370 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/ioremap.c
 | |
|  *
 | |
|  * Re-map IO memory to kernel address space so that we can access it.
 | |
|  *
 | |
|  * (C) Copyright 1995 1996 Linus Torvalds
 | |
|  *
 | |
|  * Hacked for ARM by Phil Blundell <philb@gnu.org>
 | |
|  * Hacked to allow all architectures to build, and various cleanups
 | |
|  * by Russell King
 | |
|  *
 | |
|  * This allows a driver to remap an arbitrary region of bus memory into
 | |
|  * virtual space.  One should *only* use readl, writel, memcpy_toio and
 | |
|  * so on with such remapped areas.
 | |
|  *
 | |
|  * Because the ARM only has a 32-bit address space we can't address the
 | |
|  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 | |
|  * allows us to circumvent this restriction by splitting PCI space into
 | |
|  * two 2GB chunks and mapping only one at a time into processor memory.
 | |
|  * We use MMU protection domains to trap any attempt to access the bank
 | |
|  * that is not currently mapped.  (This isn't fully implemented yet.)
 | |
|  */
 | |
| #include <linux/module.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/io.h>
 | |
| 
 | |
| #include <asm/cputype.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <asm/sizes.h>
 | |
| 
 | |
| #include <asm/mach/map.h>
 | |
| #include "mm.h"
 | |
| 
 | |
| /*
 | |
|  * Used by ioremap() and iounmap() code to mark (super)section-mapped
 | |
|  * I/O regions in vm_struct->flags field.
 | |
|  */
 | |
| #define VM_ARM_SECTION_MAPPING	0x80000000
 | |
| 
 | |
| static int remap_area_pte(pmd_t *pmd, unsigned long addr, unsigned long end,
 | |
| 			  unsigned long phys_addr, const struct mem_type *type)
 | |
| {
 | |
| 	pgprot_t prot = __pgprot(type->prot_pte);
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pte = pte_alloc_kernel(pmd, addr);
 | |
| 	if (!pte)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	do {
 | |
| 		if (!pte_none(*pte))
 | |
| 			goto bad;
 | |
| 
 | |
| 		set_pte_ext(pte, pfn_pte(phys_addr >> PAGE_SHIFT, prot), 0);
 | |
| 		phys_addr += PAGE_SIZE;
 | |
| 	} while (pte++, addr += PAGE_SIZE, addr != end);
 | |
| 	return 0;
 | |
| 
 | |
|  bad:
 | |
| 	printk(KERN_CRIT "remap_area_pte: page already exists\n");
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| static inline int remap_area_pmd(pgd_t *pgd, unsigned long addr,
 | |
| 				 unsigned long end, unsigned long phys_addr,
 | |
| 				 const struct mem_type *type)
 | |
| {
 | |
| 	unsigned long next;
 | |
| 	pmd_t *pmd;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	pmd = pmd_alloc(&init_mm, pgd, addr);
 | |
| 	if (!pmd)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	do {
 | |
| 		next = pmd_addr_end(addr, end);
 | |
| 		ret = remap_area_pte(pmd, addr, next, phys_addr, type);
 | |
| 		if (ret)
 | |
| 			return ret;
 | |
| 		phys_addr += next - addr;
 | |
| 	} while (pmd++, addr = next, addr != end);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int remap_area_pages(unsigned long start, unsigned long pfn,
 | |
| 			    size_t size, const struct mem_type *type)
 | |
| {
 | |
| 	unsigned long addr = start;
 | |
| 	unsigned long next, end = start + size;
 | |
| 	unsigned long phys_addr = __pfn_to_phys(pfn);
 | |
| 	pgd_t *pgd;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	BUG_ON(addr >= end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		next = pgd_addr_end(addr, end);
 | |
| 		err = remap_area_pmd(pgd, addr, next, phys_addr, type);
 | |
| 		if (err)
 | |
| 			break;
 | |
| 		phys_addr += next - addr;
 | |
| 	} while (pgd++, addr = next, addr != end);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| int ioremap_page(unsigned long virt, unsigned long phys,
 | |
| 		 const struct mem_type *mtype)
 | |
| {
 | |
| 	return remap_area_pages(virt, __phys_to_pfn(phys), PAGE_SIZE, mtype);
 | |
| }
 | |
| EXPORT_SYMBOL(ioremap_page);
 | |
| 
 | |
| void __check_kvm_seq(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned int seq;
 | |
| 
 | |
| 	do {
 | |
| 		seq = init_mm.context.kvm_seq;
 | |
| 		memcpy(pgd_offset(mm, VMALLOC_START),
 | |
| 		       pgd_offset_k(VMALLOC_START),
 | |
| 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
 | |
| 					pgd_index(VMALLOC_START)));
 | |
| 		mm->context.kvm_seq = seq;
 | |
| 	} while (seq != init_mm.context.kvm_seq);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| /*
 | |
|  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
 | |
|  * the other CPUs will not see this change until their next context switch.
 | |
|  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
 | |
|  * which requires the new ioremap'd region to be referenced, the CPU will
 | |
|  * reference the _old_ region.
 | |
|  *
 | |
|  * Note that get_vm_area() allocates a guard 4K page, so we need to mask
 | |
|  * the size back to 1MB aligned or we will overflow in the loop below.
 | |
|  */
 | |
| static void unmap_area_sections(unsigned long virt, unsigned long size)
 | |
| {
 | |
| 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	flush_cache_vunmap(addr, end);
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		pmd_t pmd, *pmdp = pmd_offset(pgd, addr);
 | |
| 
 | |
| 		pmd = *pmdp;
 | |
| 		if (!pmd_none(pmd)) {
 | |
| 			/*
 | |
| 			 * Clear the PMD from the page table, and
 | |
| 			 * increment the kvm sequence so others
 | |
| 			 * notice this change.
 | |
| 			 *
 | |
| 			 * Note: this is still racy on SMP machines.
 | |
| 			 */
 | |
| 			pmd_clear(pmdp);
 | |
| 			init_mm.context.kvm_seq++;
 | |
| 
 | |
| 			/*
 | |
| 			 * Free the page table, if there was one.
 | |
| 			 */
 | |
| 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
 | |
| 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
 | |
| 		}
 | |
| 
 | |
| 		addr += PGDIR_SIZE;
 | |
| 		pgd++;
 | |
| 	} while (addr < end);
 | |
| 
 | |
| 	/*
 | |
| 	 * Ensure that the active_mm is up to date - we want to
 | |
| 	 * catch any use-after-iounmap cases.
 | |
| 	 */
 | |
| 	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
 | |
| 		__check_kvm_seq(current->active_mm);
 | |
| 
 | |
| 	flush_tlb_kernel_range(virt, end);
 | |
| }
 | |
| 
 | |
| static int
 | |
| remap_area_sections(unsigned long virt, unsigned long pfn,
 | |
| 		    size_t size, const struct mem_type *type)
 | |
| {
 | |
| 	unsigned long addr = virt, end = virt + size;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove and free any PTE-based mapping, and
 | |
| 	 * sync the current kernel mapping.
 | |
| 	 */
 | |
| 	unmap_area_sections(virt, size);
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	do {
 | |
| 		pmd_t *pmd = pmd_offset(pgd, addr);
 | |
| 
 | |
| 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
 | |
| 		pfn += SZ_1M >> PAGE_SHIFT;
 | |
| 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
 | |
| 		pfn += SZ_1M >> PAGE_SHIFT;
 | |
| 		flush_pmd_entry(pmd);
 | |
| 
 | |
| 		addr += PGDIR_SIZE;
 | |
| 		pgd++;
 | |
| 	} while (addr < end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| remap_area_supersections(unsigned long virt, unsigned long pfn,
 | |
| 			 size_t size, const struct mem_type *type)
 | |
| {
 | |
| 	unsigned long addr = virt, end = virt + size;
 | |
| 	pgd_t *pgd;
 | |
| 
 | |
| 	/*
 | |
| 	 * Remove and free any PTE-based mapping, and
 | |
| 	 * sync the current kernel mapping.
 | |
| 	 */
 | |
| 	unmap_area_sections(virt, size);
 | |
| 
 | |
| 	pgd = pgd_offset_k(virt);
 | |
| 	do {
 | |
| 		unsigned long super_pmd_val, i;
 | |
| 
 | |
| 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
 | |
| 				PMD_SECT_SUPER;
 | |
| 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
 | |
| 
 | |
| 		for (i = 0; i < 8; i++) {
 | |
| 			pmd_t *pmd = pmd_offset(pgd, addr);
 | |
| 
 | |
| 			pmd[0] = __pmd(super_pmd_val);
 | |
| 			pmd[1] = __pmd(super_pmd_val);
 | |
| 			flush_pmd_entry(pmd);
 | |
| 
 | |
| 			addr += PGDIR_SIZE;
 | |
| 			pgd++;
 | |
| 		}
 | |
| 
 | |
| 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
 | |
| 	} while (addr < end);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Remap an arbitrary physical address space into the kernel virtual
 | |
|  * address space. Needed when the kernel wants to access high addresses
 | |
|  * directly.
 | |
|  *
 | |
|  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 | |
|  * have to convert them into an offset in a page-aligned mapping, but the
 | |
|  * caller shouldn't need to know that small detail.
 | |
|  *
 | |
|  * 'flags' are the extra L_PTE_ flags that you want to specify for this
 | |
|  * mapping.  See <asm/pgtable.h> for more information.
 | |
|  */
 | |
| void __iomem *
 | |
| __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
 | |
| 		  unsigned int mtype)
 | |
| {
 | |
| 	const struct mem_type *type;
 | |
| 	int err;
 | |
| 	unsigned long addr;
 | |
|  	struct vm_struct * area;
 | |
| 
 | |
| 	/*
 | |
| 	 * High mappings must be supersection aligned
 | |
| 	 */
 | |
| 	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
 | |
| 		return NULL;
 | |
| 
 | |
| 	type = get_mem_type(mtype);
 | |
| 	if (!type)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Page align the mapping size, taking account of any offset.
 | |
| 	 */
 | |
| 	size = PAGE_ALIGN(offset + size);
 | |
| 
 | |
|  	area = get_vm_area(size, VM_IOREMAP);
 | |
|  	if (!area)
 | |
|  		return NULL;
 | |
|  	addr = (unsigned long)area->addr;
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| 	if (DOMAIN_IO == 0 &&
 | |
| 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
 | |
| 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
 | |
| 	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
 | |
| 		area->flags |= VM_ARM_SECTION_MAPPING;
 | |
| 		err = remap_area_supersections(addr, pfn, size, type);
 | |
| 	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
 | |
| 		area->flags |= VM_ARM_SECTION_MAPPING;
 | |
| 		err = remap_area_sections(addr, pfn, size, type);
 | |
| 	} else
 | |
| #endif
 | |
| 		err = remap_area_pages(addr, pfn, size, type);
 | |
| 
 | |
| 	if (err) {
 | |
|  		vunmap((void *)addr);
 | |
|  		return NULL;
 | |
|  	}
 | |
| 
 | |
| 	flush_cache_vmap(addr, addr + size);
 | |
| 	return (void __iomem *) (offset + addr);
 | |
| }
 | |
| EXPORT_SYMBOL(__arm_ioremap_pfn);
 | |
| 
 | |
| void __iomem *
 | |
| __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
 | |
| {
 | |
| 	unsigned long last_addr;
 | |
|  	unsigned long offset = phys_addr & ~PAGE_MASK;
 | |
|  	unsigned long pfn = __phys_to_pfn(phys_addr);
 | |
| 
 | |
|  	/*
 | |
|  	 * Don't allow wraparound or zero size
 | |
| 	 */
 | |
| 	last_addr = phys_addr + size - 1;
 | |
| 	if (!size || last_addr < phys_addr)
 | |
| 		return NULL;
 | |
| 
 | |
|  	return __arm_ioremap_pfn(pfn, offset, size, mtype);
 | |
| }
 | |
| EXPORT_SYMBOL(__arm_ioremap);
 | |
| 
 | |
| void __iounmap(volatile void __iomem *io_addr)
 | |
| {
 | |
| 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
 | |
| #ifndef CONFIG_SMP
 | |
| 	struct vm_struct **p, *tmp;
 | |
| 
 | |
| 	/*
 | |
| 	 * If this is a section based mapping we need to handle it
 | |
| 	 * specially as the VM subsystem does not know how to handle
 | |
| 	 * such a beast. We need the lock here b/c we need to clear
 | |
| 	 * all the mappings before the area can be reclaimed
 | |
| 	 * by someone else.
 | |
| 	 */
 | |
| 	write_lock(&vmlist_lock);
 | |
| 	for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {
 | |
| 		if ((tmp->flags & VM_IOREMAP) && (tmp->addr == addr)) {
 | |
| 			if (tmp->flags & VM_ARM_SECTION_MAPPING) {
 | |
| 				unmap_area_sections((unsigned long)tmp->addr,
 | |
| 						    tmp->size);
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	write_unlock(&vmlist_lock);
 | |
| #endif
 | |
| 
 | |
| 	vunmap(addr);
 | |
| }
 | |
| EXPORT_SYMBOL(__iounmap);
 |