793 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			793 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * PPC64 (POWER4) Huge TLB Page Support for Kernel.
 | |
|  *
 | |
|  * Copyright (C) 2003 David Gibson, IBM Corporation.
 | |
|  *
 | |
|  * Based on the IA-32 version:
 | |
|  * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/err.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <asm/mman.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/cputable.h>
 | |
| #include <asm/spu.h>
 | |
| 
 | |
| #define PAGE_SHIFT_64K	16
 | |
| #define PAGE_SHIFT_16M	24
 | |
| #define PAGE_SHIFT_16G	34
 | |
| 
 | |
| #define NUM_LOW_AREAS	(0x100000000UL >> SID_SHIFT)
 | |
| #define NUM_HIGH_AREAS	(PGTABLE_RANGE >> HTLB_AREA_SHIFT)
 | |
| #define MAX_NUMBER_GPAGES	1024
 | |
| 
 | |
| /* Tracks the 16G pages after the device tree is scanned and before the
 | |
|  * huge_boot_pages list is ready.  */
 | |
| static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
 | |
| static unsigned nr_gpages;
 | |
| 
 | |
| /* Array of valid huge page sizes - non-zero value(hugepte_shift) is
 | |
|  * stored for the huge page sizes that are valid.
 | |
|  */
 | |
| unsigned int mmu_huge_psizes[MMU_PAGE_COUNT] = { }; /* initialize all to 0 */
 | |
| 
 | |
| #define hugepte_shift			mmu_huge_psizes
 | |
| #define PTRS_PER_HUGEPTE(psize)		(1 << hugepte_shift[psize])
 | |
| #define HUGEPTE_TABLE_SIZE(psize)	(sizeof(pte_t) << hugepte_shift[psize])
 | |
| 
 | |
| #define HUGEPD_SHIFT(psize)		(mmu_psize_to_shift(psize) \
 | |
| 						+ hugepte_shift[psize])
 | |
| #define HUGEPD_SIZE(psize)		(1UL << HUGEPD_SHIFT(psize))
 | |
| #define HUGEPD_MASK(psize)		(~(HUGEPD_SIZE(psize)-1))
 | |
| 
 | |
| /* Subtract one from array size because we don't need a cache for 4K since
 | |
|  * is not a huge page size */
 | |
| #define HUGE_PGTABLE_INDEX(psize)	(HUGEPTE_CACHE_NUM + psize - 1)
 | |
| #define HUGEPTE_CACHE_NAME(psize)	(huge_pgtable_cache_name[psize])
 | |
| 
 | |
| static const char *huge_pgtable_cache_name[MMU_PAGE_COUNT] = {
 | |
| 	[MMU_PAGE_64K]	= "hugepte_cache_64K",
 | |
| 	[MMU_PAGE_1M]	= "hugepte_cache_1M",
 | |
| 	[MMU_PAGE_16M]	= "hugepte_cache_16M",
 | |
| 	[MMU_PAGE_16G]	= "hugepte_cache_16G",
 | |
| };
 | |
| 
 | |
| /* Flag to mark huge PD pointers.  This means pmd_bad() and pud_bad()
 | |
|  * will choke on pointers to hugepte tables, which is handy for
 | |
|  * catching screwups early. */
 | |
| #define HUGEPD_OK	0x1
 | |
| 
 | |
| typedef struct { unsigned long pd; } hugepd_t;
 | |
| 
 | |
| #define hugepd_none(hpd)	((hpd).pd == 0)
 | |
| 
 | |
| static inline int shift_to_mmu_psize(unsigned int shift)
 | |
| {
 | |
| 	switch (shift) {
 | |
| #ifndef CONFIG_PPC_64K_PAGES
 | |
| 	case PAGE_SHIFT_64K:
 | |
| 	    return MMU_PAGE_64K;
 | |
| #endif
 | |
| 	case PAGE_SHIFT_16M:
 | |
| 	    return MMU_PAGE_16M;
 | |
| 	case PAGE_SHIFT_16G:
 | |
| 	    return MMU_PAGE_16G;
 | |
| 	}
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
 | |
| {
 | |
| 	if (mmu_psize_defs[mmu_psize].shift)
 | |
| 		return mmu_psize_defs[mmu_psize].shift;
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static inline pte_t *hugepd_page(hugepd_t hpd)
 | |
| {
 | |
| 	BUG_ON(!(hpd.pd & HUGEPD_OK));
 | |
| 	return (pte_t *)(hpd.pd & ~HUGEPD_OK);
 | |
| }
 | |
| 
 | |
| static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr,
 | |
| 				    struct hstate *hstate)
 | |
| {
 | |
| 	unsigned int shift = huge_page_shift(hstate);
 | |
| 	int psize = shift_to_mmu_psize(shift);
 | |
| 	unsigned long idx = ((addr >> shift) & (PTRS_PER_HUGEPTE(psize)-1));
 | |
| 	pte_t *dir = hugepd_page(*hpdp);
 | |
| 
 | |
| 	return dir + idx;
 | |
| }
 | |
| 
 | |
| static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
 | |
| 			   unsigned long address, unsigned int psize)
 | |
| {
 | |
| 	pte_t *new = kmem_cache_zalloc(pgtable_cache[HUGE_PGTABLE_INDEX(psize)],
 | |
| 				      GFP_KERNEL|__GFP_REPEAT);
 | |
| 
 | |
| 	if (! new)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	spin_lock(&mm->page_table_lock);
 | |
| 	if (!hugepd_none(*hpdp))
 | |
| 		kmem_cache_free(pgtable_cache[HUGE_PGTABLE_INDEX(psize)], new);
 | |
| 	else
 | |
| 		hpdp->pd = (unsigned long)new | HUGEPD_OK;
 | |
| 	spin_unlock(&mm->page_table_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static pud_t *hpud_offset(pgd_t *pgd, unsigned long addr, struct hstate *hstate)
 | |
| {
 | |
| 	if (huge_page_shift(hstate) < PUD_SHIFT)
 | |
| 		return pud_offset(pgd, addr);
 | |
| 	else
 | |
| 		return (pud_t *) pgd;
 | |
| }
 | |
| static pud_t *hpud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long addr,
 | |
| 			 struct hstate *hstate)
 | |
| {
 | |
| 	if (huge_page_shift(hstate) < PUD_SHIFT)
 | |
| 		return pud_alloc(mm, pgd, addr);
 | |
| 	else
 | |
| 		return (pud_t *) pgd;
 | |
| }
 | |
| static pmd_t *hpmd_offset(pud_t *pud, unsigned long addr, struct hstate *hstate)
 | |
| {
 | |
| 	if (huge_page_shift(hstate) < PMD_SHIFT)
 | |
| 		return pmd_offset(pud, addr);
 | |
| 	else
 | |
| 		return (pmd_t *) pud;
 | |
| }
 | |
| static pmd_t *hpmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long addr,
 | |
| 			 struct hstate *hstate)
 | |
| {
 | |
| 	if (huge_page_shift(hstate) < PMD_SHIFT)
 | |
| 		return pmd_alloc(mm, pud, addr);
 | |
| 	else
 | |
| 		return (pmd_t *) pud;
 | |
| }
 | |
| 
 | |
| /* Build list of addresses of gigantic pages.  This function is used in early
 | |
|  * boot before the buddy or bootmem allocator is setup.
 | |
|  */
 | |
| void add_gpage(unsigned long addr, unsigned long page_size,
 | |
| 	unsigned long number_of_pages)
 | |
| {
 | |
| 	if (!addr)
 | |
| 		return;
 | |
| 	while (number_of_pages > 0) {
 | |
| 		gpage_freearray[nr_gpages] = addr;
 | |
| 		nr_gpages++;
 | |
| 		number_of_pages--;
 | |
| 		addr += page_size;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Moves the gigantic page addresses from the temporary list to the
 | |
|  * huge_boot_pages list.
 | |
|  */
 | |
| int alloc_bootmem_huge_page(struct hstate *hstate)
 | |
| {
 | |
| 	struct huge_bootmem_page *m;
 | |
| 	if (nr_gpages == 0)
 | |
| 		return 0;
 | |
| 	m = phys_to_virt(gpage_freearray[--nr_gpages]);
 | |
| 	gpage_freearray[nr_gpages] = 0;
 | |
| 	list_add(&m->list, &huge_boot_pages);
 | |
| 	m->hstate = hstate;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Modelled after find_linux_pte() */
 | |
| pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
 | |
| {
 | |
| 	pgd_t *pg;
 | |
| 	pud_t *pu;
 | |
| 	pmd_t *pm;
 | |
| 
 | |
| 	unsigned int psize;
 | |
| 	unsigned int shift;
 | |
| 	unsigned long sz;
 | |
| 	struct hstate *hstate;
 | |
| 	psize = get_slice_psize(mm, addr);
 | |
| 	shift = mmu_psize_to_shift(psize);
 | |
| 	sz = ((1UL) << shift);
 | |
| 	hstate = size_to_hstate(sz);
 | |
| 
 | |
| 	addr &= hstate->mask;
 | |
| 
 | |
| 	pg = pgd_offset(mm, addr);
 | |
| 	if (!pgd_none(*pg)) {
 | |
| 		pu = hpud_offset(pg, addr, hstate);
 | |
| 		if (!pud_none(*pu)) {
 | |
| 			pm = hpmd_offset(pu, addr, hstate);
 | |
| 			if (!pmd_none(*pm))
 | |
| 				return hugepte_offset((hugepd_t *)pm, addr,
 | |
| 						      hstate);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| pte_t *huge_pte_alloc(struct mm_struct *mm,
 | |
| 			unsigned long addr, unsigned long sz)
 | |
| {
 | |
| 	pgd_t *pg;
 | |
| 	pud_t *pu;
 | |
| 	pmd_t *pm;
 | |
| 	hugepd_t *hpdp = NULL;
 | |
| 	struct hstate *hstate;
 | |
| 	unsigned int psize;
 | |
| 	hstate = size_to_hstate(sz);
 | |
| 
 | |
| 	psize = get_slice_psize(mm, addr);
 | |
| 	BUG_ON(!mmu_huge_psizes[psize]);
 | |
| 
 | |
| 	addr &= hstate->mask;
 | |
| 
 | |
| 	pg = pgd_offset(mm, addr);
 | |
| 	pu = hpud_alloc(mm, pg, addr, hstate);
 | |
| 
 | |
| 	if (pu) {
 | |
| 		pm = hpmd_alloc(mm, pu, addr, hstate);
 | |
| 		if (pm)
 | |
| 			hpdp = (hugepd_t *)pm;
 | |
| 	}
 | |
| 
 | |
| 	if (! hpdp)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, psize))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return hugepte_offset(hpdp, addr, hstate);
 | |
| }
 | |
| 
 | |
| int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_hugepte_range(struct mmu_gather *tlb, hugepd_t *hpdp,
 | |
| 			       unsigned int psize)
 | |
| {
 | |
| 	pte_t *hugepte = hugepd_page(*hpdp);
 | |
| 
 | |
| 	hpdp->pd = 0;
 | |
| 	tlb->need_flush = 1;
 | |
| 	pgtable_free_tlb(tlb, pgtable_free_cache(hugepte,
 | |
| 						 HUGEPTE_CACHE_NUM+psize-1,
 | |
| 						 PGF_CACHENUM_MASK));
 | |
| }
 | |
| 
 | |
| static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 | |
| 				   unsigned long addr, unsigned long end,
 | |
| 				   unsigned long floor, unsigned long ceiling,
 | |
| 				   unsigned int psize)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	start = addr;
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		if (pmd_none(*pmd))
 | |
| 			continue;
 | |
| 		free_hugepte_range(tlb, (hugepd_t *)pmd, psize);
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 
 | |
| 	start &= PUD_MASK;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PUD_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, start);
 | |
| 	pud_clear(pud);
 | |
| 	pmd_free_tlb(tlb, pmd, start);
 | |
| }
 | |
| 
 | |
| static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 | |
| 				   unsigned long addr, unsigned long end,
 | |
| 				   unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 	unsigned int shift;
 | |
| 	unsigned int psize = get_slice_psize(tlb->mm, addr);
 | |
| 	shift = mmu_psize_to_shift(psize);
 | |
| 
 | |
| 	start = addr;
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	do {
 | |
| 		next = pud_addr_end(addr, end);
 | |
| 		if (shift < PMD_SHIFT) {
 | |
| 			if (pud_none_or_clear_bad(pud))
 | |
| 				continue;
 | |
| 			hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 | |
| 					       ceiling, psize);
 | |
| 		} else {
 | |
| 			if (pud_none(*pud))
 | |
| 				continue;
 | |
| 			free_hugepte_range(tlb, (hugepd_t *)pud, psize);
 | |
| 		}
 | |
| 	} while (pud++, addr = next, addr != end);
 | |
| 
 | |
| 	start &= PGDIR_MASK;
 | |
| 	if (start < floor)
 | |
| 		return;
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= PGDIR_MASK;
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		return;
 | |
| 
 | |
| 	pud = pud_offset(pgd, start);
 | |
| 	pgd_clear(pgd);
 | |
| 	pud_free_tlb(tlb, pud, start);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function frees user-level page tables of a process.
 | |
|  *
 | |
|  * Must be called with pagetable lock held.
 | |
|  */
 | |
| void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 | |
| 			    unsigned long addr, unsigned long end,
 | |
| 			    unsigned long floor, unsigned long ceiling)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	unsigned long next;
 | |
| 	unsigned long start;
 | |
| 
 | |
| 	/*
 | |
| 	 * Comments below take from the normal free_pgd_range().  They
 | |
| 	 * apply here too.  The tests against HUGEPD_MASK below are
 | |
| 	 * essential, because we *don't* test for this at the bottom
 | |
| 	 * level.  Without them we'll attempt to free a hugepte table
 | |
| 	 * when we unmap just part of it, even if there are other
 | |
| 	 * active mappings using it.
 | |
| 	 *
 | |
| 	 * The next few lines have given us lots of grief...
 | |
| 	 *
 | |
| 	 * Why are we testing HUGEPD* at this top level?  Because
 | |
| 	 * often there will be no work to do at all, and we'd prefer
 | |
| 	 * not to go all the way down to the bottom just to discover
 | |
| 	 * that.
 | |
| 	 *
 | |
| 	 * Why all these "- 1"s?  Because 0 represents both the bottom
 | |
| 	 * of the address space and the top of it (using -1 for the
 | |
| 	 * top wouldn't help much: the masks would do the wrong thing).
 | |
| 	 * The rule is that addr 0 and floor 0 refer to the bottom of
 | |
| 	 * the address space, but end 0 and ceiling 0 refer to the top
 | |
| 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 | |
| 	 * that end 0 case should be mythical).
 | |
| 	 *
 | |
| 	 * Wherever addr is brought up or ceiling brought down, we
 | |
| 	 * must be careful to reject "the opposite 0" before it
 | |
| 	 * confuses the subsequent tests.  But what about where end is
 | |
| 	 * brought down by HUGEPD_SIZE below? no, end can't go down to
 | |
| 	 * 0 there.
 | |
| 	 *
 | |
| 	 * Whereas we round start (addr) and ceiling down, by different
 | |
| 	 * masks at different levels, in order to test whether a table
 | |
| 	 * now has no other vmas using it, so can be freed, we don't
 | |
| 	 * bother to round floor or end up - the tests don't need that.
 | |
| 	 */
 | |
| 	unsigned int psize = get_slice_psize(tlb->mm, addr);
 | |
| 
 | |
| 	addr &= HUGEPD_MASK(psize);
 | |
| 	if (addr < floor) {
 | |
| 		addr += HUGEPD_SIZE(psize);
 | |
| 		if (!addr)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (ceiling) {
 | |
| 		ceiling &= HUGEPD_MASK(psize);
 | |
| 		if (!ceiling)
 | |
| 			return;
 | |
| 	}
 | |
| 	if (end - 1 > ceiling - 1)
 | |
| 		end -= HUGEPD_SIZE(psize);
 | |
| 	if (addr > end - 1)
 | |
| 		return;
 | |
| 
 | |
| 	start = addr;
 | |
| 	pgd = pgd_offset(tlb->mm, addr);
 | |
| 	do {
 | |
| 		psize = get_slice_psize(tlb->mm, addr);
 | |
| 		BUG_ON(!mmu_huge_psizes[psize]);
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		if (mmu_psize_to_shift(psize) < PUD_SHIFT) {
 | |
| 			if (pgd_none_or_clear_bad(pgd))
 | |
| 				continue;
 | |
| 			hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 | |
| 		} else {
 | |
| 			if (pgd_none(*pgd))
 | |
| 				continue;
 | |
| 			free_hugepte_range(tlb, (hugepd_t *)pgd, psize);
 | |
| 		}
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| }
 | |
| 
 | |
| void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
 | |
| 		     pte_t *ptep, pte_t pte)
 | |
| {
 | |
| 	if (pte_present(*ptep)) {
 | |
| 		/* We open-code pte_clear because we need to pass the right
 | |
| 		 * argument to hpte_need_flush (huge / !huge). Might not be
 | |
| 		 * necessary anymore if we make hpte_need_flush() get the
 | |
| 		 * page size from the slices
 | |
| 		 */
 | |
| 		unsigned int psize = get_slice_psize(mm, addr);
 | |
| 		unsigned int shift = mmu_psize_to_shift(psize);
 | |
| 		unsigned long sz = ((1UL) << shift);
 | |
| 		struct hstate *hstate = size_to_hstate(sz);
 | |
| 		pte_update(mm, addr & hstate->mask, ptep, ~0UL, 1);
 | |
| 	}
 | |
| 	*ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
 | |
| }
 | |
| 
 | |
| pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
 | |
| 			      pte_t *ptep)
 | |
| {
 | |
| 	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
 | |
| 	return __pte(old);
 | |
| }
 | |
| 
 | |
| struct page *
 | |
| follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	struct page *page;
 | |
| 	unsigned int mmu_psize = get_slice_psize(mm, address);
 | |
| 
 | |
| 	/* Verify it is a huge page else bail. */
 | |
| 	if (!mmu_huge_psizes[mmu_psize])
 | |
| 		return ERR_PTR(-EINVAL);
 | |
| 
 | |
| 	ptep = huge_pte_offset(mm, address);
 | |
| 	page = pte_page(*ptep);
 | |
| 	if (page) {
 | |
| 		unsigned int shift = mmu_psize_to_shift(mmu_psize);
 | |
| 		unsigned long sz = ((1UL) << shift);
 | |
| 		page += (address % sz) / PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| int pmd_huge(pmd_t pmd)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int pud_huge(pud_t pud)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct page *
 | |
| follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 | |
| 		pmd_t *pmd, int write)
 | |
| {
 | |
| 	BUG();
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 | |
| 					unsigned long len, unsigned long pgoff,
 | |
| 					unsigned long flags)
 | |
| {
 | |
| 	struct hstate *hstate = hstate_file(file);
 | |
| 	int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 | |
| 
 | |
| 	if (!mmu_huge_psizes[mmu_psize])
 | |
| 		return -EINVAL;
 | |
| 	return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
 | |
| }
 | |
| 
 | |
| unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 | |
| {
 | |
| 	unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 | |
| 
 | |
| 	return 1UL << mmu_psize_to_shift(psize);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by asm hashtable.S for doing lazy icache flush
 | |
|  */
 | |
| static unsigned int hash_huge_page_do_lazy_icache(unsigned long rflags,
 | |
| 					pte_t pte, int trap, unsigned long sz)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!pfn_valid(pte_pfn(pte)))
 | |
| 		return rflags;
 | |
| 
 | |
| 	page = pte_page(pte);
 | |
| 
 | |
| 	/* page is dirty */
 | |
| 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
 | |
| 		if (trap == 0x400) {
 | |
| 			for (i = 0; i < (sz / PAGE_SIZE); i++)
 | |
| 				__flush_dcache_icache(page_address(page+i));
 | |
| 			set_bit(PG_arch_1, &page->flags);
 | |
| 		} else {
 | |
| 			rflags |= HPTE_R_N;
 | |
| 		}
 | |
| 	}
 | |
| 	return rflags;
 | |
| }
 | |
| 
 | |
| int hash_huge_page(struct mm_struct *mm, unsigned long access,
 | |
| 		   unsigned long ea, unsigned long vsid, int local,
 | |
| 		   unsigned long trap)
 | |
| {
 | |
| 	pte_t *ptep;
 | |
| 	unsigned long old_pte, new_pte;
 | |
| 	unsigned long va, rflags, pa, sz;
 | |
| 	long slot;
 | |
| 	int err = 1;
 | |
| 	int ssize = user_segment_size(ea);
 | |
| 	unsigned int mmu_psize;
 | |
| 	int shift;
 | |
| 	mmu_psize = get_slice_psize(mm, ea);
 | |
| 
 | |
| 	if (!mmu_huge_psizes[mmu_psize])
 | |
| 		goto out;
 | |
| 	ptep = huge_pte_offset(mm, ea);
 | |
| 
 | |
| 	/* Search the Linux page table for a match with va */
 | |
| 	va = hpt_va(ea, vsid, ssize);
 | |
| 
 | |
| 	/*
 | |
| 	 * If no pte found or not present, send the problem up to
 | |
| 	 * do_page_fault
 | |
| 	 */
 | |
| 	if (unlikely(!ptep || pte_none(*ptep)))
 | |
| 		goto out;
 | |
| 
 | |
| 	/* 
 | |
| 	 * Check the user's access rights to the page.  If access should be
 | |
| 	 * prevented then send the problem up to do_page_fault.
 | |
| 	 */
 | |
| 	if (unlikely(access & ~pte_val(*ptep)))
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * At this point, we have a pte (old_pte) which can be used to build
 | |
| 	 * or update an HPTE. There are 2 cases:
 | |
| 	 *
 | |
| 	 * 1. There is a valid (present) pte with no associated HPTE (this is 
 | |
| 	 *	the most common case)
 | |
| 	 * 2. There is a valid (present) pte with an associated HPTE. The
 | |
| 	 *	current values of the pp bits in the HPTE prevent access
 | |
| 	 *	because we are doing software DIRTY bit management and the
 | |
| 	 *	page is currently not DIRTY. 
 | |
| 	 */
 | |
| 
 | |
| 
 | |
| 	do {
 | |
| 		old_pte = pte_val(*ptep);
 | |
| 		if (old_pte & _PAGE_BUSY)
 | |
| 			goto out;
 | |
| 		new_pte = old_pte | _PAGE_BUSY | _PAGE_ACCESSED;
 | |
| 	} while(old_pte != __cmpxchg_u64((unsigned long *)ptep,
 | |
| 					 old_pte, new_pte));
 | |
| 
 | |
| 	rflags = 0x2 | (!(new_pte & _PAGE_RW));
 | |
|  	/* _PAGE_EXEC -> HW_NO_EXEC since it's inverted */
 | |
| 	rflags |= ((new_pte & _PAGE_EXEC) ? 0 : HPTE_R_N);
 | |
| 	shift = mmu_psize_to_shift(mmu_psize);
 | |
| 	sz = ((1UL) << shift);
 | |
| 	if (!cpu_has_feature(CPU_FTR_COHERENT_ICACHE))
 | |
| 		/* No CPU has hugepages but lacks no execute, so we
 | |
| 		 * don't need to worry about that case */
 | |
| 		rflags = hash_huge_page_do_lazy_icache(rflags, __pte(old_pte),
 | |
| 						       trap, sz);
 | |
| 
 | |
| 	/* Check if pte already has an hpte (case 2) */
 | |
| 	if (unlikely(old_pte & _PAGE_HASHPTE)) {
 | |
| 		/* There MIGHT be an HPTE for this pte */
 | |
| 		unsigned long hash, slot;
 | |
| 
 | |
| 		hash = hpt_hash(va, shift, ssize);
 | |
| 		if (old_pte & _PAGE_F_SECOND)
 | |
| 			hash = ~hash;
 | |
| 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
 | |
| 		slot += (old_pte & _PAGE_F_GIX) >> 12;
 | |
| 
 | |
| 		if (ppc_md.hpte_updatepp(slot, rflags, va, mmu_psize,
 | |
| 					 ssize, local) == -1)
 | |
| 			old_pte &= ~_PAGE_HPTEFLAGS;
 | |
| 	}
 | |
| 
 | |
| 	if (likely(!(old_pte & _PAGE_HASHPTE))) {
 | |
| 		unsigned long hash = hpt_hash(va, shift, ssize);
 | |
| 		unsigned long hpte_group;
 | |
| 
 | |
| 		pa = pte_pfn(__pte(old_pte)) << PAGE_SHIFT;
 | |
| 
 | |
| repeat:
 | |
| 		hpte_group = ((hash & htab_hash_mask) *
 | |
| 			      HPTES_PER_GROUP) & ~0x7UL;
 | |
| 
 | |
| 		/* clear HPTE slot informations in new PTE */
 | |
| #ifdef CONFIG_PPC_64K_PAGES
 | |
| 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HPTE_SUB0;
 | |
| #else
 | |
| 		new_pte = (new_pte & ~_PAGE_HPTEFLAGS) | _PAGE_HASHPTE;
 | |
| #endif
 | |
| 		/* Add in WIMG bits */
 | |
| 		rflags |= (new_pte & (_PAGE_WRITETHRU | _PAGE_NO_CACHE |
 | |
| 				      _PAGE_COHERENT | _PAGE_GUARDED));
 | |
| 
 | |
| 		/* Insert into the hash table, primary slot */
 | |
| 		slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags, 0,
 | |
| 					  mmu_psize, ssize);
 | |
| 
 | |
| 		/* Primary is full, try the secondary */
 | |
| 		if (unlikely(slot == -1)) {
 | |
| 			hpte_group = ((~hash & htab_hash_mask) *
 | |
| 				      HPTES_PER_GROUP) & ~0x7UL; 
 | |
| 			slot = ppc_md.hpte_insert(hpte_group, va, pa, rflags,
 | |
| 						  HPTE_V_SECONDARY,
 | |
| 						  mmu_psize, ssize);
 | |
| 			if (slot == -1) {
 | |
| 				if (mftb() & 0x1)
 | |
| 					hpte_group = ((hash & htab_hash_mask) *
 | |
| 						      HPTES_PER_GROUP)&~0x7UL;
 | |
| 
 | |
| 				ppc_md.hpte_remove(hpte_group);
 | |
| 				goto repeat;
 | |
|                         }
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(slot == -2))
 | |
| 			panic("hash_huge_page: pte_insert failed\n");
 | |
| 
 | |
| 		new_pte |= (slot << 12) & (_PAGE_F_SECOND | _PAGE_F_GIX);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * No need to use ldarx/stdcx here
 | |
| 	 */
 | |
| 	*ptep = __pte(new_pte & ~_PAGE_BUSY);
 | |
| 
 | |
| 	err = 0;
 | |
| 
 | |
|  out:
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static void __init set_huge_psize(int psize)
 | |
| {
 | |
| 	/* Check that it is a page size supported by the hardware and
 | |
| 	 * that it fits within pagetable limits. */
 | |
| 	if (mmu_psize_defs[psize].shift &&
 | |
| 		mmu_psize_defs[psize].shift < SID_SHIFT_1T &&
 | |
| 		(mmu_psize_defs[psize].shift > MIN_HUGEPTE_SHIFT ||
 | |
| 		 mmu_psize_defs[psize].shift == PAGE_SHIFT_64K ||
 | |
| 		 mmu_psize_defs[psize].shift == PAGE_SHIFT_16G)) {
 | |
| 		/* Return if huge page size has already been setup or is the
 | |
| 		 * same as the base page size. */
 | |
| 		if (mmu_huge_psizes[psize] ||
 | |
| 		   mmu_psize_defs[psize].shift == PAGE_SHIFT)
 | |
| 			return;
 | |
| 		if (WARN_ON(HUGEPTE_CACHE_NAME(psize) == NULL))
 | |
| 			return;
 | |
| 		hugetlb_add_hstate(mmu_psize_defs[psize].shift - PAGE_SHIFT);
 | |
| 
 | |
| 		switch (mmu_psize_defs[psize].shift) {
 | |
| 		case PAGE_SHIFT_64K:
 | |
| 		    /* We only allow 64k hpages with 4k base page,
 | |
| 		     * which was checked above, and always put them
 | |
| 		     * at the PMD */
 | |
| 		    hugepte_shift[psize] = PMD_SHIFT;
 | |
| 		    break;
 | |
| 		case PAGE_SHIFT_16M:
 | |
| 		    /* 16M pages can be at two different levels
 | |
| 		     * of pagestables based on base page size */
 | |
| 		    if (PAGE_SHIFT == PAGE_SHIFT_64K)
 | |
| 			    hugepte_shift[psize] = PMD_SHIFT;
 | |
| 		    else /* 4k base page */
 | |
| 			    hugepte_shift[psize] = PUD_SHIFT;
 | |
| 		    break;
 | |
| 		case PAGE_SHIFT_16G:
 | |
| 		    /* 16G pages are always at PGD level */
 | |
| 		    hugepte_shift[psize] = PGDIR_SHIFT;
 | |
| 		    break;
 | |
| 		}
 | |
| 		hugepte_shift[psize] -= mmu_psize_defs[psize].shift;
 | |
| 	} else
 | |
| 		hugepte_shift[psize] = 0;
 | |
| }
 | |
| 
 | |
| static int __init hugepage_setup_sz(char *str)
 | |
| {
 | |
| 	unsigned long long size;
 | |
| 	int mmu_psize;
 | |
| 	int shift;
 | |
| 
 | |
| 	size = memparse(str, &str);
 | |
| 
 | |
| 	shift = __ffs(size);
 | |
| 	mmu_psize = shift_to_mmu_psize(shift);
 | |
| 	if (mmu_psize >= 0 && mmu_psize_defs[mmu_psize].shift)
 | |
| 		set_huge_psize(mmu_psize);
 | |
| 	else
 | |
| 		printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| __setup("hugepagesz=", hugepage_setup_sz);
 | |
| 
 | |
| static int __init hugetlbpage_init(void)
 | |
| {
 | |
| 	unsigned int psize;
 | |
| 
 | |
| 	if (!cpu_has_feature(CPU_FTR_16M_PAGE))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* Add supported huge page sizes.  Need to change HUGE_MAX_HSTATE
 | |
| 	 * and adjust PTE_NONCACHE_NUM if the number of supported huge page
 | |
| 	 * sizes changes.
 | |
| 	 */
 | |
| 	set_huge_psize(MMU_PAGE_16M);
 | |
| 	set_huge_psize(MMU_PAGE_16G);
 | |
| 
 | |
| 	/* Temporarily disable support for 64K huge pages when 64K SPU local
 | |
| 	 * store support is enabled as the current implementation conflicts.
 | |
| 	 */
 | |
| #ifndef CONFIG_SPU_FS_64K_LS
 | |
| 	set_huge_psize(MMU_PAGE_64K);
 | |
| #endif
 | |
| 
 | |
| 	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 | |
| 		if (mmu_huge_psizes[psize]) {
 | |
| 			pgtable_cache[HUGE_PGTABLE_INDEX(psize)] =
 | |
| 				kmem_cache_create(
 | |
| 					HUGEPTE_CACHE_NAME(psize),
 | |
| 					HUGEPTE_TABLE_SIZE(psize),
 | |
| 					HUGEPTE_TABLE_SIZE(psize),
 | |
| 					0,
 | |
| 					NULL);
 | |
| 			if (!pgtable_cache[HUGE_PGTABLE_INDEX(psize)])
 | |
| 				panic("hugetlbpage_init(): could not create %s"\
 | |
| 				      "\n", HUGEPTE_CACHE_NAME(psize));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| module_init(hugetlbpage_init);
 |