458 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ASM_POWERPC_MMU_HASH64_H_
 | |
| #define _ASM_POWERPC_MMU_HASH64_H_
 | |
| /*
 | |
|  * PowerPC64 memory management structures
 | |
|  *
 | |
|  * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
 | |
|  *   PPC64 rework.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <asm/asm-compat.h>
 | |
| #include <asm/page.h>
 | |
| 
 | |
| /*
 | |
|  * Segment table
 | |
|  */
 | |
| 
 | |
| #define STE_ESID_V	0x80
 | |
| #define STE_ESID_KS	0x20
 | |
| #define STE_ESID_KP	0x10
 | |
| #define STE_ESID_N	0x08
 | |
| 
 | |
| #define STE_VSID_SHIFT	12
 | |
| 
 | |
| /* Location of cpu0's segment table */
 | |
| #define STAB0_PAGE	0x6
 | |
| #define STAB0_OFFSET	(STAB0_PAGE << 12)
 | |
| #define STAB0_PHYS_ADDR	(STAB0_OFFSET + PHYSICAL_START)
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| extern char initial_stab[];
 | |
| #endif /* ! __ASSEMBLY */
 | |
| 
 | |
| /*
 | |
|  * SLB
 | |
|  */
 | |
| 
 | |
| #define SLB_NUM_BOLTED		3
 | |
| #define SLB_CACHE_ENTRIES	8
 | |
| #define SLB_MIN_SIZE		32
 | |
| 
 | |
| /* Bits in the SLB ESID word */
 | |
| #define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
 | |
| 
 | |
| /* Bits in the SLB VSID word */
 | |
| #define SLB_VSID_SHIFT		12
 | |
| #define SLB_VSID_SHIFT_1T	24
 | |
| #define SLB_VSID_SSIZE_SHIFT	62
 | |
| #define SLB_VSID_B		ASM_CONST(0xc000000000000000)
 | |
| #define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
 | |
| #define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
 | |
| #define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
 | |
| #define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
 | |
| #define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
 | |
| #define SLB_VSID_L		ASM_CONST(0x0000000000000100)
 | |
| #define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
 | |
| #define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
 | |
| #define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
 | |
| #define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
 | |
| #define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
 | |
| #define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
 | |
| #define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
 | |
| 
 | |
| #define SLB_VSID_KERNEL		(SLB_VSID_KP)
 | |
| #define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
 | |
| 
 | |
| #define SLBIE_C			(0x08000000)
 | |
| #define SLBIE_SSIZE_SHIFT	25
 | |
| 
 | |
| /*
 | |
|  * Hash table
 | |
|  */
 | |
| 
 | |
| #define HPTES_PER_GROUP 8
 | |
| 
 | |
| #define HPTE_V_SSIZE_SHIFT	62
 | |
| #define HPTE_V_AVPN_SHIFT	7
 | |
| #define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
 | |
| #define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
 | |
| #define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
 | |
| #define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
 | |
| #define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
 | |
| #define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
 | |
| #define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
 | |
| #define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
 | |
| 
 | |
| #define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
 | |
| #define HPTE_R_TS		ASM_CONST(0x4000000000000000)
 | |
| #define HPTE_R_RPN_SHIFT	12
 | |
| #define HPTE_R_RPN		ASM_CONST(0x3ffffffffffff000)
 | |
| #define HPTE_R_FLAGS		ASM_CONST(0x00000000000003ff)
 | |
| #define HPTE_R_PP		ASM_CONST(0x0000000000000003)
 | |
| #define HPTE_R_N		ASM_CONST(0x0000000000000004)
 | |
| #define HPTE_R_C		ASM_CONST(0x0000000000000080)
 | |
| #define HPTE_R_R		ASM_CONST(0x0000000000000100)
 | |
| 
 | |
| #define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
 | |
| #define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
 | |
| 
 | |
| /* Values for PP (assumes Ks=0, Kp=1) */
 | |
| /* pp0 will always be 0 for linux     */
 | |
| #define PP_RWXX	0	/* Supervisor read/write, User none */
 | |
| #define PP_RWRX 1	/* Supervisor read/write, User read */
 | |
| #define PP_RWRW 2	/* Supervisor read/write, User read/write */
 | |
| #define PP_RXRX 3	/* Supervisor read,       User read */
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| struct hash_pte {
 | |
| 	unsigned long v;
 | |
| 	unsigned long r;
 | |
| };
 | |
| 
 | |
| extern struct hash_pte *htab_address;
 | |
| extern unsigned long htab_size_bytes;
 | |
| extern unsigned long htab_hash_mask;
 | |
| 
 | |
| /*
 | |
|  * Page size definition
 | |
|  *
 | |
|  *    shift : is the "PAGE_SHIFT" value for that page size
 | |
|  *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
 | |
|  *            directly to a slbmte "vsid" value
 | |
|  *    penc  : is the HPTE encoding mask for the "LP" field:
 | |
|  *
 | |
|  */
 | |
| struct mmu_psize_def
 | |
| {
 | |
| 	unsigned int	shift;	/* number of bits */
 | |
| 	unsigned int	penc;	/* HPTE encoding */
 | |
| 	unsigned int	tlbiel;	/* tlbiel supported for that page size */
 | |
| 	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
 | |
| 	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
 | |
| };
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * Segment sizes.
 | |
|  * These are the values used by hardware in the B field of
 | |
|  * SLB entries and the first dword of MMU hashtable entries.
 | |
|  * The B field is 2 bits; the values 2 and 3 are unused and reserved.
 | |
|  */
 | |
| #define MMU_SEGSIZE_256M	0
 | |
| #define MMU_SEGSIZE_1T		1
 | |
| 
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| /*
 | |
|  * The current system page and segment sizes
 | |
|  */
 | |
| extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
 | |
| extern int mmu_linear_psize;
 | |
| extern int mmu_virtual_psize;
 | |
| extern int mmu_vmalloc_psize;
 | |
| extern int mmu_vmemmap_psize;
 | |
| extern int mmu_io_psize;
 | |
| extern int mmu_kernel_ssize;
 | |
| extern int mmu_highuser_ssize;
 | |
| extern u16 mmu_slb_size;
 | |
| extern unsigned long tce_alloc_start, tce_alloc_end;
 | |
| 
 | |
| /*
 | |
|  * If the processor supports 64k normal pages but not 64k cache
 | |
|  * inhibited pages, we have to be prepared to switch processes
 | |
|  * to use 4k pages when they create cache-inhibited mappings.
 | |
|  * If this is the case, mmu_ci_restrictions will be set to 1.
 | |
|  */
 | |
| extern int mmu_ci_restrictions;
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| /*
 | |
|  * The page size indexes of the huge pages for use by hugetlbfs
 | |
|  */
 | |
| extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
 | |
| 
 | |
| #endif /* CONFIG_HUGETLB_PAGE */
 | |
| 
 | |
| /*
 | |
|  * This function sets the AVPN and L fields of the HPTE  appropriately
 | |
|  * for the page size
 | |
|  */
 | |
| static inline unsigned long hpte_encode_v(unsigned long va, int psize,
 | |
| 					  int ssize)
 | |
| {
 | |
| 	unsigned long v;
 | |
| 	v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
 | |
| 	v <<= HPTE_V_AVPN_SHIFT;
 | |
| 	if (psize != MMU_PAGE_4K)
 | |
| 		v |= HPTE_V_LARGE;
 | |
| 	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
 | |
| 	return v;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function sets the ARPN, and LP fields of the HPTE appropriately
 | |
|  * for the page size. We assume the pa is already "clean" that is properly
 | |
|  * aligned for the requested page size
 | |
|  */
 | |
| static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
 | |
| {
 | |
| 	unsigned long r;
 | |
| 
 | |
| 	/* A 4K page needs no special encoding */
 | |
| 	if (psize == MMU_PAGE_4K)
 | |
| 		return pa & HPTE_R_RPN;
 | |
| 	else {
 | |
| 		unsigned int penc = mmu_psize_defs[psize].penc;
 | |
| 		unsigned int shift = mmu_psize_defs[psize].shift;
 | |
| 		return (pa & ~((1ul << shift) - 1)) | (penc << 12);
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Build a VA given VSID, EA and segment size
 | |
|  */
 | |
| static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
 | |
| 				   int ssize)
 | |
| {
 | |
| 	if (ssize == MMU_SEGSIZE_256M)
 | |
| 		return (vsid << 28) | (ea & 0xfffffffUL);
 | |
| 	return (vsid << 40) | (ea & 0xffffffffffUL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This hashes a virtual address
 | |
|  */
 | |
| 
 | |
| static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
 | |
| 				     int ssize)
 | |
| {
 | |
| 	unsigned long hash, vsid;
 | |
| 
 | |
| 	if (ssize == MMU_SEGSIZE_256M) {
 | |
| 		hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
 | |
| 	} else {
 | |
| 		vsid = va >> 40;
 | |
| 		hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
 | |
| 	}
 | |
| 	return hash & 0x7fffffffffUL;
 | |
| }
 | |
| 
 | |
| extern int __hash_page_4K(unsigned long ea, unsigned long access,
 | |
| 			  unsigned long vsid, pte_t *ptep, unsigned long trap,
 | |
| 			  unsigned int local, int ssize, int subpage_prot);
 | |
| extern int __hash_page_64K(unsigned long ea, unsigned long access,
 | |
| 			   unsigned long vsid, pte_t *ptep, unsigned long trap,
 | |
| 			   unsigned int local, int ssize);
 | |
| struct mm_struct;
 | |
| extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
 | |
| extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
 | |
| 			  unsigned long ea, unsigned long vsid, int local,
 | |
| 			  unsigned long trap);
 | |
| 
 | |
| extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 | |
| 			     unsigned long pstart, unsigned long prot,
 | |
| 			     int psize, int ssize);
 | |
| extern void add_gpage(unsigned long addr, unsigned long page_size,
 | |
| 			  unsigned long number_of_pages);
 | |
| extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
 | |
| 
 | |
| extern void hpte_init_native(void);
 | |
| extern void hpte_init_lpar(void);
 | |
| extern void hpte_init_iSeries(void);
 | |
| extern void hpte_init_beat(void);
 | |
| extern void hpte_init_beat_v3(void);
 | |
| 
 | |
| extern void stabs_alloc(void);
 | |
| extern void slb_initialize(void);
 | |
| extern void slb_flush_and_rebolt(void);
 | |
| extern void stab_initialize(unsigned long stab);
 | |
| 
 | |
| extern void slb_vmalloc_update(void);
 | |
| extern void slb_set_size(u16 size);
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * VSID allocation
 | |
|  *
 | |
|  * We first generate a 36-bit "proto-VSID".  For kernel addresses this
 | |
|  * is equal to the ESID, for user addresses it is:
 | |
|  *	(context << 15) | (esid & 0x7fff)
 | |
|  *
 | |
|  * The two forms are distinguishable because the top bit is 0 for user
 | |
|  * addresses, whereas the top two bits are 1 for kernel addresses.
 | |
|  * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
 | |
|  * now.
 | |
|  *
 | |
|  * The proto-VSIDs are then scrambled into real VSIDs with the
 | |
|  * multiplicative hash:
 | |
|  *
 | |
|  *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
 | |
|  *	where	VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
 | |
|  *		VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
 | |
|  *
 | |
|  * This scramble is only well defined for proto-VSIDs below
 | |
|  * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
 | |
|  * reserved.  VSID_MULTIPLIER is prime, so in particular it is
 | |
|  * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
 | |
|  * Because the modulus is 2^n-1 we can compute it efficiently without
 | |
|  * a divide or extra multiply (see below).
 | |
|  *
 | |
|  * This scheme has several advantages over older methods:
 | |
|  *
 | |
|  * 	- We have VSIDs allocated for every kernel address
 | |
|  * (i.e. everything above 0xC000000000000000), except the very top
 | |
|  * segment, which simplifies several things.
 | |
|  *
 | |
|  * 	- We allow for 15 significant bits of ESID and 20 bits of
 | |
|  * context for user addresses.  i.e. 8T (43 bits) of address space for
 | |
|  * up to 1M contexts (although the page table structure and context
 | |
|  * allocation will need changes to take advantage of this).
 | |
|  *
 | |
|  * 	- The scramble function gives robust scattering in the hash
 | |
|  * table (at least based on some initial results).  The previous
 | |
|  * method was more susceptible to pathological cases giving excessive
 | |
|  * hash collisions.
 | |
|  */
 | |
| /*
 | |
|  * WARNING - If you change these you must make sure the asm
 | |
|  * implementations in slb_allocate (slb_low.S), do_stab_bolted
 | |
|  * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
 | |
|  *
 | |
|  * You'll also need to change the precomputed VSID values in head.S
 | |
|  * which are used by the iSeries firmware.
 | |
|  */
 | |
| 
 | |
| #define VSID_MULTIPLIER_256M	ASM_CONST(200730139)	/* 28-bit prime */
 | |
| #define VSID_BITS_256M		36
 | |
| #define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
 | |
| 
 | |
| #define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
 | |
| #define VSID_BITS_1T		24
 | |
| #define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
 | |
| 
 | |
| #define CONTEXT_BITS		19
 | |
| #define USER_ESID_BITS		16
 | |
| #define USER_ESID_BITS_1T	4
 | |
| 
 | |
| #define USER_VSID_RANGE	(1UL << (USER_ESID_BITS + SID_SHIFT))
 | |
| 
 | |
| /*
 | |
|  * This macro generates asm code to compute the VSID scramble
 | |
|  * function.  Used in slb_allocate() and do_stab_bolted.  The function
 | |
|  * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
 | |
|  *
 | |
|  *	rt = register continaing the proto-VSID and into which the
 | |
|  *		VSID will be stored
 | |
|  *	rx = scratch register (clobbered)
 | |
|  *
 | |
|  * 	- rt and rx must be different registers
 | |
|  * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
 | |
|  * 	  bits may contain other garbage, so you may need to mask the
 | |
|  * 	  result.
 | |
|  */
 | |
| #define ASM_VSID_SCRAMBLE(rt, rx, size)					\
 | |
| 	lis	rx,VSID_MULTIPLIER_##size@h;				\
 | |
| 	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
 | |
| 	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
 | |
| 									\
 | |
| 	srdi	rx,rt,VSID_BITS_##size;					\
 | |
| 	clrldi	rt,rt,(64-VSID_BITS_##size);				\
 | |
| 	add	rt,rt,rx;		/* add high and low bits */	\
 | |
| 	/* Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
 | |
| 	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
 | |
| 	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
 | |
| 	 * the bit clear, r3 already has the answer we want, if it	\
 | |
| 	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
 | |
| 	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
 | |
| 	addi	rx,rt,1;						\
 | |
| 	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
 | |
| 	add	rt,rt,rx
 | |
| 
 | |
| 
 | |
| #ifndef __ASSEMBLY__
 | |
| 
 | |
| typedef unsigned long mm_context_id_t;
 | |
| 
 | |
| typedef struct {
 | |
| 	mm_context_id_t id;
 | |
| 	u16 user_psize;		/* page size index */
 | |
| 
 | |
| #ifdef CONFIG_PPC_MM_SLICES
 | |
| 	u64 low_slices_psize;	/* SLB page size encodings */
 | |
| 	u64 high_slices_psize;  /* 4 bits per slice for now */
 | |
| #else
 | |
| 	u16 sllp;		/* SLB page size encoding */
 | |
| #endif
 | |
| 	unsigned long vdso_base;
 | |
| } mm_context_t;
 | |
| 
 | |
| 
 | |
| #if 0
 | |
| /*
 | |
|  * The code below is equivalent to this function for arguments
 | |
|  * < 2^VSID_BITS, which is all this should ever be called
 | |
|  * with.  However gcc is not clever enough to compute the
 | |
|  * modulus (2^n-1) without a second multiply.
 | |
|  */
 | |
| #define vsid_scrample(protovsid, size) \
 | |
| 	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
 | |
| 
 | |
| #else /* 1 */
 | |
| #define vsid_scramble(protovsid, size) \
 | |
| 	({								 \
 | |
| 		unsigned long x;					 \
 | |
| 		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
 | |
| 		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
 | |
| 		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
 | |
| 	})
 | |
| #endif /* 1 */
 | |
| 
 | |
| /* This is only valid for addresses >= PAGE_OFFSET */
 | |
| static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
 | |
| {
 | |
| 	if (ssize == MMU_SEGSIZE_256M)
 | |
| 		return vsid_scramble(ea >> SID_SHIFT, 256M);
 | |
| 	return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
 | |
| }
 | |
| 
 | |
| /* Returns the segment size indicator for a user address */
 | |
| static inline int user_segment_size(unsigned long addr)
 | |
| {
 | |
| 	/* Use 1T segments if possible for addresses >= 1T */
 | |
| 	if (addr >= (1UL << SID_SHIFT_1T))
 | |
| 		return mmu_highuser_ssize;
 | |
| 	return MMU_SEGSIZE_256M;
 | |
| }
 | |
| 
 | |
| /* This is only valid for user addresses (which are below 2^44) */
 | |
| static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
 | |
| 				     int ssize)
 | |
| {
 | |
| 	if (ssize == MMU_SEGSIZE_256M)
 | |
| 		return vsid_scramble((context << USER_ESID_BITS)
 | |
| 				     | (ea >> SID_SHIFT), 256M);
 | |
| 	return vsid_scramble((context << USER_ESID_BITS_1T)
 | |
| 			     | (ea >> SID_SHIFT_1T), 1T);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is only used on legacy iSeries in lparmap.c,
 | |
|  * hence the 256MB segment assumption.
 | |
|  */
 | |
| #define VSID_SCRAMBLE(pvsid)	(((pvsid) * VSID_MULTIPLIER_256M) %	\
 | |
| 				 VSID_MODULUS_256M)
 | |
| #define KERNEL_VSID(ea)		VSID_SCRAMBLE(GET_ESID(ea))
 | |
| 
 | |
| #endif /* __ASSEMBLY__ */
 | |
| 
 | |
| #endif /* _ASM_POWERPC_MMU_HASH64_H_ */
 |