactive_timer(unsigned long data)
{
u64 delta_idle;
u64 update_time;
u64 *cpu_time_in_idle;
u64 *cpu_idle_exit_time;
struct timer_list *t;
u64 now_idle = get_cpu_idle_time_us(data,
&update_time);
cpu_time_in_idle = &per_cpu(time_in_idle, data);
cpu_idle_exit_time = &per_cpu(idle_exit_time, data);
if (update_time == *cpu_idle_exit_time)
return;
delta_idle = cputime64_sub(now_idle, *cpu_time_in_idle);
/* Scale up if there were no idle cycles since coming out of idle */
if (delta_idle == 0) {
if (policy->cur == policy->max)
return;
if (nr_running() < 1)
return;
target_freq = policy->max;
cpumask_set_cpu(data, &work_cpumask);
queue_work(up_wq, &freq_scale_work);
return;
}
/*
* There is a window where if the cpu utlization can go from low to high
* between the timer expiring, delta_idle will be > 0 and the cpu will
* be 100% busy, preventing idle from running, and this timer from
* firing. So setup another timer to fire to check cpu utlization.
* Do not setup the timer if there is no scheduled work.
*/
t = &per_cpu(cpu_timer, data);
if (!timer_pending(t) && nr_running() > 0) {
*cpu_time_in_idle = get_cpu_idle_time_us(
data, cpu_idle_exit_time);
mod_timer(t, jiffies + 2);
}
if (policy->cur == policy->min)
return;
/*
* Do not scale down unless we have been at this frequency for the
* minimum sample time.
*/
if (cputime64_sub(update_time, freq_change_time) < min_sample_time)
return;
target_freq = policy->min;
cpumask_set_cpu(data, &work_cpumask);
queue_work(down_wq, &freq_scale_work);
}
static void cpufreq_idle(void)
{
struct timer_list *t;
u64 *cpu_time_in_idle;
u64 *cpu_idle_exit_time;
pm_idle_old();
if (!cpumask_test_cpu(smp_processor_id(), policy->cpus))
return;
/* Timer to fire in 1-2 ticks, jiffie aligned. */
t = &per_cpu(cpu_timer, smp_processor_id());
cpu_idle_exit_time = &per_cpu(idle_exit_time, smp_processor_id());
cpu_time_in_idle = &per_cpu(time_in_idle, smp_processor_id());
if (timer_pending(t) == 0) {
*cpu_time_in_idle = get_cpu_idle_time_us(
smp_processor_id(), cpu_idle_exit_time);
mod_timer(t, jiffies + 2);
}
}
/*
* Choose the cpu frequency based off the load. For now choose the minimum
* frequency that will satisfy the load, which is not always the lower power.
*/
static unsigned int cpufreq_interactive_calc_freq(unsigned int cpu)
{
unsigned int delta_time;
unsigned int idle_time;
unsigned int cpu_load;
u64 current_wall_time;
u64 current_idle_time;;
current_idle_time = get_cpu_idle_time_us(cpu, &current_wall_time);
idle_time = (unsigned int) current_idle_time - freq_change_time_in_idle;
delta_time = (unsigned int) current_wall_time - freq_change_time;
cpu_load = 100 * (delta_time - idle_time) / delta_time;
return policy->cur * cpu_load / 100;
}
/* We use the same work function to sale up and down */
static void cpufreq_interactive_freq_change_time_work(struct work_struct *work)
{
unsigned int cpu;
cpumask_t *tmp_mask = &work_cpumask;
for_each_cpu(cpu, tmp_mask) {
if (target_freq == policy->max) {
if (nr_running() == 1) {
cpumask_clear_cpu(cpu, &work_cpumask);
return;
}
__cpufreq_driver_target(policy, target_freq,
CPUFREQ_RELATION_H);
} else {
target_freq = cpufreq_interactive_calc_freq(cpu);
__cpufreq_driver_target(policy, target_freq,
CPUFREQ_RELATION_L);
}
freq_change_time_in_idle = get_cpu_idle_time_us(cpu,
&freq_change_time);
cpumask_clear_cpu(cpu, &work_cpumask);
}
}
static ssize_t show_min_sample_time(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%lu\n", min_sample_time);
}
static ssize_t store_min_sample_time(struct kobject *kobj,
struct attribute *attr, const char *buf, size_t count)
{
return strict_strtoul(buf, 0, &min_sample_time);
}
static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
show_min_sample_time, store_min_sample_time);
static struct attribute *interactive_attributes[] = {
&min_sample_time_attr.attr,
NULL,
};
static struct attribute_group interactive_attr_group = {
.attrs = interactive_attributes,
.name = "interactive",
};
static int cpufreq_governor_interactive(struct cpufreq_policy *new_policy,
unsigned int event)
{
int rc;
switch (event) {
case CPUFREQ_GOV_START:
if (!cpu_online(new_policy->cpu))
return -EINVAL;
/*
* Do not register the idle hook and create sysfs
* entries if we have already done so.
*/
if (atomic_inc_return(&active_count) > 1)
return 0;
rc = sysfs_create_group(cpufreq_global_kobject,
&interactive_attr_group);
if (rc)
return rc;
pm_idle_old = pm_idle;
pm_idle = cpufreq_idle;
policy = new_policy;
break;
case CPUFREQ_GOV_STOP:
if (atomic_dec_return(&active_count) > 1)
return 0;
sysfs_remove_group(cpufreq_global_kobject,
&interactive_attr_group);
pm_idle = pm_idle_old;
del_timer(&per_cpu(cpu_timer, new_policy->cpu));
break;
case CPUFREQ_GOV_LIMITS:
if (new_policy->max < new_policy->cur)
__cpufreq_driver_target(new_policy,
new_policy->max, CPUFREQ_RELATION_H);
else if (new_policy->min > new_policy->cur)
__cpufreq_driver_target(new_policy,
new_policy->min, CPUFREQ_RELATION_L);
break;
}
return 0;
}
static int __init cpufreq_interactive_init(void)
{
unsigned int i;
struct timer_list *t;
min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
/* Initalize per-cpu timers */
for_each_possible_cpu(i) {
t = &per_cpu(cpu_timer, i);
init_timer_deferrable(t);
t->function = cpufreq_interactive_timer;
t->data = i;
}
/* Scale up is high priority */
up_wq = create_rt_workqueue("kinteractive_up");
down_wq = create_workqueue("knteractive_down");
INIT_WORK(&freq_scale_work, cpufreq_interactive_freq_change_time_work);
return cpufreq_register_governor(&cpufreq_gov_interactive);
}
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
pure_initcall(cpufreq_interactive_init);
#else
module_init(cpufreq_interactive_init);
#endif
static void __exit cpufreq_interactive_exit(void)
{
cpufreq_unregister_governor(&cpufreq_gov_interactive);
destroy_workqueue(up_wq);
destroy_workqueue(down_wq);
}
module_exit(cpufreq_interactive_exit);
MODULE_AUTHOR("Mike Chan <mike@android.com>");
MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
"Latency sensitive workloads");
MODULE_LICENSE("GPL");