- added some memory optimizations from htc-msm-2.6.32 - some memory problems still present
		
			
				
	
	
		
			685 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			685 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/arm/mm/init.c
 | |
|  *
 | |
|  *  Copyright (C) 1995-2005 Russell King
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/sort.h>
 | |
| #include <linux/highmem.h>
 | |
| 
 | |
| #include <asm/mach-types.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/setup.h>
 | |
| #include <asm/sizes.h>
 | |
| #include <asm/tlb.h>
 | |
| 
 | |
| #include <asm/mach/arch.h>
 | |
| #include <asm/mach/map.h>
 | |
| 
 | |
| #include "mm.h"
 | |
| 
 | |
| static unsigned long phys_initrd_start __initdata = 0;
 | |
| static unsigned long phys_initrd_size __initdata = 0;
 | |
| 
 | |
| static void __init early_initrd(char **p)
 | |
| {
 | |
| 	unsigned long start, size;
 | |
| 
 | |
| 	start = memparse(*p, p);
 | |
| 	if (**p == ',') {
 | |
| 		size = memparse((*p) + 1, p);
 | |
| 
 | |
| 		phys_initrd_start = start;
 | |
| 		phys_initrd_size = size;
 | |
| 	}
 | |
| }
 | |
| __early_param("initrd=", early_initrd);
 | |
| 
 | |
| static int __init parse_tag_initrd(const struct tag *tag)
 | |
| {
 | |
| 	printk(KERN_WARNING "ATAG_INITRD is deprecated; "
 | |
| 		"please update your bootloader.\n");
 | |
| 	phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
 | |
| 	phys_initrd_size = tag->u.initrd.size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __tagtable(ATAG_INITRD, parse_tag_initrd);
 | |
| 
 | |
| static int __init parse_tag_initrd2(const struct tag *tag)
 | |
| {
 | |
| 	phys_initrd_start = tag->u.initrd.start;
 | |
| 	phys_initrd_size = tag->u.initrd.size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| __tagtable(ATAG_INITRD2, parse_tag_initrd2);
 | |
| 
 | |
| /*
 | |
|  * This keeps memory configuration data used by a couple memory
 | |
|  * initialization functions, as well as show_mem() for the skipping
 | |
|  * of holes in the memory map.  It is populated by arm_add_memory().
 | |
|  */
 | |
| struct meminfo meminfo;
 | |
| 
 | |
| void show_mem(void)
 | |
| {
 | |
| 	int free = 0, total = 0, reserved = 0;
 | |
| 	int shared = 0, cached = 0, slab = 0, node, i;
 | |
| 	struct meminfo * mi = &meminfo;
 | |
| 
 | |
| 	printk("Mem-info:\n");
 | |
| 	show_free_areas();
 | |
| 	for_each_online_node(node) {
 | |
| 		pg_data_t *n = NODE_DATA(node);
 | |
| 		struct page *map = pgdat_page_nr(n, 0) - n->node_start_pfn;
 | |
| 
 | |
| 		for_each_nodebank (i,mi,node) {
 | |
| 			struct membank *bank = &mi->bank[i];
 | |
| 			unsigned int pfn1, pfn2;
 | |
| 			struct page *page, *end;
 | |
| 
 | |
| 			pfn1 = bank_pfn_start(bank);
 | |
| 			pfn2 = bank_pfn_end(bank);
 | |
| 
 | |
| 			page = map + pfn1;
 | |
| 			end  = map + pfn2;
 | |
| 
 | |
| 			do {
 | |
| 				total++;
 | |
| 				if (PageReserved(page))
 | |
| 					reserved++;
 | |
| 				else if (PageSwapCache(page))
 | |
| 					cached++;
 | |
| 				else if (PageSlab(page))
 | |
| 					slab++;
 | |
| 				else if (!page_count(page))
 | |
| 					free++;
 | |
| 				else
 | |
| 					shared += page_count(page) - 1;
 | |
| 				page++;
 | |
| 			} while (page < end);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	printk("%d pages of RAM\n", total);
 | |
| 	printk("%d free pages\n", free);
 | |
| 	printk("%d reserved pages\n", reserved);
 | |
| 	printk("%d slab pages\n", slab);
 | |
| 	printk("%d pages shared\n", shared);
 | |
| 	printk("%d pages swap cached\n", cached);
 | |
| }
 | |
| 
 | |
| static void __init find_node_limits(int node, struct meminfo *mi,
 | |
| 	unsigned long *min, unsigned long *max_low, unsigned long *max_high)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	*min = -1UL;
 | |
| 	*max_low = *max_high = 0;
 | |
| 
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		struct membank *bank = &mi->bank[i];
 | |
| 		unsigned long start, end;
 | |
| 
 | |
| 		start = bank_pfn_start(bank);
 | |
| 		end = bank_pfn_end(bank);
 | |
| 
 | |
| 		if (*min > start)
 | |
| 			*min = start;
 | |
| 		if (*max_high < end)
 | |
| 			*max_high = end;
 | |
| 		if (bank->highmem)
 | |
| 			continue;
 | |
| 		if (*max_low < end)
 | |
| 			*max_low = end;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * FIXME: We really want to avoid allocating the bootmap bitmap
 | |
|  * over the top of the initrd.  Hopefully, this is located towards
 | |
|  * the start of a bank, so if we allocate the bootmap bitmap at
 | |
|  * the end, we won't clash.
 | |
|  */
 | |
| static unsigned int __init
 | |
| find_bootmap_pfn(int node, struct meminfo *mi, unsigned int bootmap_pages)
 | |
| {
 | |
| 	unsigned int start_pfn, i, bootmap_pfn;
 | |
| 
 | |
| 	start_pfn   = PAGE_ALIGN(__pa(_end)) >> PAGE_SHIFT;
 | |
| 	bootmap_pfn = 0;
 | |
| 
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		struct membank *bank = &mi->bank[i];
 | |
| 		unsigned int start, end;
 | |
| 
 | |
| 		start = bank_pfn_start(bank);
 | |
| 		end   = bank_pfn_end(bank);
 | |
| 
 | |
| 		if (end < start_pfn)
 | |
| 			continue;
 | |
| 
 | |
| 		if (start < start_pfn)
 | |
| 			start = start_pfn;
 | |
| 
 | |
| 		if (end <= start)
 | |
| 			continue;
 | |
| 
 | |
| 		if (end - start >= bootmap_pages) {
 | |
| 			bootmap_pfn = start;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (bootmap_pfn == 0)
 | |
| 		BUG();
 | |
| 
 | |
| 	return bootmap_pfn;
 | |
| }
 | |
| 
 | |
| static int __init check_initrd(struct meminfo *mi)
 | |
| {
 | |
| 	int initrd_node = -2;
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	unsigned long end = phys_initrd_start + phys_initrd_size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Make sure that the initrd is within a valid area of
 | |
| 	 * memory.
 | |
| 	 */
 | |
| 	if (phys_initrd_size) {
 | |
| 		unsigned int i;
 | |
| 
 | |
| 		initrd_node = -1;
 | |
| 
 | |
| 		for (i = 0; i < mi->nr_banks; i++) {
 | |
| 			struct membank *bank = &mi->bank[i];
 | |
| 			if (bank_phys_start(bank) <= phys_initrd_start &&
 | |
| 			    end <= bank_phys_end(bank))
 | |
| 				initrd_node = bank->node;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (initrd_node == -1) {
 | |
| 		printk(KERN_ERR "INITRD: 0x%08lx+0x%08lx extends beyond "
 | |
| 		       "physical memory - disabling initrd\n",
 | |
| 		       phys_initrd_start, phys_initrd_size);
 | |
| 		phys_initrd_start = phys_initrd_size = 0;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	return initrd_node;
 | |
| }
 | |
| 
 | |
| static inline void map_memory_bank(struct membank *bank)
 | |
| {
 | |
| #ifdef CONFIG_MMU
 | |
| 	struct map_desc map;
 | |
| 
 | |
| 	map.pfn = bank_pfn_start(bank);
 | |
| 	map.virtual = __phys_to_virt(bank_phys_start(bank));
 | |
| 	map.length = bank_phys_size(bank);
 | |
| 	map.type = MT_MEMORY;
 | |
| 
 | |
| 	create_mapping(&map);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init bootmem_init_node(int node, struct meminfo *mi,
 | |
| 	unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long boot_pfn;
 | |
| 	unsigned int boot_pages;
 | |
| 	pg_data_t *pgdat;
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Map the memory banks for this node.
 | |
| 	 */
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		struct membank *bank = &mi->bank[i];
 | |
| 
 | |
| #if defined(CONFIG_FLATMEM) && !defined(CONFIG_HOLES_IN_ZONE)
 | |
| 		/*
 | |
| 		 * The VM code assumes that hole end addresses are aligned if
 | |
| 		 * CONFIG_HOLES_IN_ZONE is not enabled. This results in
 | |
| 		 * panics since we free unused memmap entries on ARM.
 | |
| 		 * This check shouldn't be necessary for the last bank's end
 | |
| 		 * address, since the VM code accounts for the total zone size.
 | |
| 		 */
 | |
| 		if ((i < (mi->nr_banks - 1)) &&
 | |
| 		    (bank_pfn_end(bank) & (MAX_ORDER_NR_PAGES - 1))) {
 | |
| 			pr_err("Memory bank[%d] not aligned to 0x%x bytes.\n"
 | |
| 			       "\tMake bank end address align with MAX_ORDER\n"
 | |
| 			       "\tor enable option CONFIG_HOLES_IN_ZONE.\n",
 | |
| 			       i, __pfn_to_phys(MAX_ORDER_NR_PAGES));
 | |
| 			BUG();
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		if (!bank->highmem)
 | |
| 			map_memory_bank(bank);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Allocate the bootmem bitmap page.
 | |
| 	 */
 | |
| 	boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
 | |
| 	boot_pfn = find_bootmap_pfn(node, mi, boot_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise the bootmem allocator for this node, handing the
 | |
| 	 * memory banks over to bootmem.
 | |
| 	 */
 | |
| 	node_set_online(node);
 | |
| 	pgdat = NODE_DATA(node);
 | |
| 	init_bootmem_node(pgdat, boot_pfn, start_pfn, end_pfn);
 | |
| 
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		struct membank *bank = &mi->bank[i];
 | |
| 		if (!bank->highmem)
 | |
| 			free_bootmem_node(pgdat, bank_phys_start(bank), bank_phys_size(bank));
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Reserve the bootmem bitmap for this node.
 | |
| 	 */
 | |
| 	reserve_bootmem_node(pgdat, boot_pfn << PAGE_SHIFT,
 | |
| 			     boot_pages << PAGE_SHIFT, BOOTMEM_DEFAULT);
 | |
| }
 | |
| 
 | |
| static void __init bootmem_reserve_initrd(int node)
 | |
| {
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 	pg_data_t *pgdat = NODE_DATA(node);
 | |
| 	int res;
 | |
| 
 | |
| 	res = reserve_bootmem_node(pgdat, phys_initrd_start,
 | |
| 			     phys_initrd_size, BOOTMEM_EXCLUSIVE);
 | |
| 
 | |
| 	if (res == 0) {
 | |
| 		initrd_start = __phys_to_virt(phys_initrd_start);
 | |
| 		initrd_end = initrd_start + phys_initrd_size;
 | |
| 	} else {
 | |
| 		printk(KERN_ERR
 | |
| 			"INITRD: 0x%08lx+0x%08lx overlaps in-use "
 | |
| 			"memory region - disabling initrd\n",
 | |
| 			phys_initrd_start, phys_initrd_size);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void __init bootmem_free_node(int node, struct meminfo *mi)
 | |
| {
 | |
| 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
 | |
| 	unsigned long min, max_low, max_high;
 | |
| 	int i;
 | |
| 
 | |
| 	find_node_limits(node, mi, &min, &max_low, &max_high);
 | |
| 
 | |
| 	/*
 | |
| 	 * initialise the zones within this node.
 | |
| 	 */
 | |
| 	memset(zone_size, 0, sizeof(zone_size));
 | |
| 
 | |
| 	/*
 | |
| 	 * The size of this node has already been determined.  If we need
 | |
| 	 * to do anything fancy with the allocation of this memory to the
 | |
| 	 * zones, now is the time to do it.
 | |
| 	 */
 | |
| 	zone_size[0] = max_low - min;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	zone_size[ZONE_HIGHMEM] = max_high - max_low;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * For each bank in this node, calculate the size of the holes.
 | |
| 	 *  holes = node_size - sum(bank_sizes_in_node)
 | |
| 	 */
 | |
| 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		int idx = 0;
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 		if (mi->bank[i].highmem)
 | |
| 			idx = ZONE_HIGHMEM;
 | |
| #endif
 | |
| 		zhole_size[idx] -= bank_pfn_size(&mi->bank[i]);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Adjust the sizes according to any special requirements for
 | |
| 	 * this machine type.
 | |
| 	 */
 | |
| 	arch_adjust_zones(node, zone_size, zhole_size);
 | |
| 
 | |
| 	free_area_init_node(node, zone_size, min, zhole_size);
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_SPARSEMEM
 | |
| int pfn_valid(unsigned long pfn)
 | |
| {
 | |
| 	struct meminfo *mi = &meminfo;
 | |
| 	unsigned int left = 0, right = mi->nr_banks;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int mid = (right + left) / 2;
 | |
| 		struct membank *bank = &mi->bank[mid];
 | |
| 
 | |
| 		if (pfn < bank_pfn_start(bank))
 | |
| 			right = mid;
 | |
| 		else if (pfn >= bank_pfn_end(bank))
 | |
| 			left = mid + 1;
 | |
| 		else
 | |
| 			return 1;
 | |
| 	} while (left < right);
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(pfn_valid);
 | |
| 
 | |
| static void arm_memory_present(struct meminfo *mi, int node)
 | |
| {
 | |
| }
 | |
| #else
 | |
| static void arm_memory_present(struct meminfo *mi, int node)
 | |
| {
 | |
| 	int i;
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		struct membank *bank = &mi->bank[i];
 | |
| 		memory_present(node, bank_pfn_start(bank), bank_pfn_end(bank));
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static int __init meminfo_cmp(const void *_a, const void *_b)
 | |
| {
 | |
| 	const struct membank *a = _a, *b = _b;
 | |
| 	long cmp = bank_pfn_start(a) - bank_pfn_start(b);
 | |
| 	return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
 | |
| }
 | |
| 
 | |
| void __init bootmem_init(void)
 | |
| {
 | |
| 	struct meminfo *mi = &meminfo;
 | |
| 	unsigned long min, max_low, max_high;
 | |
| 	int node, initrd_node;
 | |
| 
 | |
| 	sort(&mi->bank, mi->nr_banks, sizeof(mi->bank[0]), meminfo_cmp, NULL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Locate which node contains the ramdisk image, if any.
 | |
| 	 */
 | |
| 	initrd_node = check_initrd(mi);
 | |
| 
 | |
| 	max_low = max_high = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Run through each node initialising the bootmem allocator.
 | |
| 	 */
 | |
| 	for_each_node(node) {
 | |
| 		unsigned long node_low, node_high;
 | |
| 
 | |
| 		find_node_limits(node, mi, &min, &node_low, &node_high);
 | |
| 
 | |
| 		if (node_low > max_low)
 | |
| 			max_low = node_low;
 | |
| 		if (node_high > max_high)
 | |
| 			max_high = node_high;
 | |
| 
 | |
| 		/*
 | |
| 		 * If there is no memory in this node, ignore it.
 | |
| 		 * (We can't have nodes which have no lowmem)
 | |
| 		 */
 | |
| 		if (node_low == 0)
 | |
| 			continue;
 | |
| 
 | |
| 		bootmem_init_node(node, mi, min, node_low);
 | |
| 
 | |
| 		/*
 | |
| 		 * Reserve any special node zero regions.
 | |
| 		 */
 | |
| 		if (node == 0)
 | |
| 			reserve_node_zero(NODE_DATA(node));
 | |
| 
 | |
| 		/*
 | |
| 		 * If the initrd is in this node, reserve its memory.
 | |
| 		 */
 | |
| 		if (node == initrd_node)
 | |
| 			bootmem_reserve_initrd(node);
 | |
| 
 | |
| 		/*
 | |
| 		 * Sparsemem tries to allocate bootmem in memory_present(),
 | |
| 		 * so must be done after the fixed reservations
 | |
| 		 */
 | |
| 		arm_memory_present(mi, node);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * sparse_init() needs the bootmem allocator up and running.
 | |
| 	 */
 | |
| 	sparse_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * Now free memory in each node - free_area_init_node needs
 | |
| 	 * the sparse mem_map arrays initialized by sparse_init()
 | |
| 	 * for memmap_init_zone(), otherwise all PFNs are invalid.
 | |
| 	 */
 | |
| 	for_each_node(node)
 | |
| 		bootmem_free_node(node, mi);
 | |
| 
 | |
| 	high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * This doesn't seem to be used by the Linux memory manager any
 | |
| 	 * more, but is used by ll_rw_block.  If we can get rid of it, we
 | |
| 	 * also get rid of some of the stuff above as well.
 | |
| 	 *
 | |
| 	 * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
 | |
| 	 * the system, not the maximum PFN.
 | |
| 	 */
 | |
| 	max_low_pfn = max_low - PHYS_PFN_OFFSET;
 | |
| 	max_pfn = max_high - PHYS_PFN_OFFSET;
 | |
| }
 | |
| 
 | |
| static inline int free_area(unsigned long pfn, unsigned long end, char *s)
 | |
| {
 | |
| 	unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
 | |
| 
 | |
| 	for (; pfn < end; pfn++) {
 | |
| 		struct page *page = pfn_to_page(pfn);
 | |
| 		ClearPageReserved(page);
 | |
| 		init_page_count(page);
 | |
| 		__free_page(page);
 | |
| 		pages++;
 | |
| 	}
 | |
| 
 | |
| 	if (size && s)
 | |
| 		printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
 | |
| 
 | |
| 	return pages;
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| free_memmap(int node, unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	struct page *start_pg, *end_pg;
 | |
| 	unsigned long pg, pgend;
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert start_pfn/end_pfn to a struct page pointer.
 | |
| 	 */
 | |
| 	start_pg = pfn_to_page(start_pfn - 1) + 1;
 | |
| 	end_pg = pfn_to_page(end_pfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * Convert to physical addresses, and
 | |
| 	 * round start upwards and end downwards.
 | |
| 	 */
 | |
| 	pg = PAGE_ALIGN(__pa(start_pg));
 | |
| 	pgend = __pa(end_pg) & PAGE_MASK;
 | |
| 
 | |
| 	/*
 | |
| 	 * If there are free pages between these,
 | |
| 	 * free the section of the memmap array.
 | |
| 	 */
 | |
| 	if (pg < pgend)
 | |
| 		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The mem_map array can get very big.  Free the unused area of the memory map.
 | |
|  */
 | |
| static void __init free_unused_memmap_node(int node, struct meminfo *mi)
 | |
| {
 | |
| 	unsigned long bank_start, prev_bank_end = 0;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * This relies on each bank being in address order. The banks
 | |
| 	 * are sorted previously in bootmem_init().
 | |
| 	 */
 | |
| 	for_each_nodebank(i, mi, node) {
 | |
| 		struct membank *bank = &mi->bank[i];
 | |
| 
 | |
| 		bank_start = bank_pfn_start(bank);
 | |
| 		if (bank_start < prev_bank_end) {
 | |
| 			printk(KERN_ERR "MEM: unordered memory banks.  "
 | |
| 				"Not freeing memmap.\n");
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * If we had a previous bank, and there is a space
 | |
| 		 * between the current bank and the previous, free it.
 | |
| 		 */
 | |
| 		if (prev_bank_end && prev_bank_end != bank_start)
 | |
| 			free_memmap(node, prev_bank_end, bank_start);
 | |
| 
 | |
| 		prev_bank_end = bank_pfn_end(bank);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * mem_init() marks the free areas in the mem_map and tells us how much
 | |
|  * memory is free.  This is done after various parts of the system have
 | |
|  * claimed their memory after the kernel image.
 | |
|  */
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	unsigned int codesize, datasize, initsize;
 | |
| 	int i, node;
 | |
| 
 | |
| #ifndef CONFIG_DISCONTIGMEM
 | |
| 	max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
 | |
| #endif
 | |
| 
 | |
| 	/* this will put all unused low memory onto the freelists */
 | |
| 	for_each_online_node(node) {
 | |
| 		pg_data_t *pgdat = NODE_DATA(node);
 | |
| 
 | |
| 		free_unused_memmap_node(node, &meminfo);
 | |
| 
 | |
| 		if (pgdat->node_spanned_pages != 0)
 | |
| 			totalram_pages += free_all_bootmem_node(pgdat);
 | |
| 	}
 | |
| 
 | |
| #ifdef CONFIG_SA1111
 | |
| 	/* now that our DMA memory is actually so designated, we can free it */
 | |
| 	totalram_pages += free_area(PHYS_PFN_OFFSET,
 | |
| 				    __phys_to_pfn(__pa(swapper_pg_dir)), NULL);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_HIGHMEM
 | |
| 	/* set highmem page free */
 | |
| 	for_each_online_node(node) {
 | |
| 		for_each_nodebank (i, &meminfo, node) {
 | |
| 			unsigned long start = bank_pfn_start(&meminfo.bank[i]);
 | |
| 			unsigned long end = bank_pfn_end(&meminfo.bank[i]);
 | |
| 			if (start >= max_low_pfn + PHYS_PFN_OFFSET)
 | |
| 				totalhigh_pages += free_area(start, end, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 	totalram_pages += totalhigh_pages;
 | |
| #endif
 | |
| 
 | |
| 	/*
 | |
| 	 * Since our memory may not be contiguous, calculate the
 | |
| 	 * real number of pages we have in this system
 | |
| 	 */
 | |
| 	printk(KERN_INFO "Memory:");
 | |
| 	num_physpages = 0;
 | |
| 	for (i = 0; i < meminfo.nr_banks; i++) {
 | |
| 		num_physpages += bank_pfn_size(&meminfo.bank[i]);
 | |
| 		printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20);
 | |
| 	}
 | |
| 	printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
 | |
| 
 | |
| 	codesize = _etext - _text;
 | |
| 	datasize = _end - _data;
 | |
| 	initsize = __init_end - __init_begin;
 | |
| 
 | |
| 	printk(KERN_NOTICE "Memory: %luKB available (%dK code, "
 | |
| 		"%dK data, %dK init, %luK highmem)\n",
 | |
| 		nr_free_pages() << (PAGE_SHIFT-10), codesize >> 10,
 | |
| 		datasize >> 10, initsize >> 10,
 | |
| 		(unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
 | |
| 
 | |
| 	if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
 | |
| 		extern int sysctl_overcommit_memory;
 | |
| 		/*
 | |
| 		 * On a machine this small we won't get
 | |
| 		 * anywhere without overcommit, so turn
 | |
| 		 * it on by default.
 | |
| 		 */
 | |
| 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void free_initmem(void)
 | |
| {
 | |
| #ifdef CONFIG_HAVE_TCM
 | |
| 	extern char *__tcm_start, *__tcm_end;
 | |
| 
 | |
| 	totalram_pages += free_area(__phys_to_pfn(__pa(__tcm_start)),
 | |
| 				    __phys_to_pfn(__pa(__tcm_end)),
 | |
| 				    "TCM link");
 | |
| #endif
 | |
| 
 | |
| 	if (!machine_is_integrator() && !machine_is_cintegrator())
 | |
| 		totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
 | |
| 					    __phys_to_pfn(__pa(__init_end)),
 | |
| 					    "init");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_BLK_DEV_INITRD
 | |
| 
 | |
| static int keep_initrd;
 | |
| 
 | |
| void free_initrd_mem(unsigned long start, unsigned long end)
 | |
| {
 | |
| 	if (!keep_initrd)
 | |
| 		totalram_pages += free_area(__phys_to_pfn(__pa(start)),
 | |
| 					    __phys_to_pfn(__pa(end)),
 | |
| 					    "initrd");
 | |
| }
 | |
| 
 | |
| static int __init keepinitrd_setup(char *__unused)
 | |
| {
 | |
| 	keep_initrd = 1;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| __setup("keepinitrd", keepinitrd_setup);
 | |
| #endif
 |