3131 lines
88 KiB
C
3131 lines
88 KiB
C
/*
|
|
* 'Standard' SDIO HOST CONTROLLER driver
|
|
*
|
|
* Copyright (C) 1999-2010, Broadcom Corporation
|
|
*
|
|
* Unless you and Broadcom execute a separate written software license
|
|
* agreement governing use of this software, this software is licensed to you
|
|
* under the terms of the GNU General Public License version 2 (the "GPL"),
|
|
* available at http://www.broadcom.com/licenses/GPLv2.php, with the
|
|
* following added to such license:
|
|
*
|
|
* As a special exception, the copyright holders of this software give you
|
|
* permission to link this software with independent modules, and to copy and
|
|
* distribute the resulting executable under terms of your choice, provided that
|
|
* you also meet, for each linked independent module, the terms and conditions of
|
|
* the license of that module. An independent module is a module which is not
|
|
* derived from this software. The special exception does not apply to any
|
|
* modifications of the software.
|
|
*
|
|
* Notwithstanding the above, under no circumstances may you combine this
|
|
* software in any way with any other Broadcom software provided under a license
|
|
* other than the GPL, without Broadcom's express prior written consent.
|
|
*
|
|
* $Id: bcmsdstd.c,v 1.64.4.1.4.4.2.17 2010/03/10 03:09:48 Exp $
|
|
*/
|
|
|
|
#include <typedefs.h>
|
|
|
|
#include <bcmdevs.h>
|
|
#include <bcmendian.h>
|
|
#include <bcmutils.h>
|
|
#include <osl.h>
|
|
#include <siutils.h>
|
|
#include <sdio.h> /* SDIO Device and Protocol Specs */
|
|
#include <sdioh.h> /* SDIO Host Controller Specification */
|
|
#include <bcmsdbus.h> /* bcmsdh to/from specific controller APIs */
|
|
#include <sdiovar.h> /* ioctl/iovars */
|
|
#include <pcicfg.h>
|
|
|
|
|
|
#define SD_PAGE_BITS 12
|
|
#define SD_PAGE (1 << SD_PAGE_BITS)
|
|
|
|
#include <bcmsdstd.h>
|
|
|
|
/* Globals */
|
|
uint sd_msglevel = SDH_ERROR_VAL;
|
|
uint sd_hiok = TRUE; /* Use hi-speed mode if available? */
|
|
uint sd_sdmode = SDIOH_MODE_SD4; /* Use SD4 mode by default */
|
|
uint sd_f2_blocksize = 64; /* Default blocksize */
|
|
|
|
#ifdef BCMSDYIELD
|
|
bool sd_yieldcpu = TRUE; /* Allow CPU yielding for buffer requests */
|
|
uint sd_minyield = 0; /* Minimum xfer size to allow CPU yield */
|
|
bool sd_forcerb = FALSE; /* Force sync readback in intrs_on/off */
|
|
#endif
|
|
|
|
uint sd_divisor = 2; /* Default 48MHz/2 = 24MHz */
|
|
|
|
uint sd_power = 1; /* Default to SD Slot powered ON */
|
|
uint sd_clock = 1; /* Default to SD Clock turned ON */
|
|
uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
|
|
uint8 sd_dma_mode = DMA_MODE_SDMA; /* Default to SDMA for now */
|
|
|
|
uint sd_toctl = 7;
|
|
|
|
static bool trap_errs = FALSE;
|
|
|
|
static const char *dma_mode_description[] = { "PIO", "SDMA", "ADMA1", "32b ADMA2", "64b ADMA2" };
|
|
|
|
/* Prototypes */
|
|
static bool sdstd_start_clock(sdioh_info_t *sd, uint16 divisor);
|
|
static bool sdstd_start_power(sdioh_info_t *sd);
|
|
static bool sdstd_bus_width(sdioh_info_t *sd, int width);
|
|
static int sdstd_set_highspeed_mode(sdioh_info_t *sd, bool HSMode);
|
|
static int sdstd_set_dma_mode(sdioh_info_t *sd, int8 dma_mode);
|
|
static int sdstd_card_enablefuncs(sdioh_info_t *sd);
|
|
static void sdstd_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count);
|
|
static int sdstd_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd, uint32 arg);
|
|
static int sdstd_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
|
|
int regsize, uint32 *data);
|
|
static int sdstd_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
|
|
int regsize, uint32 data);
|
|
static int sdstd_driver_init(sdioh_info_t *sd);
|
|
static bool sdstd_reset(sdioh_info_t *sd, bool host_reset, bool client_reset);
|
|
static int sdstd_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
|
|
uint32 addr, int nbytes, uint32 *data);
|
|
static int sdstd_abort(sdioh_info_t *sd, uint func);
|
|
static int sdstd_check_errs(sdioh_info_t *sdioh_info, uint32 cmd, uint32 arg);
|
|
static int set_client_block_size(sdioh_info_t *sd, int func, int blocksize);
|
|
static void sd_map_dma(sdioh_info_t * sd);
|
|
static void sd_unmap_dma(sdioh_info_t * sd);
|
|
static void sd_clear_adma_dscr_buf(sdioh_info_t *sd);
|
|
static void sd_fill_dma_data_buf(sdioh_info_t *sd, uint8 data);
|
|
static void sd_create_adma_descriptor(sdioh_info_t *sd,
|
|
uint32 index, uint32 addr_phys,
|
|
uint16 length, uint16 flags);
|
|
static void sd_dump_adma_dscr(sdioh_info_t *sd);
|
|
static void sdstd_dumpregs(sdioh_info_t *sd);
|
|
|
|
|
|
/*
|
|
* Private register access routines.
|
|
*/
|
|
|
|
/* 16 bit PCI regs */
|
|
|
|
extern uint16 sdstd_rreg16(sdioh_info_t *sd, uint reg);
|
|
uint16
|
|
sdstd_rreg16(sdioh_info_t *sd, uint reg)
|
|
{
|
|
|
|
volatile uint16 data = *(volatile uint16 *)(sd->mem_space + reg);
|
|
sd_ctrl(("16: R Reg 0x%02x, Data 0x%x\n", reg, data));
|
|
return data;
|
|
}
|
|
|
|
extern void sdstd_wreg16(sdioh_info_t *sd, uint reg, uint16 data);
|
|
void
|
|
sdstd_wreg16(sdioh_info_t *sd, uint reg, uint16 data)
|
|
{
|
|
*(volatile uint16 *)(sd->mem_space + reg) = (volatile uint16) data;
|
|
sd_ctrl(("16: W Reg 0x%02x, Data 0x%x\n", reg, data));
|
|
}
|
|
|
|
static void
|
|
sdstd_or_reg16(sdioh_info_t *sd, uint reg, uint16 val)
|
|
{
|
|
volatile uint16 data = *(volatile uint16 *)(sd->mem_space + reg);
|
|
sd_ctrl(("16: OR Reg 0x%02x, Val 0x%x\n", reg, val));
|
|
data |= val;
|
|
*(volatile uint16 *)(sd->mem_space + reg) = (volatile uint16)data;
|
|
|
|
}
|
|
static void
|
|
sdstd_mod_reg16(sdioh_info_t *sd, uint reg, int16 mask, uint16 val)
|
|
{
|
|
|
|
volatile uint16 data = *(volatile uint16 *)(sd->mem_space + reg);
|
|
sd_ctrl(("16: MOD Reg 0x%02x, Mask 0x%x, Val 0x%x\n", reg, mask, val));
|
|
data &= ~mask;
|
|
data |= (val & mask);
|
|
*(volatile uint16 *)(sd->mem_space + reg) = (volatile uint16)data;
|
|
}
|
|
|
|
|
|
/* 32 bit PCI regs */
|
|
static uint32
|
|
sdstd_rreg(sdioh_info_t *sd, uint reg)
|
|
{
|
|
volatile uint32 data = *(volatile uint32 *)(sd->mem_space + reg);
|
|
sd_ctrl(("32: R Reg 0x%02x, Data 0x%x\n", reg, data));
|
|
return data;
|
|
}
|
|
static inline void
|
|
sdstd_wreg(sdioh_info_t *sd, uint reg, uint32 data)
|
|
{
|
|
*(volatile uint32 *)(sd->mem_space + reg) = (volatile uint32)data;
|
|
sd_ctrl(("32: W Reg 0x%02x, Data 0x%x\n", reg, data));
|
|
|
|
}
|
|
|
|
/* 8 bit PCI regs */
|
|
static inline void
|
|
sdstd_wreg8(sdioh_info_t *sd, uint reg, uint8 data)
|
|
{
|
|
*(volatile uint8 *)(sd->mem_space + reg) = (volatile uint8)data;
|
|
sd_ctrl(("08: W Reg 0x%02x, Data 0x%x\n", reg, data));
|
|
}
|
|
static uint8
|
|
sdstd_rreg8(sdioh_info_t *sd, uint reg)
|
|
{
|
|
volatile uint8 data = *(volatile uint8 *)(sd->mem_space + reg);
|
|
sd_ctrl(("08: R Reg 0x%02x, Data 0x%x\n", reg, data));
|
|
return data;
|
|
}
|
|
|
|
/*
|
|
* Private work routines
|
|
*/
|
|
|
|
sdioh_info_t *glob_sd;
|
|
|
|
/*
|
|
* Public entry points & extern's
|
|
*/
|
|
extern sdioh_info_t *
|
|
sdioh_attach(osl_t *osh, void *bar0, uint irq)
|
|
{
|
|
sdioh_info_t *sd;
|
|
|
|
sd_trace(("%s\n", __FUNCTION__));
|
|
if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
|
|
sd_err(("sdioh_attach: out of memory, malloced %d bytes\n", MALLOCED(osh)));
|
|
return NULL;
|
|
}
|
|
bzero((char *)sd, sizeof(sdioh_info_t));
|
|
glob_sd = sd;
|
|
sd->osh = osh;
|
|
if (sdstd_osinit(sd) != 0) {
|
|
sd_err(("%s:sdstd_osinit() failed\n", __FUNCTION__));
|
|
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
|
|
return NULL;
|
|
}
|
|
sd->mem_space = (volatile char *)sdstd_reg_map(osh, (uintptr)bar0, SDIOH_REG_WINSZ);
|
|
sd_init_dma(sd);
|
|
sd->irq = irq;
|
|
if (sd->mem_space == NULL) {
|
|
sd_err(("%s:ioremap() failed\n", __FUNCTION__));
|
|
sdstd_osfree(sd);
|
|
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
|
|
return NULL;
|
|
}
|
|
sd_info(("%s:sd->mem_space = %p\n", __FUNCTION__, sd->mem_space));
|
|
sd->intr_handler = NULL;
|
|
sd->intr_handler_arg = NULL;
|
|
sd->intr_handler_valid = FALSE;
|
|
|
|
/* Set defaults */
|
|
sd->sd_blockmode = TRUE;
|
|
sd->use_client_ints = TRUE;
|
|
sd->sd_dma_mode = sd_dma_mode;
|
|
|
|
if (!sd->sd_blockmode)
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
|
|
if (sdstd_driver_init(sd) != SUCCESS) {
|
|
/* If host CPU was reset without resetting SD bus or
|
|
SD device, the device will still have its RCA but
|
|
driver no longer knows what it is (since driver has been restarted).
|
|
go through once to clear the RCA and a gain reassign it.
|
|
*/
|
|
sd_info(("driver_init failed - Reset RCA and try again\n"));
|
|
if (sdstd_driver_init(sd) != SUCCESS) {
|
|
sd_err(("%s:driver_init() failed()\n", __FUNCTION__));
|
|
if (sd->mem_space) {
|
|
sdstd_reg_unmap(osh, (uintptr)sd->mem_space, SDIOH_REG_WINSZ);
|
|
sd->mem_space = NULL;
|
|
}
|
|
sdstd_osfree(sd);
|
|
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
OSL_DMADDRWIDTH(osh, 32);
|
|
|
|
/* Always map DMA buffers, so we can switch between DMA modes. */
|
|
sd_map_dma(sd);
|
|
|
|
if (sdstd_register_irq(sd, irq) != SUCCESS) {
|
|
sd_err(("%s: sdstd_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
|
|
sdstd_free_irq(sd->irq, sd);
|
|
if (sd->mem_space) {
|
|
sdstd_reg_unmap(osh, (uintptr)sd->mem_space, SDIOH_REG_WINSZ);
|
|
sd->mem_space = NULL;
|
|
}
|
|
|
|
sdstd_osfree(sd);
|
|
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
|
|
return (NULL);
|
|
}
|
|
|
|
sd_trace(("%s: Done\n", __FUNCTION__));
|
|
return sd;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_detach(osl_t *osh, sdioh_info_t *sd)
|
|
{
|
|
sd_trace(("%s\n", __FUNCTION__));
|
|
if (sd) {
|
|
sd_unmap_dma(sd);
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, 0);
|
|
sd_trace(("%s: freeing irq %d\n", __FUNCTION__, sd->irq));
|
|
sdstd_free_irq(sd->irq, sd);
|
|
if (sd->card_init_done)
|
|
sdstd_reset(sd, 1, 1);
|
|
if (sd->mem_space) {
|
|
sdstd_reg_unmap(osh, (uintptr)sd->mem_space, SDIOH_REG_WINSZ);
|
|
sd->mem_space = NULL;
|
|
}
|
|
|
|
sdstd_osfree(sd);
|
|
MFREE(sd->osh, sd, sizeof(sdioh_info_t));
|
|
}
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
/* Configure callback to client when we recieve client interrupt */
|
|
extern SDIOH_API_RC
|
|
sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
|
|
{
|
|
sd_trace(("%s: Entering\n", __FUNCTION__));
|
|
sd->intr_handler = fn;
|
|
sd->intr_handler_arg = argh;
|
|
sd->intr_handler_valid = TRUE;
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_interrupt_deregister(sdioh_info_t *sd)
|
|
{
|
|
sd_trace(("%s: Entering\n", __FUNCTION__));
|
|
sd->intr_handler_valid = FALSE;
|
|
sd->intr_handler = NULL;
|
|
sd->intr_handler_arg = NULL;
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
|
|
{
|
|
sd_trace(("%s: Entering\n", __FUNCTION__));
|
|
*onoff = sd->client_intr_enabled;
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
#if defined(DHD_DEBUG)
|
|
extern bool
|
|
sdioh_interrupt_pending(sdioh_info_t *sd)
|
|
{
|
|
uint16 intrstatus;
|
|
intrstatus = sdstd_rreg16(sd, SD_IntrStatus);
|
|
return !!(intrstatus & CLIENT_INTR);
|
|
}
|
|
#endif
|
|
|
|
uint
|
|
sdioh_query_iofnum(sdioh_info_t *sd)
|
|
{
|
|
return sd->num_funcs;
|
|
}
|
|
|
|
/* IOVar table */
|
|
enum {
|
|
IOV_MSGLEVEL = 1,
|
|
IOV_BLOCKMODE,
|
|
IOV_BLOCKSIZE,
|
|
IOV_DMA,
|
|
IOV_USEINTS,
|
|
IOV_NUMINTS,
|
|
IOV_NUMLOCALINTS,
|
|
IOV_HOSTREG,
|
|
IOV_DEVREG,
|
|
IOV_DIVISOR,
|
|
IOV_SDMODE,
|
|
IOV_HISPEED,
|
|
IOV_HCIREGS,
|
|
IOV_POWER,
|
|
IOV_YIELDCPU,
|
|
IOV_MINYIELD,
|
|
IOV_FORCERB,
|
|
IOV_CLOCK
|
|
};
|
|
|
|
const bcm_iovar_t sdioh_iovars[] = {
|
|
{"sd_msglevel", IOV_MSGLEVEL, 0, IOVT_UINT32, 0 },
|
|
{"sd_blockmode", IOV_BLOCKMODE, 0, IOVT_BOOL, 0 },
|
|
{"sd_blocksize", IOV_BLOCKSIZE, 0, IOVT_UINT32, 0 }, /* ((fn << 16) | size) */
|
|
{"sd_dma", IOV_DMA, 0, IOVT_UINT32, 0 },
|
|
#ifdef BCMSDYIELD
|
|
{"sd_yieldcpu", IOV_YIELDCPU, 0, IOVT_BOOL, 0 },
|
|
{"sd_minyield", IOV_MINYIELD, 0, IOVT_UINT32, 0 },
|
|
{"sd_forcerb", IOV_FORCERB, 0, IOVT_BOOL, 0 },
|
|
#endif
|
|
{"sd_ints", IOV_USEINTS, 0, IOVT_BOOL, 0 },
|
|
{"sd_numints", IOV_NUMINTS, 0, IOVT_UINT32, 0 },
|
|
{"sd_numlocalints", IOV_NUMLOCALINTS, 0, IOVT_UINT32, 0 },
|
|
{"sd_hostreg", IOV_HOSTREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
|
|
{"sd_devreg", IOV_DEVREG, 0, IOVT_BUFFER, sizeof(sdreg_t) },
|
|
{"sd_divisor", IOV_DIVISOR, 0, IOVT_UINT32, 0 },
|
|
{"sd_power", IOV_POWER, 0, IOVT_UINT32, 0 },
|
|
{"sd_clock", IOV_CLOCK, 0, IOVT_UINT32, 0 },
|
|
{"sd_mode", IOV_SDMODE, 0, IOVT_UINT32, 100},
|
|
{"sd_highspeed", IOV_HISPEED, 0, IOVT_UINT32, 0},
|
|
{NULL, 0, 0, 0, 0 }
|
|
};
|
|
|
|
int
|
|
sdioh_iovar_op(sdioh_info_t *si, const char *name,
|
|
void *params, int plen, void *arg, int len, bool set)
|
|
{
|
|
const bcm_iovar_t *vi = NULL;
|
|
int bcmerror = 0;
|
|
int val_size;
|
|
int32 int_val = 0;
|
|
bool bool_val;
|
|
uint32 actionid;
|
|
|
|
ASSERT(name);
|
|
ASSERT(len >= 0);
|
|
|
|
/* Get must have return space; Set does not take qualifiers */
|
|
ASSERT(set || (arg && len));
|
|
ASSERT(!set || (!params && !plen));
|
|
|
|
sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
|
|
|
|
if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
|
|
bcmerror = BCME_UNSUPPORTED;
|
|
goto exit;
|
|
}
|
|
|
|
if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
|
|
goto exit;
|
|
|
|
/* Set up params so get and set can share the convenience variables */
|
|
if (params == NULL) {
|
|
params = arg;
|
|
plen = len;
|
|
}
|
|
|
|
if (vi->type == IOVT_VOID)
|
|
val_size = 0;
|
|
else if (vi->type == IOVT_BUFFER)
|
|
val_size = len;
|
|
else
|
|
val_size = sizeof(int);
|
|
|
|
if (plen >= (int)sizeof(int_val))
|
|
bcopy(params, &int_val, sizeof(int_val));
|
|
|
|
bool_val = (int_val != 0) ? TRUE : FALSE;
|
|
|
|
actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
|
|
switch (actionid) {
|
|
case IOV_GVAL(IOV_MSGLEVEL):
|
|
int_val = (int32)sd_msglevel;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_MSGLEVEL):
|
|
sd_msglevel = int_val;
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_BLOCKMODE):
|
|
int_val = (int32)si->sd_blockmode;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_BLOCKMODE):
|
|
si->sd_blockmode = (bool)int_val;
|
|
/* Haven't figured out how to make non-block mode with DMA */
|
|
if (!si->sd_blockmode)
|
|
si->sd_dma_mode = DMA_MODE_NONE;
|
|
break;
|
|
|
|
#ifdef BCMSDYIELD
|
|
case IOV_GVAL(IOV_YIELDCPU):
|
|
int_val = sd_yieldcpu;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_YIELDCPU):
|
|
sd_yieldcpu = (bool)int_val;
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_MINYIELD):
|
|
int_val = sd_minyield;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_MINYIELD):
|
|
sd_minyield = (bool)int_val;
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_FORCERB):
|
|
int_val = sd_forcerb;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_FORCERB):
|
|
sd_forcerb = (bool)int_val;
|
|
break;
|
|
#endif /* BCMSDYIELD */
|
|
|
|
case IOV_GVAL(IOV_BLOCKSIZE):
|
|
if ((uint32)int_val > si->num_funcs) {
|
|
bcmerror = BCME_BADARG;
|
|
break;
|
|
}
|
|
int_val = (int32)si->client_block_size[int_val];
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_BLOCKSIZE):
|
|
{
|
|
uint func = ((uint32)int_val >> 16);
|
|
uint blksize = (uint16)int_val;
|
|
uint maxsize;
|
|
|
|
if (func > si->num_funcs) {
|
|
bcmerror = BCME_BADARG;
|
|
break;
|
|
}
|
|
|
|
switch (func) {
|
|
case 0: maxsize = 32; break;
|
|
case 1: maxsize = BLOCK_SIZE_4318; break;
|
|
case 2: maxsize = BLOCK_SIZE_4328; break;
|
|
default: maxsize = 0;
|
|
}
|
|
if (blksize > maxsize) {
|
|
bcmerror = BCME_BADARG;
|
|
break;
|
|
}
|
|
if (!blksize) {
|
|
blksize = maxsize;
|
|
}
|
|
|
|
/* Now set it */
|
|
sdstd_lock(si);
|
|
bcmerror = set_client_block_size(si, func, blksize);
|
|
sdstd_unlock(si);
|
|
break;
|
|
}
|
|
|
|
case IOV_GVAL(IOV_DMA):
|
|
int_val = (int32)si->sd_dma_mode;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_DMA):
|
|
si->sd_dma_mode = (char)int_val;
|
|
sdstd_set_dma_mode(si, si->sd_dma_mode);
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_USEINTS):
|
|
int_val = (int32)si->use_client_ints;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_USEINTS):
|
|
si->use_client_ints = (bool)int_val;
|
|
if (si->use_client_ints)
|
|
si->intmask |= CLIENT_INTR;
|
|
else
|
|
si->intmask &= ~CLIENT_INTR;
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_DIVISOR):
|
|
int_val = (uint32)sd_divisor;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_DIVISOR):
|
|
sd_divisor = int_val;
|
|
if (!sdstd_start_clock(si, (uint16)sd_divisor)) {
|
|
sd_err(("set clock failed!\n"));
|
|
bcmerror = BCME_ERROR;
|
|
}
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_POWER):
|
|
int_val = (uint32)sd_power;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_POWER):
|
|
sd_power = int_val;
|
|
if (sd_power == 1) {
|
|
if (sdstd_driver_init(si) != SUCCESS) {
|
|
sd_err(("set SD Slot power failed!\n"));
|
|
bcmerror = BCME_ERROR;
|
|
} else {
|
|
sd_err(("SD Slot Powered ON.\n"));
|
|
}
|
|
} else {
|
|
uint8 pwr = 0;
|
|
|
|
pwr = SFIELD(pwr, PWR_BUS_EN, 0);
|
|
sdstd_wreg8(si, SD_PwrCntrl, pwr); /* Set Voltage level */
|
|
sd_err(("SD Slot Powered OFF.\n"));
|
|
}
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_CLOCK):
|
|
int_val = (uint32)sd_clock;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_CLOCK):
|
|
sd_clock = int_val;
|
|
if (sd_clock == 1) {
|
|
sd_info(("SD Clock turned ON.\n"));
|
|
if (!sdstd_start_clock(si, (uint16)sd_divisor)) {
|
|
sd_err(("sdstd_start_clock failed\n"));
|
|
bcmerror = BCME_ERROR;
|
|
}
|
|
} else {
|
|
/* turn off HC clock */
|
|
sdstd_wreg16(si, SD_ClockCntrl,
|
|
sdstd_rreg16(si, SD_ClockCntrl) & ~((uint16)0x4));
|
|
|
|
sd_info(("SD Clock turned OFF.\n"));
|
|
}
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_SDMODE):
|
|
int_val = (uint32)sd_sdmode;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_SDMODE):
|
|
sd_sdmode = int_val;
|
|
|
|
if (!sdstd_bus_width(si, sd_sdmode)) {
|
|
sd_err(("sdstd_bus_width failed\n"));
|
|
bcmerror = BCME_ERROR;
|
|
}
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_HISPEED):
|
|
int_val = (uint32)sd_hiok;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_SVAL(IOV_HISPEED):
|
|
sd_hiok = int_val;
|
|
bcmerror = sdstd_set_highspeed_mode(si, (bool)sd_hiok);
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_NUMINTS):
|
|
int_val = (int32)si->intrcount;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_NUMLOCALINTS):
|
|
int_val = (int32)si->local_intrcount;
|
|
bcopy(&int_val, arg, val_size);
|
|
break;
|
|
|
|
case IOV_GVAL(IOV_HOSTREG):
|
|
{
|
|
sdreg_t *sd_ptr = (sdreg_t *)params;
|
|
|
|
if (sd_ptr->offset < SD_SysAddr || sd_ptr->offset > SD_MaxCurCap) {
|
|
sd_err(("%s: bad offset 0x%x\n", __FUNCTION__, sd_ptr->offset));
|
|
bcmerror = BCME_BADARG;
|
|
break;
|
|
}
|
|
|
|
sd_trace(("%s: rreg%d at offset %d\n", __FUNCTION__,
|
|
(sd_ptr->offset & 1) ? 8 : ((sd_ptr->offset & 2) ? 16 : 32),
|
|
sd_ptr->offset));
|
|
if (sd_ptr->offset & 1)
|
|
int_val = sdstd_rreg8(si, sd_ptr->offset);
|
|
else if (sd_ptr->offset & 2)
|
|
int_val = sdstd_rreg16(si, sd_ptr->offset);
|
|
else
|
|
int_val = sdstd_rreg(si, sd_ptr->offset);
|
|
|
|
bcopy(&int_val, arg, sizeof(int_val));
|
|
break;
|
|
}
|
|
|
|
case IOV_SVAL(IOV_HOSTREG):
|
|
{
|
|
sdreg_t *sd_ptr = (sdreg_t *)params;
|
|
|
|
if (sd_ptr->offset < SD_SysAddr || sd_ptr->offset > SD_MaxCurCap) {
|
|
sd_err(("%s: bad offset 0x%x\n", __FUNCTION__, sd_ptr->offset));
|
|
bcmerror = BCME_BADARG;
|
|
break;
|
|
}
|
|
|
|
sd_trace(("%s: wreg%d value 0x%08x at offset %d\n", __FUNCTION__, sd_ptr->value,
|
|
(sd_ptr->offset & 1) ? 8 : ((sd_ptr->offset & 2) ? 16 : 32),
|
|
sd_ptr->offset));
|
|
if (sd_ptr->offset & 1)
|
|
sdstd_wreg8(si, sd_ptr->offset, (uint8)sd_ptr->value);
|
|
else if (sd_ptr->offset & 2)
|
|
sdstd_wreg16(si, sd_ptr->offset, (uint16)sd_ptr->value);
|
|
else
|
|
sdstd_wreg(si, sd_ptr->offset, (uint32)sd_ptr->value);
|
|
|
|
break;
|
|
}
|
|
|
|
case IOV_GVAL(IOV_DEVREG):
|
|
{
|
|
sdreg_t *sd_ptr = (sdreg_t *)params;
|
|
uint8 data;
|
|
|
|
if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
|
|
bcmerror = BCME_SDIO_ERROR;
|
|
break;
|
|
}
|
|
|
|
int_val = (int)data;
|
|
bcopy(&int_val, arg, sizeof(int_val));
|
|
break;
|
|
}
|
|
|
|
case IOV_SVAL(IOV_DEVREG):
|
|
{
|
|
sdreg_t *sd_ptr = (sdreg_t *)params;
|
|
uint8 data = (uint8)sd_ptr->value;
|
|
|
|
if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
|
|
bcmerror = BCME_SDIO_ERROR;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
default:
|
|
bcmerror = BCME_UNSUPPORTED;
|
|
break;
|
|
}
|
|
exit:
|
|
|
|
return bcmerror;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
|
|
{
|
|
SDIOH_API_RC status;
|
|
/* No lock needed since sdioh_request_byte does locking */
|
|
status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
|
|
return status;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
|
|
{
|
|
/* No lock needed since sdioh_request_byte does locking */
|
|
SDIOH_API_RC status;
|
|
status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
|
|
return status;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
|
|
{
|
|
uint32 count;
|
|
int offset;
|
|
uint32 foo;
|
|
uint8 *cis = cisd;
|
|
|
|
sd_trace(("%s: Func = %d\n", __FUNCTION__, func));
|
|
|
|
if (!sd->func_cis_ptr[func]) {
|
|
bzero(cis, length);
|
|
return SDIOH_API_RC_FAIL;
|
|
}
|
|
|
|
sdstd_lock(sd);
|
|
*cis = 0;
|
|
for (count = 0; count < length; count++) {
|
|
offset = sd->func_cis_ptr[func] + count;
|
|
if (sdstd_card_regread(sd, 0, offset, 1, &foo)) {
|
|
sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
|
|
sdstd_unlock(sd);
|
|
return SDIOH_API_RC_FAIL;
|
|
}
|
|
*cis = (uint8)(foo & 0xff);
|
|
cis++;
|
|
}
|
|
sdstd_unlock(sd);
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
|
|
{
|
|
int status;
|
|
uint32 cmd_arg;
|
|
uint32 rsp5;
|
|
|
|
sdstd_lock(sd);
|
|
cmd_arg = 0;
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, rw == SDIOH_READ ? 0 : *byte);
|
|
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_52, cmd_arg)) != SUCCESS) {
|
|
sdstd_unlock(sd);
|
|
return status;
|
|
}
|
|
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
if (sdstd_rreg16 (sd, SD_ErrorIntrStatus) != 0) {
|
|
sd_err(("%s: 1: ErrorintrStatus 0x%x\n",
|
|
__FUNCTION__, sdstd_rreg16(sd, SD_ErrorIntrStatus)));
|
|
}
|
|
if (GFIELD(rsp5, RSP5_FLAGS) != 0x10)
|
|
sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_FLAGS), func));
|
|
|
|
if (GFIELD(rsp5, RSP5_STUFF))
|
|
sd_err(("%s: rsp5 stuff is 0x%x: should be 0\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_STUFF)));
|
|
|
|
if (rw == SDIOH_READ)
|
|
*byte = GFIELD(rsp5, RSP5_DATA);
|
|
|
|
sdstd_unlock(sd);
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
|
|
uint32 *word, uint nbytes)
|
|
{
|
|
int status;
|
|
bool swap = FALSE;
|
|
|
|
sdstd_lock(sd);
|
|
|
|
if (rw == SDIOH_READ) {
|
|
status = sdstd_card_regread(sd, func, addr, nbytes, word);
|
|
if (swap)
|
|
*word = BCMSWAP32(*word);
|
|
} else {
|
|
if (swap)
|
|
*word = BCMSWAP32(*word);
|
|
status = sdstd_card_regwrite(sd, func, addr, nbytes, *word);
|
|
}
|
|
|
|
sdstd_unlock(sd);
|
|
return (status == SUCCESS ? SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
|
|
}
|
|
|
|
extern SDIOH_API_RC
|
|
sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
|
|
uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
|
|
{
|
|
int len;
|
|
int buflen = (int)buflen_u;
|
|
bool fifo = (fix_inc == SDIOH_DATA_FIX);
|
|
uint8 *localbuf = NULL, *tmpbuf = NULL;
|
|
uint tmplen = 0;
|
|
bool local_blockmode = sd->sd_blockmode;
|
|
|
|
sdstd_lock(sd);
|
|
|
|
ASSERT(reg_width == 4);
|
|
ASSERT(buflen_u < (1 << 30));
|
|
ASSERT(sd->client_block_size[func]);
|
|
|
|
sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
|
|
__FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
|
|
buflen_u, sd->r_cnt, sd->t_cnt, pkt));
|
|
|
|
/* Break buffer down into blocksize chunks:
|
|
* Bytemode: 1 block at a time.
|
|
* Blockmode: Multiples of blocksizes at a time w/ max of SD_PAGE.
|
|
* Both: leftovers are handled last (will be sent via bytemode).
|
|
*/
|
|
while (buflen > 0) {
|
|
if (local_blockmode) {
|
|
/* Max xfer is Page size */
|
|
len = MIN(SD_PAGE, buflen);
|
|
|
|
/* Round down to a block boundry */
|
|
if (buflen > sd->client_block_size[func])
|
|
len = (len/sd->client_block_size[func]) *
|
|
sd->client_block_size[func];
|
|
if ((func == SDIO_FUNC_1) && ((len % 4) == 3) && (rw == SDIOH_WRITE)) {
|
|
tmplen = len;
|
|
sd_err(("%s: Rounding up buffer to mod4 length.\n", __FUNCTION__));
|
|
len++;
|
|
tmpbuf = buffer;
|
|
if ((localbuf = (uint8 *)MALLOC(sd->osh, len)) == NULL) {
|
|
sd_err(("out of memory, malloced %d bytes\n",
|
|
MALLOCED(sd->osh)));
|
|
sdstd_unlock(sd);
|
|
return SDIOH_API_RC_FAIL;
|
|
}
|
|
bcopy(buffer, localbuf, len);
|
|
buffer = localbuf;
|
|
}
|
|
} else {
|
|
/* Byte mode: One block at a time */
|
|
len = MIN(sd->client_block_size[func], buflen);
|
|
}
|
|
|
|
if (sdstd_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
|
|
sdstd_unlock(sd);
|
|
return SDIOH_API_RC_FAIL;
|
|
}
|
|
|
|
if (local_blockmode) {
|
|
if ((func == SDIO_FUNC_1) && ((tmplen % 4) == 3) && (rw == SDIOH_WRITE)) {
|
|
if (localbuf)
|
|
MFREE(sd->osh, localbuf, len);
|
|
len--;
|
|
buffer = tmpbuf;
|
|
sd_err(("%s: Restoring back buffer ptr and len.\n", __FUNCTION__));
|
|
}
|
|
}
|
|
|
|
buffer += len;
|
|
buflen -= len;
|
|
if (!fifo)
|
|
addr += len;
|
|
}
|
|
sdstd_unlock(sd);
|
|
return SDIOH_API_RC_SUCCESS;
|
|
}
|
|
|
|
static
|
|
int sdstd_abort(sdioh_info_t *sd, uint func)
|
|
{
|
|
int err = 0;
|
|
int retries;
|
|
|
|
uint16 cmd_reg;
|
|
uint32 cmd_arg;
|
|
uint32 rsp5;
|
|
uint8 rflags;
|
|
|
|
uint16 int_reg = 0;
|
|
uint16 plain_intstatus;
|
|
|
|
/* Argument is write to F0 (CCCR) IOAbort with function number */
|
|
cmd_arg = 0;
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, SDIO_FUNC_0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, SDIOD_CCCR_IOABORT);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SD_IO_OP_WRITE);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, func);
|
|
|
|
/* Command is CMD52 write */
|
|
cmd_reg = 0;
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_48_BUSY);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_ABORT);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, SDIOH_CMD_52);
|
|
|
|
if (sd->sd_mode == SDIOH_MODE_SPI) {
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 0);
|
|
}
|
|
|
|
/* Wait for CMD_INHIBIT to go away as per spec section 3.6.1.1 */
|
|
retries = RETRIES_SMALL;
|
|
while (GFIELD(sdstd_rreg(sd, SD_PresentState), PRES_CMD_INHIBIT)) {
|
|
if (retries == RETRIES_SMALL)
|
|
sd_err(("%s: Waiting for Command Inhibit, state 0x%08x\n",
|
|
__FUNCTION__, sdstd_rreg(sd, SD_PresentState)));
|
|
if (!--retries) {
|
|
sd_err(("%s: Command Inhibit timeout, state 0x%08x\n",
|
|
__FUNCTION__, sdstd_rreg(sd, SD_PresentState)));
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
err = BCME_SDIO_ERROR;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Clear errors from any previous commands */
|
|
if ((plain_intstatus = sdstd_rreg16(sd, SD_ErrorIntrStatus)) != 0) {
|
|
sd_err(("abort: clearing errstat 0x%04x\n", plain_intstatus));
|
|
sdstd_wreg16(sd, SD_ErrorIntrStatus, plain_intstatus);
|
|
}
|
|
plain_intstatus = sdstd_rreg16(sd, SD_IntrStatus);
|
|
if (plain_intstatus & ~(SFIELD(0, INTSTAT_CARD_INT, 1))) {
|
|
sd_err(("abort: intstatus 0x%04x\n", plain_intstatus));
|
|
if (GFIELD(plain_intstatus, INTSTAT_CMD_COMPLETE)) {
|
|
sd_err(("SDSTD_ABORT: CMD COMPLETE SET BEFORE COMMAND GIVEN!!!\n"));
|
|
}
|
|
if (GFIELD(plain_intstatus, INTSTAT_CARD_REMOVAL)) {
|
|
sd_err(("SDSTD_ABORT: INTSTAT_CARD_REMOVAL\n"));
|
|
err = BCME_NODEVICE;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
/* Issue the command */
|
|
sdstd_wreg(sd, SD_Arg0, cmd_arg);
|
|
sdstd_wreg16(sd, SD_Command, cmd_reg);
|
|
|
|
/* In interrupt mode return, expect later CMD_COMPLETE interrupt */
|
|
if (!sd->polled_mode)
|
|
return err;
|
|
|
|
/* Otherwise, wait for the command to complete */
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
} while (--retries &&
|
|
(GFIELD(int_reg, INTSTAT_ERROR_INT) == 0) &&
|
|
(GFIELD(int_reg, INTSTAT_CMD_COMPLETE) == 0));
|
|
|
|
/* If command completion fails, do a cmd reset and note the error */
|
|
if (!retries) {
|
|
sd_err(("%s: CMD_COMPLETE timeout: intr 0x%04x err 0x%04x state 0x%08x\n",
|
|
__FUNCTION__, int_reg,
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus),
|
|
sdstd_rreg(sd, SD_PresentState)));
|
|
|
|
sdstd_wreg8(sd, SD_SoftwareReset, SFIELD(0, SW_RESET_CMD, 1));
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
sd_trace(("%s: waiting for CMD line reset\n", __FUNCTION__));
|
|
} while ((GFIELD(sdstd_rreg8(sd, SD_SoftwareReset),
|
|
SW_RESET_CMD)) && retries--);
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for CMD line reset\n", __FUNCTION__));
|
|
}
|
|
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
|
|
err = BCME_SDIO_ERROR;
|
|
}
|
|
|
|
/* Clear Command Complete interrupt */
|
|
int_reg = SFIELD(0, INTSTAT_CMD_COMPLETE, 1);
|
|
sdstd_wreg16(sd, SD_IntrStatus, int_reg);
|
|
|
|
/* Check for Errors */
|
|
if ((plain_intstatus = sdstd_rreg16 (sd, SD_ErrorIntrStatus)) != 0) {
|
|
sd_err(("%s: ErrorintrStatus: 0x%x, "
|
|
"(intrstatus = 0x%x, present state 0x%x) clearing\n",
|
|
__FUNCTION__, plain_intstatus,
|
|
sdstd_rreg16(sd, SD_IntrStatus),
|
|
sdstd_rreg(sd, SD_PresentState)));
|
|
|
|
sdstd_wreg16(sd, SD_ErrorIntrStatus, plain_intstatus);
|
|
|
|
sdstd_wreg8(sd, SD_SoftwareReset, SFIELD(0, SW_RESET_DAT, 1));
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
sd_trace(("%s: waiting for DAT line reset\n", __FUNCTION__));
|
|
} while ((GFIELD(sdstd_rreg8(sd, SD_SoftwareReset),
|
|
SW_RESET_DAT)) && retries--);
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for DAT line reset\n", __FUNCTION__));
|
|
}
|
|
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
|
|
/* ABORT is dataless, only cmd errs count */
|
|
if (plain_intstatus & ERRINT_CMD_ERRS)
|
|
err = BCME_SDIO_ERROR;
|
|
}
|
|
|
|
/* If command failed don't bother looking at response */
|
|
if (err)
|
|
goto done;
|
|
|
|
/* Otherwise, check the response */
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
rflags = GFIELD(rsp5, RSP5_FLAGS);
|
|
|
|
if (rflags & SD_RSP_R5_ERRBITS) {
|
|
sd_err(("%s: R5 flags include errbits: 0x%02x\n", __FUNCTION__, rflags));
|
|
|
|
/* The CRC error flag applies to the previous command */
|
|
if (rflags & (SD_RSP_R5_ERRBITS & ~SD_RSP_R5_COM_CRC_ERROR)) {
|
|
err = BCME_SDIO_ERROR;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if (((rflags & (SD_RSP_R5_IO_CURRENTSTATE0 | SD_RSP_R5_IO_CURRENTSTATE1)) != 0x10) &&
|
|
((rflags & (SD_RSP_R5_IO_CURRENTSTATE0 | SD_RSP_R5_IO_CURRENTSTATE1)) != 0x20)) {
|
|
sd_err(("%s: R5 flags has bad state: 0x%02x\n", __FUNCTION__, rflags));
|
|
err = BCME_SDIO_ERROR;
|
|
goto done;
|
|
}
|
|
|
|
if (GFIELD(rsp5, RSP5_STUFF)) {
|
|
sd_err(("%s: rsp5 stuff is 0x%x: should be 0\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_STUFF)));
|
|
err = BCME_SDIO_ERROR;
|
|
goto done;
|
|
}
|
|
|
|
done:
|
|
if (err == BCME_NODEVICE)
|
|
return err;
|
|
|
|
sdstd_wreg8(sd, SD_SoftwareReset,
|
|
SFIELD(SFIELD(0, SW_RESET_DAT, 1), SW_RESET_CMD, 1));
|
|
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
rflags = sdstd_rreg8(sd, SD_SoftwareReset);
|
|
if (!GFIELD(rflags, SW_RESET_DAT) && !GFIELD(rflags, SW_RESET_CMD))
|
|
break;
|
|
} while (--retries);
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for DAT/CMD reset: 0x%02x\n",
|
|
__FUNCTION__, rflags));
|
|
err = BCME_SDIO_ERROR;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
extern int
|
|
sdioh_abort(sdioh_info_t *sd, uint fnum)
|
|
{
|
|
int ret;
|
|
|
|
sdstd_lock(sd);
|
|
ret = sdstd_abort(sd, fnum);
|
|
sdstd_unlock(sd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int
|
|
sdioh_start(sdioh_info_t *sd, int stage)
|
|
{
|
|
return SUCCESS;
|
|
}
|
|
|
|
int
|
|
sdioh_stop(sdioh_info_t *sd)
|
|
{
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
sdstd_check_errs(sdioh_info_t *sdioh_info, uint32 cmd, uint32 arg)
|
|
{
|
|
uint16 regval;
|
|
uint retries;
|
|
uint function = 0;
|
|
|
|
/* If no errors, we're done */
|
|
if ((regval = sdstd_rreg16(sdioh_info, SD_ErrorIntrStatus)) == 0)
|
|
return SUCCESS;
|
|
|
|
sd_info(("%s: ErrorIntrStatus 0x%04x (clearing), IntrStatus 0x%04x PresentState 0x%08x\n",
|
|
__FUNCTION__, regval, sdstd_rreg16(sdioh_info, SD_IntrStatus),
|
|
sdstd_rreg(sdioh_info, SD_PresentState)));
|
|
sdstd_wreg16(sdioh_info, SD_ErrorIntrStatus, regval);
|
|
|
|
/* On command error, issue CMD reset */
|
|
if (regval & ERRINT_CMD_ERRS) {
|
|
sd_trace(("%s: issuing CMD reset\n", __FUNCTION__));
|
|
sdstd_wreg8(sdioh_info, SD_SoftwareReset, SFIELD(0, SW_RESET_CMD, 1));
|
|
for (retries = RETRIES_LARGE; retries; retries--)
|
|
if (!(GFIELD(sdstd_rreg8(sdioh_info, SD_SoftwareReset), SW_RESET_CMD)))
|
|
break;
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for CMD line reset\n", __FUNCTION__));
|
|
}
|
|
}
|
|
|
|
/* On data error, issue DAT reset */
|
|
if (regval & ERRINT_DATA_ERRS) {
|
|
sd_trace(("%s: issuing DAT reset\n", __FUNCTION__));
|
|
sdstd_wreg8(sdioh_info, SD_SoftwareReset, SFIELD(0, SW_RESET_DAT, 1));
|
|
for (retries = RETRIES_LARGE; retries; retries--)
|
|
if (!(GFIELD(sdstd_rreg8(sdioh_info, SD_SoftwareReset), SW_RESET_DAT)))
|
|
break;
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for DAT line reset\n", __FUNCTION__));
|
|
}
|
|
}
|
|
|
|
/* For an IO command (CMD52 or CMD53) issue an abort to the appropriate function */
|
|
if (cmd == SDIOH_CMD_53)
|
|
function = GFIELD(arg, CMD53_FUNCTION);
|
|
else if (cmd == SDIOH_CMD_52)
|
|
function = GFIELD(arg, CMD52_FUNCTION);
|
|
if (function) {
|
|
sd_trace(("%s: requesting abort for function %d after cmd %d\n",
|
|
__FUNCTION__, function, cmd));
|
|
sdstd_abort(sdioh_info, function);
|
|
}
|
|
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
|
|
return ERROR;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Private/Static work routines
|
|
*/
|
|
static bool
|
|
sdstd_reset(sdioh_info_t *sd, bool host_reset, bool client_reset)
|
|
{
|
|
int retries = RETRIES_LARGE;
|
|
uchar regval;
|
|
|
|
if (!sd)
|
|
return TRUE;
|
|
|
|
sdstd_lock(sd);
|
|
/* Reset client card */
|
|
if (client_reset && (sd->adapter_slot != -1)) {
|
|
if (sdstd_card_regwrite(sd, 0, SDIOD_CCCR_IOABORT, 1, 0x8) != SUCCESS)
|
|
sd_err(("%s: Cannot write to card reg 0x%x\n",
|
|
__FUNCTION__, SDIOD_CCCR_IOABORT));
|
|
else
|
|
sd->card_rca = 0;
|
|
}
|
|
|
|
/* Reset host controller */
|
|
if (host_reset) {
|
|
regval = SFIELD(0, SW_RESET_ALL, 1);
|
|
sdstd_wreg8(sd, SD_SoftwareReset, regval);
|
|
do {
|
|
sd_trace(("%s: waiting for reset\n", __FUNCTION__));
|
|
} while ((sdstd_rreg8(sd, SD_SoftwareReset) & regval) && retries--);
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for host reset\n", __FUNCTION__));
|
|
sdstd_unlock(sd);
|
|
return (FALSE);
|
|
}
|
|
|
|
/* A reset should reset bus back to 1 bit mode */
|
|
sd->sd_mode = SDIOH_MODE_SD1;
|
|
sdstd_set_dma_mode(sd, sd->sd_dma_mode);
|
|
}
|
|
sdstd_unlock(sd);
|
|
return TRUE;
|
|
}
|
|
|
|
/* Disable device interrupt */
|
|
void
|
|
sdstd_devintr_off(sdioh_info_t *sd)
|
|
{
|
|
sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints));
|
|
if (sd->use_client_ints) {
|
|
sd->intmask &= ~CLIENT_INTR;
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, sd->intmask);
|
|
sdstd_rreg16(sd, SD_IntrSignalEnable); /* Sync readback */
|
|
}
|
|
}
|
|
|
|
/* Enable device interrupt */
|
|
void
|
|
sdstd_devintr_on(sdioh_info_t *sd)
|
|
{
|
|
ASSERT(sd->lockcount == 0);
|
|
sd_trace(("%s: %d\n", __FUNCTION__, sd->use_client_ints));
|
|
if (sd->use_client_ints) {
|
|
uint16 status = sdstd_rreg16(sd, SD_IntrStatusEnable);
|
|
sdstd_wreg16(sd, SD_IntrStatusEnable, SFIELD(status, INTSTAT_CARD_INT, 0));
|
|
sdstd_wreg16(sd, SD_IntrStatusEnable, status);
|
|
|
|
sd->intmask |= CLIENT_INTR;
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, sd->intmask);
|
|
sdstd_rreg16(sd, SD_IntrSignalEnable); /* Sync readback */
|
|
}
|
|
}
|
|
|
|
#ifdef BCMSDYIELD
|
|
/* Enable/disable other interrupts */
|
|
void
|
|
sdstd_intrs_on(sdioh_info_t *sd, uint16 norm, uint16 err)
|
|
{
|
|
if (err) {
|
|
norm = SFIELD(norm, INTSTAT_ERROR_INT, 1);
|
|
sdstd_wreg16(sd, SD_ErrorIntrSignalEnable, err);
|
|
}
|
|
|
|
sd->intmask |= norm;
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, sd->intmask);
|
|
if (sd_forcerb)
|
|
sdstd_rreg16(sd, SD_IntrSignalEnable); /* Sync readback */
|
|
}
|
|
|
|
void
|
|
sdstd_intrs_off(sdioh_info_t *sd, uint16 norm, uint16 err)
|
|
{
|
|
if (err) {
|
|
norm = SFIELD(norm, INTSTAT_ERROR_INT, 1);
|
|
sdstd_wreg16(sd, SD_ErrorIntrSignalEnable, 0);
|
|
}
|
|
|
|
sd->intmask &= ~norm;
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, sd->intmask);
|
|
if (sd_forcerb)
|
|
sdstd_rreg16(sd, SD_IntrSignalEnable); /* Sync readback */
|
|
}
|
|
#endif /* BCMSDYIELD */
|
|
|
|
static int
|
|
sdstd_host_init(sdioh_info_t *sd)
|
|
{
|
|
int num_slots, full_slot;
|
|
uint8 reg8;
|
|
|
|
uint32 card_ins;
|
|
int slot, first_bar = 0;
|
|
bool detect_slots = FALSE;
|
|
uint bar;
|
|
|
|
/* Check for Arasan ID */
|
|
if ((OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_VID, 4) & 0xFFFF) == VENDOR_SI_IMAGE) {
|
|
sd_info(("%s: Found Arasan Standard SDIO Host Controller\n", __FUNCTION__));
|
|
sd->controller_type = SDIOH_TYPE_ARASAN_HDK;
|
|
detect_slots = TRUE;
|
|
} else if ((OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_VID, 4) & 0xFFFF) == VENDOR_BROADCOM) {
|
|
sd_info(("%s: Found Broadcom 27xx Standard SDIO Host Controller\n", __FUNCTION__));
|
|
sd->controller_type = SDIOH_TYPE_BCM27XX;
|
|
detect_slots = FALSE;
|
|
} else if ((OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_VID, 4) & 0xFFFF) == VENDOR_TI) {
|
|
sd_info(("%s: Found TI PCIxx21 Standard SDIO Host Controller\n", __FUNCTION__));
|
|
sd->controller_type = SDIOH_TYPE_TI_PCIXX21;
|
|
detect_slots = TRUE;
|
|
} else if ((OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_VID, 4) & 0xFFFF) == VENDOR_RICOH) {
|
|
sd_info(("%s: Ricoh Co Ltd R5C822 SD/SDIO/MMC/MS/MSPro Host Adapter\n",
|
|
__FUNCTION__));
|
|
sd->controller_type = SDIOH_TYPE_RICOH_R5C822;
|
|
detect_slots = TRUE;
|
|
} else if ((OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_VID, 4) & 0xFFFF) == VENDOR_JMICRON) {
|
|
sd_info(("%s: JMicron Standard SDIO Host Controller\n",
|
|
__FUNCTION__));
|
|
sd->controller_type = SDIOH_TYPE_JMICRON;
|
|
detect_slots = TRUE;
|
|
} else {
|
|
return ERROR;
|
|
}
|
|
|
|
/*
|
|
* Determine num of slots
|
|
* Search each slot
|
|
*/
|
|
|
|
first_bar = OSL_PCI_READ_CONFIG(sd->osh, SD_SlotInfo, 4) & 0x7;
|
|
num_slots = (OSL_PCI_READ_CONFIG(sd->osh, SD_SlotInfo, 4) & 0xff) >> 4;
|
|
num_slots &= 7;
|
|
num_slots++; /* map bits to num slots according to spec */
|
|
|
|
if (OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_VID, 4) ==
|
|
((SDIOH_FPGA_ID << 16) | VENDOR_BROADCOM)) {
|
|
sd_err(("%s: Found Broadcom Standard SDIO Host Controller FPGA\n", __FUNCTION__));
|
|
/* Set BAR0 Window to SDIOSTH core */
|
|
OSL_PCI_WRITE_CONFIG(sd->osh, PCI_BAR0_WIN, 4, 0x18001000);
|
|
|
|
/* Set defaults particular to this controller. */
|
|
detect_slots = TRUE;
|
|
num_slots = 1;
|
|
first_bar = 0;
|
|
|
|
/* Controller supports ADMA2, so turn it on here. */
|
|
sd->sd_dma_mode = DMA_MODE_ADMA2;
|
|
}
|
|
|
|
/* Map in each slot on the board and query it to see if a
|
|
* card is inserted. Use the first populated slot found.
|
|
*/
|
|
if (sd->mem_space) {
|
|
sdstd_reg_unmap(sd->osh, (uintptr)sd->mem_space, SDIOH_REG_WINSZ);
|
|
sd->mem_space = NULL;
|
|
}
|
|
|
|
full_slot = -1;
|
|
|
|
for (slot = 0; slot < num_slots; slot++) {
|
|
bar = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR0 + (4*(slot + first_bar)), 4);
|
|
sd->mem_space = (volatile char *)sdstd_reg_map(sd->osh,
|
|
(uintptr)bar, SDIOH_REG_WINSZ);
|
|
|
|
sd->adapter_slot = -1;
|
|
|
|
if (detect_slots) {
|
|
card_ins = GFIELD(sdstd_rreg(sd, SD_PresentState), PRES_CARD_PRESENT);
|
|
} else {
|
|
card_ins = TRUE;
|
|
}
|
|
|
|
if (card_ins) {
|
|
sd_info(("%s: SDIO slot %d: Full\n", __FUNCTION__, slot));
|
|
if (full_slot < 0)
|
|
full_slot = slot;
|
|
} else {
|
|
sd_info(("%s: SDIO slot %d: Empty\n", __FUNCTION__, slot));
|
|
}
|
|
|
|
if (sd->mem_space) {
|
|
sdstd_reg_unmap(sd->osh, (uintptr)sd->mem_space, SDIOH_REG_WINSZ);
|
|
sd->mem_space = NULL;
|
|
}
|
|
}
|
|
|
|
if (full_slot < 0) {
|
|
sd_err(("No slots on SDIO controller are populated\n"));
|
|
return -1;
|
|
}
|
|
|
|
bar = OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR0 + (4*(full_slot + first_bar)), 4);
|
|
sd->mem_space = (volatile char *)sdstd_reg_map(sd->osh, (uintptr)bar, SDIOH_REG_WINSZ);
|
|
|
|
sd_err(("Using slot %d at BAR%d [0x%08x] mem_space 0x%p\n",
|
|
full_slot,
|
|
(full_slot + first_bar),
|
|
OSL_PCI_READ_CONFIG(sd->osh, PCI_CFG_BAR0 + (4*(full_slot + first_bar)), 4),
|
|
sd->mem_space));
|
|
|
|
|
|
sd->adapter_slot = full_slot;
|
|
|
|
sd->version = sdstd_rreg16(sd, SD_HostControllerVersion) & 0xFF;
|
|
switch (sd->version) {
|
|
case 0:
|
|
sd_err(("Host Controller version 1.0, Vendor Revision: 0x%02x\n",
|
|
sdstd_rreg16(sd, SD_HostControllerVersion) >> 8));
|
|
break;
|
|
case 1:
|
|
case 2:
|
|
sd_err(("Host Controller version 2.0, Vendor Revision: 0x%02x\n",
|
|
sdstd_rreg16(sd, SD_HostControllerVersion) >> 8));
|
|
break;
|
|
default:
|
|
sd_err(("%s: Host Controller version 0x%02x not supported.\n",
|
|
__FUNCTION__, sd->version));
|
|
break;
|
|
}
|
|
|
|
sd->caps = sdstd_rreg(sd, SD_Capabilities); /* Cache this for later use */
|
|
sd->curr_caps = sdstd_rreg(sd, SD_MaxCurCap);
|
|
|
|
sdstd_set_dma_mode(sd, sd->sd_dma_mode);
|
|
|
|
|
|
sdstd_reset(sd, 1, 0);
|
|
|
|
/* Read SD4/SD1 mode */
|
|
if ((reg8 = sdstd_rreg8(sd, SD_HostCntrl))) {
|
|
if (reg8 & SD4_MODE) {
|
|
sd_err(("%s: Host cntrlr already in 4 bit mode: 0x%x\n",
|
|
__FUNCTION__, reg8));
|
|
}
|
|
}
|
|
|
|
/* Default power on mode is SD1 */
|
|
sd->sd_mode = SDIOH_MODE_SD1;
|
|
sd->polled_mode = TRUE;
|
|
sd->host_init_done = TRUE;
|
|
sd->card_init_done = FALSE;
|
|
sd->adapter_slot = full_slot;
|
|
|
|
return (SUCCESS);
|
|
}
|
|
#define CMD5_RETRIES 200
|
|
static int
|
|
get_ocr(sdioh_info_t *sd, uint32 *cmd_arg, uint32 *cmd_rsp)
|
|
{
|
|
int retries, status;
|
|
|
|
/* Get the Card's Operation Condition. Occasionally the board
|
|
* takes a while to become ready
|
|
*/
|
|
retries = CMD5_RETRIES;
|
|
do {
|
|
*cmd_rsp = 0;
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_5, *cmd_arg))
|
|
!= SUCCESS) {
|
|
sd_err(("%s: CMD5 failed\n", __FUNCTION__));
|
|
return status;
|
|
}
|
|
sdstd_cmd_getrsp(sd, cmd_rsp, 1);
|
|
if (!GFIELD(*cmd_rsp, RSP4_CARD_READY))
|
|
sd_trace(("%s: Waiting for card to become ready\n", __FUNCTION__));
|
|
} while ((!GFIELD(*cmd_rsp, RSP4_CARD_READY)) && --retries);
|
|
if (!retries)
|
|
return ERROR;
|
|
|
|
return (SUCCESS);
|
|
}
|
|
|
|
static int
|
|
sdstd_client_init(sdioh_info_t *sd)
|
|
{
|
|
uint32 cmd_arg, cmd_rsp;
|
|
int status;
|
|
uint8 fn_ints;
|
|
|
|
|
|
sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
|
|
|
|
/* Clear any pending ints */
|
|
sdstd_wreg16(sd, SD_IntrStatus, 0x1ff);
|
|
sdstd_wreg16(sd, SD_ErrorIntrStatus, 0x0fff);
|
|
|
|
/* Enable both Normal and Error Status. This does not enable
|
|
* interrupts, it only enables the status bits to
|
|
* become 'live'
|
|
*/
|
|
sdstd_wreg16(sd, SD_IntrStatusEnable, 0x1ff);
|
|
sdstd_wreg16(sd, SD_ErrorIntrStatusEnable, 0xffff);
|
|
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, 0); /* Disable ints for now. */
|
|
|
|
/* Start at ~400KHz clock rate for initialization */
|
|
if (!sdstd_start_clock(sd, 128)) {
|
|
sd_err(("sdstd_start_clock failed\n"));
|
|
return ERROR;
|
|
}
|
|
if (!sdstd_start_power(sd)) {
|
|
sd_err(("sdstd_start_power failed\n"));
|
|
return ERROR;
|
|
}
|
|
|
|
if (sd->num_funcs == 0) {
|
|
sd_err(("%s: No IO funcs!\n", __FUNCTION__));
|
|
return ERROR;
|
|
}
|
|
|
|
/* In SPI mode, issue CMD0 first */
|
|
if (sd->sd_mode == SDIOH_MODE_SPI) {
|
|
cmd_arg = 0;
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_0, cmd_arg))
|
|
!= SUCCESS) {
|
|
sd_err(("BCMSDIOH: cardinit: CMD0 failed!\n"));
|
|
return status;
|
|
}
|
|
}
|
|
|
|
if (sd->sd_mode != SDIOH_MODE_SPI) {
|
|
uint16 rsp6_status;
|
|
|
|
/* Card is operational. Ask it to send an RCA */
|
|
cmd_arg = 0;
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_3, cmd_arg))
|
|
!= SUCCESS) {
|
|
sd_err(("%s: CMD3 failed!\n", __FUNCTION__));
|
|
return status;
|
|
}
|
|
|
|
/* Verify the card status returned with the cmd response */
|
|
sdstd_cmd_getrsp(sd, &cmd_rsp, 1);
|
|
rsp6_status = GFIELD(cmd_rsp, RSP6_STATUS);
|
|
if (GFIELD(rsp6_status, RSP6STAT_COM_CRC_ERROR) ||
|
|
GFIELD(rsp6_status, RSP6STAT_ILLEGAL_CMD) ||
|
|
GFIELD(rsp6_status, RSP6STAT_ERROR)) {
|
|
sd_err(("%s: CMD3 response error. Response = 0x%x!\n",
|
|
__FUNCTION__, rsp6_status));
|
|
return ERROR;
|
|
}
|
|
|
|
/* Save the Card's RCA */
|
|
sd->card_rca = GFIELD(cmd_rsp, RSP6_IO_RCA);
|
|
sd_info(("RCA is 0x%x\n", sd->card_rca));
|
|
|
|
if (rsp6_status)
|
|
sd_err(("raw status is 0x%x\n", rsp6_status));
|
|
|
|
/* Select the card */
|
|
cmd_arg = SFIELD(0, CMD7_RCA, sd->card_rca);
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_7, cmd_arg))
|
|
!= SUCCESS) {
|
|
sd_err(("%s: CMD7 failed!\n", __FUNCTION__));
|
|
return status;
|
|
}
|
|
sdstd_cmd_getrsp(sd, &cmd_rsp, 1);
|
|
if (cmd_rsp != SDIOH_CMD7_EXP_STATUS) {
|
|
sd_err(("%s: CMD7 response error. Response = 0x%x!\n",
|
|
__FUNCTION__, cmd_rsp));
|
|
return ERROR;
|
|
}
|
|
}
|
|
|
|
sdstd_card_enablefuncs(sd);
|
|
|
|
if (!sdstd_bus_width(sd, sd_sdmode)) {
|
|
sd_err(("sdstd_bus_width failed\n"));
|
|
return ERROR;
|
|
}
|
|
|
|
set_client_block_size(sd, 1, BLOCK_SIZE_4318);
|
|
fn_ints = INTR_CTL_FUNC1_EN;
|
|
|
|
if (sd->num_funcs >= 2) {
|
|
set_client_block_size(sd, 2, sd_f2_blocksize /* BLOCK_SIZE_4328 */);
|
|
fn_ints |= INTR_CTL_FUNC2_EN;
|
|
}
|
|
|
|
/* Enable/Disable Client interrupts */
|
|
/* Turn on here but disable at host controller? */
|
|
if (sdstd_card_regwrite(sd, 0, SDIOD_CCCR_INTEN, 1,
|
|
(fn_ints | INTR_CTL_MASTER_EN)) != SUCCESS) {
|
|
sd_err(("%s: Could not enable ints in CCCR\n", __FUNCTION__));
|
|
return ERROR;
|
|
}
|
|
|
|
/* Switch to High-speed clocking mode if both host and device support it */
|
|
sdstd_set_highspeed_mode(sd, (bool)sd_hiok);
|
|
|
|
/* After configuring for High-Speed mode, set the desired clock rate. */
|
|
if (!sdstd_start_clock(sd, (uint16)sd_divisor)) {
|
|
sd_err(("sdstd_start_clock failed\n"));
|
|
return ERROR;
|
|
}
|
|
|
|
sd->card_init_done = TRUE;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
sdstd_set_highspeed_mode(sdioh_info_t *sd, bool HSMode)
|
|
{
|
|
uint32 regdata;
|
|
int status;
|
|
uint8 reg8;
|
|
|
|
reg8 = sdstd_rreg8(sd, SD_HostCntrl);
|
|
|
|
|
|
if (HSMode == TRUE) {
|
|
if (sd_hiok && (GFIELD(sd->caps, CAP_HIGHSPEED)) == 0) {
|
|
sd_err(("Host Controller does not support hi-speed mode.\n"));
|
|
return BCME_ERROR;
|
|
}
|
|
|
|
sd_info(("Attempting to enable High-Speed mode.\n"));
|
|
|
|
if ((status = sdstd_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
|
|
1, ®data)) != SUCCESS) {
|
|
return BCME_SDIO_ERROR;
|
|
}
|
|
if (regdata & SDIO_SPEED_SHS) {
|
|
sd_info(("Device supports High-Speed mode.\n"));
|
|
|
|
regdata |= SDIO_SPEED_EHS;
|
|
|
|
sd_info(("Writing %08x to Card at %08x\n",
|
|
regdata, SDIOD_CCCR_SPEED_CONTROL));
|
|
if ((status = sdstd_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
|
|
1, regdata)) != BCME_OK) {
|
|
return BCME_SDIO_ERROR;
|
|
}
|
|
|
|
if ((status = sdstd_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
|
|
1, ®data)) != BCME_OK) {
|
|
return BCME_SDIO_ERROR;
|
|
}
|
|
|
|
sd_info(("Read %08x to Card at %08x\n", regdata, SDIOD_CCCR_SPEED_CONTROL));
|
|
|
|
reg8 = SFIELD(reg8, HOST_HI_SPEED_EN, 1);
|
|
|
|
sd_err(("High-speed clocking mode enabled.\n"));
|
|
}
|
|
else {
|
|
sd_err(("Device does not support High-Speed Mode.\n"));
|
|
reg8 = SFIELD(reg8, HOST_HI_SPEED_EN, 0);
|
|
}
|
|
} else {
|
|
/* Force off device bit */
|
|
if ((status = sdstd_card_regread(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
|
|
1, ®data)) != BCME_OK) {
|
|
return status;
|
|
}
|
|
if (regdata & SDIO_SPEED_EHS) {
|
|
regdata &= ~SDIO_SPEED_EHS;
|
|
if ((status = sdstd_card_regwrite(sd, 0, SDIOD_CCCR_SPEED_CONTROL,
|
|
1, regdata)) != BCME_OK) {
|
|
return status;
|
|
}
|
|
}
|
|
|
|
sd_err(("High-speed clocking mode disabled.\n"));
|
|
reg8 = SFIELD(reg8, HOST_HI_SPEED_EN, 0);
|
|
}
|
|
|
|
sdstd_wreg8(sd, SD_HostCntrl, reg8);
|
|
|
|
return BCME_OK;
|
|
}
|
|
|
|
/* Select DMA Mode:
|
|
* If dma_mode == DMA_MODE_AUTO, pick the "best" mode.
|
|
* Otherwise, pick the selected mode if supported.
|
|
* If not supported, use PIO mode.
|
|
*/
|
|
static int
|
|
sdstd_set_dma_mode(sdioh_info_t *sd, int8 dma_mode)
|
|
{
|
|
uint8 reg8, dma_sel_bits = SDIOH_SDMA_MODE;
|
|
int8 prev_dma_mode = sd->sd_dma_mode;
|
|
|
|
switch (prev_dma_mode) {
|
|
case DMA_MODE_AUTO:
|
|
sd_dma(("%s: Selecting best DMA mode supported by controller.\n",
|
|
__FUNCTION__));
|
|
if (GFIELD(sd->caps, CAP_ADMA2)) {
|
|
sd->sd_dma_mode = DMA_MODE_ADMA2;
|
|
dma_sel_bits = SDIOH_ADMA2_MODE;
|
|
} else if (GFIELD(sd->caps, CAP_ADMA1)) {
|
|
sd->sd_dma_mode = DMA_MODE_ADMA1;
|
|
dma_sel_bits = SDIOH_ADMA1_MODE;
|
|
} else if (GFIELD(sd->caps, CAP_DMA)) {
|
|
sd->sd_dma_mode = DMA_MODE_SDMA;
|
|
} else {
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
}
|
|
break;
|
|
case DMA_MODE_NONE:
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
break;
|
|
case DMA_MODE_SDMA:
|
|
if (GFIELD(sd->caps, CAP_DMA)) {
|
|
sd->sd_dma_mode = DMA_MODE_SDMA;
|
|
} else {
|
|
sd_err(("%s: SDMA not supported by controller.\n", __FUNCTION__));
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
}
|
|
break;
|
|
case DMA_MODE_ADMA1:
|
|
if (GFIELD(sd->caps, CAP_ADMA1)) {
|
|
sd->sd_dma_mode = DMA_MODE_ADMA1;
|
|
dma_sel_bits = SDIOH_ADMA1_MODE;
|
|
} else {
|
|
sd_err(("%s: ADMA1 not supported by controller.\n", __FUNCTION__));
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
}
|
|
break;
|
|
case DMA_MODE_ADMA2:
|
|
if (GFIELD(sd->caps, CAP_ADMA2)) {
|
|
sd->sd_dma_mode = DMA_MODE_ADMA2;
|
|
dma_sel_bits = SDIOH_ADMA2_MODE;
|
|
} else {
|
|
sd_err(("%s: ADMA2 not supported by controller.\n", __FUNCTION__));
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
}
|
|
break;
|
|
case DMA_MODE_ADMA2_64:
|
|
sd_err(("%s: 64b ADMA2 not supported by driver.\n", __FUNCTION__));
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
break;
|
|
default:
|
|
sd_err(("%s: Unsupported DMA Mode %d requested.\n", __FUNCTION__,
|
|
prev_dma_mode));
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
break;
|
|
}
|
|
|
|
/* clear SysAddr, only used for SDMA */
|
|
sdstd_wreg(sd, SD_SysAddr, 0);
|
|
|
|
sd_err(("%s: %s mode selected.\n", __FUNCTION__, dma_mode_description[sd->sd_dma_mode]));
|
|
|
|
reg8 = sdstd_rreg8(sd, SD_HostCntrl);
|
|
reg8 = SFIELD(reg8, HOST_DMA_SEL, dma_sel_bits);
|
|
sdstd_wreg8(sd, SD_HostCntrl, reg8);
|
|
sd_dma(("%s: SD_HostCntrl=0x%02x\n", __FUNCTION__, reg8));
|
|
|
|
return BCME_OK;
|
|
}
|
|
|
|
|
|
bool
|
|
sdstd_start_clock(sdioh_info_t *sd, uint16 new_sd_divisor)
|
|
{
|
|
uint rc, count;
|
|
uint16 divisor;
|
|
|
|
/* turn off HC clock */
|
|
sdstd_wreg16(sd, SD_ClockCntrl,
|
|
sdstd_rreg16(sd, SD_ClockCntrl) & ~((uint16)0x4)); /* Disable the HC clock */
|
|
|
|
/* Set divisor */
|
|
|
|
divisor = (new_sd_divisor >> 1) << 8;
|
|
|
|
sd_info(("Clock control is 0x%x\n", sdstd_rreg16(sd, SD_ClockCntrl)));
|
|
sdstd_mod_reg16(sd, SD_ClockCntrl, 0xff00, divisor);
|
|
sd_info(("%s: Using clock divisor of %d (regval 0x%04x)\n", __FUNCTION__,
|
|
new_sd_divisor, divisor));
|
|
|
|
sd_info(("Primary Clock Freq = %d MHz\n", GFIELD(sd->caps, CAP_TO_CLKFREQ)));
|
|
|
|
if (GFIELD(sd->caps, CAP_TO_CLKFREQ) == 50) {
|
|
sd_info(("%s: Resulting SDIO clock is %d %s\n", __FUNCTION__,
|
|
((50 % new_sd_divisor) ? (50000 / new_sd_divisor) : (50 / new_sd_divisor)),
|
|
((50 % new_sd_divisor) ? "KHz" : "MHz")));
|
|
} else if (GFIELD(sd->caps, CAP_TO_CLKFREQ) == 48) {
|
|
sd_info(("%s: Resulting SDIO clock is %d %s\n", __FUNCTION__,
|
|
((48 % new_sd_divisor) ? (48000 / new_sd_divisor) : (48 / new_sd_divisor)),
|
|
((48 % new_sd_divisor) ? "KHz" : "MHz")));
|
|
} else if (GFIELD(sd->caps, CAP_TO_CLKFREQ) == 33) {
|
|
sd_info(("%s: Resulting SDIO clock is %d %s\n", __FUNCTION__,
|
|
((33 % new_sd_divisor) ? (33000 / new_sd_divisor) : (33 / new_sd_divisor)),
|
|
((33 % new_sd_divisor) ? "KHz" : "MHz")));
|
|
|
|
} else if (sd->controller_type == SDIOH_TYPE_BCM27XX) {
|
|
} else {
|
|
sd_err(("Need to determine divisor for %d MHz clocks\n",
|
|
GFIELD(sd->caps, CAP_TO_CLKFREQ)));
|
|
sd_err(("Consult SD Host Controller Spec: Clock Control Register\n"));
|
|
return (FALSE);
|
|
}
|
|
|
|
sdstd_or_reg16(sd, SD_ClockCntrl, 0x1); /* Enable the clock */
|
|
|
|
/* Wait for clock to stabilize */
|
|
rc = (sdstd_rreg16(sd, SD_ClockCntrl) & 2);
|
|
count = 0;
|
|
while (!rc) {
|
|
OSL_DELAY(1);
|
|
sd_info(("Waiting for clock to become stable 0x%x\n", rc));
|
|
rc = (sdstd_rreg16(sd, SD_ClockCntrl) & 2);
|
|
count++;
|
|
if (count > 10000) {
|
|
sd_err(("%s:Clocks failed to stabilize after %u attempts",
|
|
__FUNCTION__, count));
|
|
return (FALSE);
|
|
}
|
|
}
|
|
/* Turn on clock */
|
|
sdstd_or_reg16(sd, SD_ClockCntrl, 0x4);
|
|
|
|
/* Set timeout control (adjust default value based on divisor).
|
|
* Disabling timeout interrupts during setting is advised by host spec.
|
|
*/
|
|
{
|
|
uint16 regdata;
|
|
uint toval;
|
|
|
|
toval = sd_toctl;
|
|
divisor = new_sd_divisor;
|
|
|
|
while (toval && !(divisor & 1)) {
|
|
toval -= 1;
|
|
divisor >>= 1;
|
|
}
|
|
|
|
regdata = sdstd_rreg16(sd, SD_ErrorIntrStatusEnable);
|
|
sdstd_wreg16(sd, SD_ErrorIntrStatusEnable, (regdata & ~ERRINT_DATA_TIMEOUT_BIT));
|
|
sdstd_wreg8(sd, SD_TimeoutCntrl, (uint8)toval);
|
|
sdstd_wreg16(sd, SD_ErrorIntrStatusEnable, regdata);
|
|
}
|
|
|
|
OSL_DELAY(2);
|
|
|
|
sd_info(("Final Clock control is 0x%x\n", sdstd_rreg16(sd, SD_ClockCntrl)));
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
bool
|
|
sdstd_start_power(sdioh_info_t *sd)
|
|
{
|
|
char *s;
|
|
uint32 cmd_arg;
|
|
uint32 cmd_rsp;
|
|
uint8 pwr = 0;
|
|
int volts;
|
|
|
|
volts = 0;
|
|
s = NULL;
|
|
if (GFIELD(sd->caps, CAP_VOLT_1_8)) {
|
|
volts = 5;
|
|
s = "1.8";
|
|
}
|
|
if (GFIELD(sd->caps, CAP_VOLT_3_0)) {
|
|
volts = 6;
|
|
s = "3.0";
|
|
}
|
|
if (GFIELD(sd->caps, CAP_VOLT_3_3)) {
|
|
volts = 7;
|
|
s = "3.3";
|
|
}
|
|
|
|
pwr = SFIELD(pwr, PWR_VOLTS, volts);
|
|
pwr = SFIELD(pwr, PWR_BUS_EN, 1);
|
|
sdstd_wreg8(sd, SD_PwrCntrl, pwr); /* Set Voltage level */
|
|
sd_info(("Setting Bus Power to %s Volts\n", s));
|
|
|
|
/* Wait for power to stabilize, Dongle takes longer than NIC. */
|
|
OSL_DELAY(250000);
|
|
|
|
/* Get the Card's Operation Condition. Occasionally the board
|
|
* takes a while to become ready
|
|
*/
|
|
cmd_arg = 0;
|
|
cmd_rsp = 0;
|
|
if (get_ocr(sd, &cmd_arg, &cmd_rsp) != SUCCESS) {
|
|
sd_err(("%s: Failed to get OCR bailing\n", __FUNCTION__));
|
|
sdstd_reset(sd, 0, 1);
|
|
return FALSE;
|
|
}
|
|
|
|
sd_info(("mem_present = %d\n", GFIELD(cmd_rsp, RSP4_MEM_PRESENT)));
|
|
sd_info(("num_funcs = %d\n", GFIELD(cmd_rsp, RSP4_NUM_FUNCS)));
|
|
sd_info(("card_ready = %d\n", GFIELD(cmd_rsp, RSP4_CARD_READY)));
|
|
sd_info(("OCR = 0x%x\n", GFIELD(cmd_rsp, RSP4_IO_OCR)));
|
|
|
|
/* Verify that the card supports I/O mode */
|
|
if (GFIELD(cmd_rsp, RSP4_NUM_FUNCS) == 0) {
|
|
sd_err(("%s: Card does not support I/O\n", __FUNCTION__));
|
|
return ERROR;
|
|
}
|
|
sd->num_funcs = GFIELD(cmd_rsp, RSP4_NUM_FUNCS);
|
|
|
|
/* Examine voltage: Arasan only supports 3.3 volts,
|
|
* so look for 3.2-3.3 Volts and also 3.3-3.4 volts.
|
|
*/
|
|
|
|
if ((GFIELD(cmd_rsp, RSP4_IO_OCR) & (0x3 << 20)) == 0) {
|
|
sd_err(("This client does not support 3.3 volts!\n"));
|
|
return ERROR;
|
|
}
|
|
sd_info(("Leaving bus power at 3.3 Volts\n"));
|
|
|
|
cmd_arg = SFIELD(0, CMD5_OCR, 0xfff000);
|
|
cmd_rsp = 0;
|
|
get_ocr(sd, &cmd_arg, &cmd_rsp);
|
|
sd_info(("OCR = 0x%x\n", GFIELD(cmd_rsp, RSP4_IO_OCR)));
|
|
return TRUE;
|
|
}
|
|
|
|
bool
|
|
sdstd_bus_width(sdioh_info_t *sd, int new_mode)
|
|
{
|
|
uint32 regdata;
|
|
int status;
|
|
uint8 reg8;
|
|
|
|
sd_trace(("%s\n", __FUNCTION__));
|
|
if (sd->sd_mode == new_mode) {
|
|
sd_info(("%s: Already at width %d\n", __FUNCTION__, new_mode));
|
|
/* Could exit, but continue just in case... */
|
|
}
|
|
|
|
/* Set client side via reg 0x7 in CCCR */
|
|
if ((status = sdstd_card_regread (sd, 0, SDIOD_CCCR_BICTRL, 1, ®data)) != SUCCESS)
|
|
return (bool)status;
|
|
regdata &= ~BUS_SD_DATA_WIDTH_MASK;
|
|
if (new_mode == SDIOH_MODE_SD4) {
|
|
sd_info(("Changing to SD4 Mode\n"));
|
|
regdata |= SD4_MODE;
|
|
} else if (new_mode == SDIOH_MODE_SD1) {
|
|
sd_info(("Changing to SD1 Mode\n"));
|
|
} else {
|
|
sd_err(("SPI Mode not supported by Standard Host Controller\n"));
|
|
}
|
|
|
|
if ((status = sdstd_card_regwrite (sd, 0, SDIOD_CCCR_BICTRL, 1, regdata)) != SUCCESS)
|
|
return (bool)status;
|
|
|
|
/* Set host side via Host reg */
|
|
reg8 = sdstd_rreg8(sd, SD_HostCntrl) & ~SD4_MODE;
|
|
if (new_mode == SDIOH_MODE_SD4)
|
|
reg8 |= SD4_MODE;
|
|
sdstd_wreg8(sd, SD_HostCntrl, reg8);
|
|
|
|
sd->sd_mode = new_mode;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static int
|
|
sdstd_driver_init(sdioh_info_t *sd)
|
|
{
|
|
sd_trace(("%s\n", __FUNCTION__));
|
|
if ((sdstd_host_init(sd)) != SUCCESS) {
|
|
return ERROR;
|
|
}
|
|
|
|
if (sdstd_client_init(sd) != SUCCESS) {
|
|
return ERROR;
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
sdstd_get_cisaddr(sdioh_info_t *sd, uint32 regaddr)
|
|
{
|
|
/* read 24 bits and return valid 17 bit addr */
|
|
int i;
|
|
uint32 scratch, regdata;
|
|
uint8 *ptr = (uint8 *)&scratch;
|
|
for (i = 0; i < 3; i++) {
|
|
if ((sdstd_card_regread (sd, 0, regaddr, 1, ®data)) != SUCCESS)
|
|
sd_err(("%s: Can't read!\n", __FUNCTION__));
|
|
|
|
*ptr++ = (uint8) regdata;
|
|
regaddr++;
|
|
}
|
|
/* Only the lower 17-bits are valid */
|
|
scratch = ltoh32(scratch);
|
|
scratch &= 0x0001FFFF;
|
|
return (scratch);
|
|
}
|
|
|
|
static int
|
|
sdstd_card_enablefuncs(sdioh_info_t *sd)
|
|
{
|
|
int status;
|
|
uint32 regdata;
|
|
uint32 fbraddr;
|
|
uint8 func;
|
|
|
|
sd_trace(("%s\n", __FUNCTION__));
|
|
|
|
/* Get the Card's common CIS address */
|
|
sd->com_cis_ptr = sdstd_get_cisaddr(sd, SDIOD_CCCR_CISPTR_0);
|
|
sd->func_cis_ptr[0] = sd->com_cis_ptr;
|
|
sd_info(("%s: Card's Common CIS Ptr = 0x%x\n", __FUNCTION__, sd->com_cis_ptr));
|
|
|
|
/* Get the Card's function CIS (for each function) */
|
|
for (fbraddr = SDIOD_FBR_STARTADDR, func = 1;
|
|
func <= sd->num_funcs; func++, fbraddr += SDIOD_FBR_SIZE) {
|
|
sd->func_cis_ptr[func] = sdstd_get_cisaddr(sd, SDIOD_FBR_CISPTR_0 + fbraddr);
|
|
sd_info(("%s: Function %d CIS Ptr = 0x%x\n",
|
|
__FUNCTION__, func, sd->func_cis_ptr[func]));
|
|
}
|
|
|
|
/* Enable function 1 on the card */
|
|
regdata = SDIO_FUNC_ENABLE_1;
|
|
if ((status = sdstd_card_regwrite(sd, 0, SDIOD_CCCR_IOEN, 1, regdata)) != SUCCESS)
|
|
return status;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/* Read client card reg */
|
|
static int
|
|
sdstd_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
|
|
{
|
|
int status;
|
|
uint32 cmd_arg;
|
|
uint32 rsp5;
|
|
|
|
|
|
cmd_arg = 0;
|
|
|
|
if ((func == 0) || (regsize == 1)) {
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_READ);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, 0);
|
|
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_52, cmd_arg))
|
|
!= SUCCESS)
|
|
return status;
|
|
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
if (sdstd_rreg16(sd, SD_ErrorIntrStatus) != 0) {
|
|
sd_err(("%s: 1: ErrorintrStatus 0x%x\n",
|
|
__FUNCTION__, sdstd_rreg16(sd, SD_ErrorIntrStatus)));
|
|
}
|
|
|
|
if (GFIELD(rsp5, RSP5_FLAGS) != 0x10)
|
|
sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_FLAGS), func));
|
|
|
|
if (GFIELD(rsp5, RSP5_STUFF))
|
|
sd_err(("%s: rsp5 stuff is 0x%x: should be 0\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_STUFF)));
|
|
*data = GFIELD(rsp5, RSP5_DATA);
|
|
} else {
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ);
|
|
|
|
sd->data_xfer_count = regsize;
|
|
|
|
/* sdstd_cmd_issue() returns with the command complete bit
|
|
* in the ISR already cleared
|
|
*/
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_53, cmd_arg))
|
|
!= SUCCESS)
|
|
return status;
|
|
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
|
|
if (GFIELD(rsp5, RSP5_FLAGS) != 0x10)
|
|
sd_err(("%s: rsp5 flags is 0x%x\t %d\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_FLAGS), func));
|
|
|
|
if (GFIELD(rsp5, RSP5_STUFF))
|
|
sd_err(("%s: rsp5 stuff is 0x%x: should be 0\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_STUFF)));
|
|
|
|
if (sd->polled_mode) {
|
|
volatile uint16 int_reg;
|
|
int retries = RETRIES_LARGE;
|
|
|
|
/* Wait for Read Buffer to become ready */
|
|
do {
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
} while (--retries && (GFIELD(int_reg, INTSTAT_BUF_READ_READY) == 0));
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout on Buf_Read_Ready: "
|
|
"intStat: 0x%x errint: 0x%x PresentState 0x%x\n",
|
|
__FUNCTION__, int_reg,
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus),
|
|
sdstd_rreg(sd, SD_PresentState)));
|
|
sdstd_check_errs(sd, SDIOH_CMD_53, cmd_arg);
|
|
return (ERROR);
|
|
}
|
|
|
|
/* Have Buffer Ready, so clear it and read the data */
|
|
sdstd_wreg16(sd, SD_IntrStatus, SFIELD(0, INTSTAT_BUF_READ_READY, 1));
|
|
if (regsize == 2)
|
|
*data = sdstd_rreg16(sd, SD_BufferDataPort0);
|
|
else
|
|
*data = sdstd_rreg(sd, SD_BufferDataPort0);
|
|
|
|
/* Check Status.
|
|
* After the data is read, the Transfer Complete bit should be on
|
|
*/
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
} while (--retries && (GFIELD(int_reg, INTSTAT_XFER_COMPLETE) == 0));
|
|
|
|
/* Check for any errors from the data phase */
|
|
if (sdstd_check_errs(sd, SDIOH_CMD_53, cmd_arg))
|
|
return ERROR;
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout on xfer complete: "
|
|
"intr 0x%04x err 0x%04x state 0x%08x\n",
|
|
__FUNCTION__, int_reg,
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus),
|
|
sdstd_rreg(sd, SD_PresentState)));
|
|
return (ERROR);
|
|
}
|
|
|
|
sdstd_wreg16(sd, SD_IntrStatus, SFIELD(0, INTSTAT_XFER_COMPLETE, 1));
|
|
}
|
|
}
|
|
if (sd->polled_mode) {
|
|
if (regsize == 2)
|
|
*data &= 0xffff;
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
bool
|
|
check_client_intr(sdioh_info_t *sd)
|
|
{
|
|
uint16 raw_int, cur_int, old_int;
|
|
|
|
raw_int = sdstd_rreg16(sd, SD_IntrStatus);
|
|
cur_int = raw_int & sd->intmask;
|
|
|
|
if (!cur_int) {
|
|
/* Not an error -- might share interrupts... */
|
|
return FALSE;
|
|
}
|
|
|
|
if (GFIELD(cur_int, INTSTAT_CARD_INT)) {
|
|
old_int = sdstd_rreg16(sd, SD_IntrStatusEnable);
|
|
sdstd_wreg16(sd, SD_IntrStatusEnable, SFIELD(old_int, INTSTAT_CARD_INT, 0));
|
|
|
|
if (sd->client_intr_enabled && sd->use_client_ints) {
|
|
sd->intrcount++;
|
|
ASSERT(sd->intr_handler);
|
|
ASSERT(sd->intr_handler_arg);
|
|
(sd->intr_handler)(sd->intr_handler_arg);
|
|
} else {
|
|
sd_err(("%s: Not ready for intr: enabled %d, handler %p\n",
|
|
__FUNCTION__, sd->client_intr_enabled, sd->intr_handler));
|
|
}
|
|
sdstd_wreg16(sd, SD_IntrStatusEnable, old_int);
|
|
} else {
|
|
/* Local interrupt: disable, set flag, and save intrstatus */
|
|
sdstd_wreg16(sd, SD_IntrSignalEnable, 0);
|
|
sdstd_wreg16(sd, SD_ErrorIntrSignalEnable, 0);
|
|
sd->local_intrcount++;
|
|
sd->got_hcint = TRUE;
|
|
sd->last_intrstatus = cur_int;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
void
|
|
sdstd_spinbits(sdioh_info_t *sd, uint16 norm, uint16 err)
|
|
{
|
|
uint16 int_reg, err_reg;
|
|
int retries = RETRIES_LARGE;
|
|
|
|
do {
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
err_reg = sdstd_rreg16(sd, SD_ErrorIntrStatus);
|
|
} while (--retries && !(int_reg & norm) && !(err_reg & err));
|
|
|
|
norm |= sd->intmask;
|
|
if (err_reg & err)
|
|
norm = SFIELD(norm, INTSTAT_ERROR_INT, 1);
|
|
sd->last_intrstatus = int_reg & norm;
|
|
}
|
|
|
|
/* write a client register */
|
|
static int
|
|
sdstd_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
|
|
{
|
|
int status;
|
|
uint32 cmd_arg, rsp5, flags;
|
|
|
|
cmd_arg = 0;
|
|
|
|
if ((func == 0) || (regsize == 1)) {
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_FUNCTION, func);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_REG_ADDR, regaddr);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_RAW, 0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD52_DATA, data & 0xff);
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_52, cmd_arg))
|
|
!= SUCCESS)
|
|
return status;
|
|
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
flags = GFIELD(rsp5, RSP5_FLAGS);
|
|
if (flags && (flags != 0x10))
|
|
sd_err(("%s: rsp5.rsp5.flags = 0x%x, expecting 0x10\n",
|
|
__FUNCTION__, flags));
|
|
}
|
|
else {
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, regsize);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, regaddr);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
|
|
|
|
sd->data_xfer_count = regsize;
|
|
|
|
/* sdstd_cmd_issue() returns with the command complete bit
|
|
* in the ISR already cleared
|
|
*/
|
|
if ((status = sdstd_cmd_issue(sd, USE_DMA(sd), SDIOH_CMD_53, cmd_arg))
|
|
!= SUCCESS)
|
|
return status;
|
|
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
|
|
if (GFIELD(rsp5, RSP5_FLAGS) != 0x10)
|
|
sd_err(("%s: rsp5 flags = 0x%x, expecting 0x10\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_FLAGS)));
|
|
if (GFIELD(rsp5, RSP5_STUFF))
|
|
sd_err(("%s: rsp5 stuff is 0x%x: expecting 0\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_STUFF)));
|
|
|
|
if (sd->polled_mode) {
|
|
uint16 int_reg;
|
|
int retries = RETRIES_LARGE;
|
|
|
|
/* Wait for Write Buffer to become ready */
|
|
do {
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
} while (--retries && (GFIELD(int_reg, INTSTAT_BUF_WRITE_READY) == 0));
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout on Buf_Write_Ready: intStat: 0x%x "
|
|
"errint: 0x%x PresentState 0x%x\n",
|
|
__FUNCTION__, int_reg,
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus),
|
|
sdstd_rreg(sd, SD_PresentState)));
|
|
sdstd_check_errs(sd, SDIOH_CMD_53, cmd_arg);
|
|
return (ERROR);
|
|
}
|
|
/* Clear Write Buf Ready bit */
|
|
int_reg = 0;
|
|
int_reg = SFIELD(int_reg, INTSTAT_BUF_WRITE_READY, 1);
|
|
sdstd_wreg16(sd, SD_IntrStatus, int_reg);
|
|
|
|
/* At this point we have Buffer Ready, so write the data */
|
|
if (regsize == 2)
|
|
sdstd_wreg16(sd, SD_BufferDataPort0, (uint16) data);
|
|
else
|
|
sdstd_wreg(sd, SD_BufferDataPort0, data);
|
|
|
|
/* Wait for Transfer Complete */
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
} while (--retries && (GFIELD(int_reg, INTSTAT_XFER_COMPLETE) == 0));
|
|
|
|
/* Check for any errors from the data phase */
|
|
if (sdstd_check_errs(sd, SDIOH_CMD_53, cmd_arg))
|
|
return ERROR;
|
|
|
|
if (retries == 0) {
|
|
sd_err(("%s: Timeout for xfer complete; State = 0x%x, "
|
|
"intr state=0x%x, Errintstatus 0x%x rcnt %d, tcnt %d\n",
|
|
__FUNCTION__, sdstd_rreg(sd, SD_PresentState),
|
|
int_reg, sdstd_rreg16(sd, SD_ErrorIntrStatus),
|
|
sd->r_cnt, sd->t_cnt));
|
|
}
|
|
/* Clear the status bits */
|
|
sdstd_wreg16(sd, SD_IntrStatus, SFIELD(int_reg, INTSTAT_CARD_INT, 0));
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
void
|
|
sdstd_cmd_getrsp(sdioh_info_t *sd, uint32 *rsp_buffer, int count /* num 32 bit words */)
|
|
{
|
|
int rsp_count;
|
|
int respaddr = SD_Response0;
|
|
|
|
if (count > 4)
|
|
count = 4;
|
|
|
|
for (rsp_count = 0; rsp_count < count; rsp_count++) {
|
|
*rsp_buffer++ = sdstd_rreg(sd, respaddr);
|
|
respaddr += 4;
|
|
}
|
|
}
|
|
|
|
static int
|
|
sdstd_cmd_issue(sdioh_info_t *sdioh_info, bool use_dma, uint32 cmd, uint32 arg)
|
|
{
|
|
uint16 cmd_reg;
|
|
int retries;
|
|
uint32 cmd_arg;
|
|
uint16 xfer_reg = 0;
|
|
|
|
|
|
if ((sdioh_info->sd_mode == SDIOH_MODE_SPI) &&
|
|
((cmd == SDIOH_CMD_3) || (cmd == SDIOH_CMD_7) || (cmd == SDIOH_CMD_15))) {
|
|
sd_err(("%s: Cmd %d is not for SPI\n", __FUNCTION__, cmd));
|
|
return ERROR;
|
|
}
|
|
|
|
retries = RETRIES_SMALL;
|
|
while ((GFIELD(sdstd_rreg(sdioh_info, SD_PresentState), PRES_CMD_INHIBIT)) && --retries) {
|
|
if (retries == RETRIES_SMALL)
|
|
sd_err(("%s: Waiting for Command Inhibit cmd = %d 0x%x\n",
|
|
__FUNCTION__, cmd, sdstd_rreg(sdioh_info, SD_PresentState)));
|
|
}
|
|
if (!retries) {
|
|
sd_err(("%s: Command Inhibit timeout\n", __FUNCTION__));
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
return ERROR;
|
|
}
|
|
|
|
|
|
cmd_reg = 0;
|
|
switch (cmd) {
|
|
case SDIOH_CMD_0: /* Set Card to Idle State - No Response */
|
|
sd_data(("%s: CMD%d\n", __FUNCTION__, cmd));
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_NONE);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
break;
|
|
|
|
case SDIOH_CMD_3: /* Ask card to send RCA - Response R6 */
|
|
sd_data(("%s: CMD%d\n", __FUNCTION__, cmd));
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_48);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
break;
|
|
|
|
case SDIOH_CMD_5: /* Send Operation condition - Response R4 */
|
|
sd_data(("%s: CMD%d\n", __FUNCTION__, cmd));
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_48);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
break;
|
|
|
|
case SDIOH_CMD_7: /* Select card - Response R1 */
|
|
sd_data(("%s: CMD%d\n", __FUNCTION__, cmd));
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_48);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
break;
|
|
|
|
case SDIOH_CMD_15: /* Set card to inactive state - Response None */
|
|
sd_data(("%s: CMD%d\n", __FUNCTION__, cmd));
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_NONE);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
break;
|
|
|
|
case SDIOH_CMD_52: /* IO R/W Direct (single byte) - Response R5 */
|
|
|
|
sd_data(("%s: CMD52 func(%d) addr(0x%x) %s data(0x%x)\n",
|
|
__FUNCTION__,
|
|
GFIELD(arg, CMD52_FUNCTION),
|
|
GFIELD(arg, CMD52_REG_ADDR),
|
|
GFIELD(arg, CMD52_RW_FLAG) ? "W" : "R",
|
|
GFIELD(arg, CMD52_DATA)));
|
|
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_48);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
break;
|
|
|
|
case SDIOH_CMD_53: /* IO R/W Extended (multiple bytes/blocks) */
|
|
|
|
sd_data(("%s: CMD53 func(%d) addr(0x%x) %s mode(%s) cnt(%d), %s\n",
|
|
__FUNCTION__,
|
|
GFIELD(arg, CMD53_FUNCTION),
|
|
GFIELD(arg, CMD53_REG_ADDR),
|
|
GFIELD(arg, CMD53_RW_FLAG) ? "W" : "R",
|
|
GFIELD(arg, CMD53_BLK_MODE) ? "Block" : "Byte",
|
|
GFIELD(arg, CMD53_BYTE_BLK_CNT),
|
|
GFIELD(arg, CMD53_OP_CODE) ? "Incrementing addr" : "Single addr"));
|
|
|
|
cmd_arg = arg;
|
|
xfer_reg = 0;
|
|
|
|
cmd_reg = SFIELD(cmd_reg, CMD_RESP_TYPE, RESP_TYPE_48);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_DATA_EN, 1);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_TYPE, CMD_TYPE_NORMAL);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX, cmd);
|
|
|
|
use_dma = USE_DMA(sdioh_info) && GFIELD(cmd_arg, CMD53_BLK_MODE);
|
|
|
|
if (GFIELD(cmd_arg, CMD53_BLK_MODE)) {
|
|
uint16 blocksize;
|
|
uint16 blockcount;
|
|
int func;
|
|
|
|
ASSERT(sdioh_info->sd_blockmode);
|
|
|
|
func = GFIELD(cmd_arg, CMD53_FUNCTION);
|
|
blocksize = MIN((int)sdioh_info->data_xfer_count,
|
|
sdioh_info->client_block_size[func]);
|
|
blockcount = GFIELD(cmd_arg, CMD53_BYTE_BLK_CNT);
|
|
|
|
/* data_xfer_cnt is already setup so that for multiblock mode,
|
|
* it is the entire buffer length. For non-block or single block,
|
|
* it is < 64 bytes
|
|
*/
|
|
if (use_dma) {
|
|
switch (sdioh_info->sd_dma_mode) {
|
|
case DMA_MODE_SDMA:
|
|
sd_dma(("%s: SDMA: SysAddr reg was 0x%x now 0x%x\n",
|
|
__FUNCTION__, sdstd_rreg(sdioh_info, SD_SysAddr),
|
|
(uint32)sdioh_info->dma_phys));
|
|
sdstd_wreg(sdioh_info, SD_SysAddr, sdioh_info->dma_phys);
|
|
break;
|
|
case DMA_MODE_ADMA1:
|
|
case DMA_MODE_ADMA2:
|
|
sd_dma(("%s: ADMA: Using ADMA\n", __FUNCTION__));
|
|
sd_create_adma_descriptor(sdioh_info, 0,
|
|
sdioh_info->dma_phys, blockcount*blocksize,
|
|
ADMA2_ATTRIBUTE_VALID | ADMA2_ATTRIBUTE_END |
|
|
ADMA2_ATTRIBUTE_INT | ADMA2_ATTRIBUTE_ACT_TRAN);
|
|
/* Dump descriptor if DMA debugging is enabled. */
|
|
if (sd_msglevel & SDH_DMA_VAL) {
|
|
sd_dump_adma_dscr(sdioh_info);
|
|
}
|
|
|
|
sdstd_wreg(sdioh_info, SD_ADMA_SysAddr,
|
|
sdioh_info->adma2_dscr_phys);
|
|
break;
|
|
default:
|
|
sd_err(("%s: unsupported DMA mode %d.\n",
|
|
__FUNCTION__, sdioh_info->sd_dma_mode));
|
|
break;
|
|
}
|
|
}
|
|
|
|
sd_trace(("%s: Setting block count %d, block size %d bytes\n",
|
|
__FUNCTION__, blockcount, blocksize));
|
|
sdstd_wreg16(sdioh_info, SD_BlockSize, blocksize);
|
|
sdstd_wreg16(sdioh_info, SD_BlockCount, blockcount);
|
|
|
|
xfer_reg = SFIELD(xfer_reg, XFER_DMA_ENABLE, use_dma);
|
|
|
|
if (sdioh_info->client_block_size[func] != blocksize)
|
|
set_client_block_size(sdioh_info, 1, blocksize);
|
|
|
|
if (blockcount > 1) {
|
|
xfer_reg = SFIELD(xfer_reg, XFER_MULTI_BLOCK, 1);
|
|
xfer_reg = SFIELD(xfer_reg, XFER_BLK_COUNT_EN, 1);
|
|
xfer_reg = SFIELD(xfer_reg, XFER_CMD_12_EN, 0);
|
|
} else {
|
|
xfer_reg = SFIELD(xfer_reg, XFER_MULTI_BLOCK, 0);
|
|
xfer_reg = SFIELD(xfer_reg, XFER_BLK_COUNT_EN, 0);
|
|
xfer_reg = SFIELD(xfer_reg, XFER_CMD_12_EN, 0);
|
|
}
|
|
|
|
if (GFIELD(cmd_arg, CMD53_RW_FLAG) == SDIOH_XFER_TYPE_READ)
|
|
xfer_reg = SFIELD(xfer_reg, XFER_DATA_DIRECTION, 1);
|
|
else
|
|
xfer_reg = SFIELD(xfer_reg, XFER_DATA_DIRECTION, 0);
|
|
|
|
retries = RETRIES_SMALL;
|
|
while (GFIELD(sdstd_rreg(sdioh_info, SD_PresentState),
|
|
PRES_DAT_INHIBIT) && --retries)
|
|
sd_err(("%s: Waiting for Data Inhibit cmd = %d\n",
|
|
__FUNCTION__, cmd));
|
|
if (!retries) {
|
|
sd_err(("%s: Data Inhibit timeout\n", __FUNCTION__));
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
return ERROR;
|
|
}
|
|
sdstd_wreg16(sdioh_info, SD_TransferMode, xfer_reg);
|
|
|
|
} else { /* Non block mode */
|
|
uint16 bytes = GFIELD(cmd_arg, CMD53_BYTE_BLK_CNT);
|
|
/* The byte/block count field only has 9 bits,
|
|
* so, to do a 512-byte bytemode transfer, this
|
|
* field will contain 0, but we need to tell the
|
|
* controller we're transferring 512 bytes.
|
|
*/
|
|
if (bytes == 0) bytes = 512;
|
|
|
|
if (use_dma)
|
|
sdstd_wreg(sdioh_info, SD_SysAddr, sdioh_info->dma_phys);
|
|
|
|
/* PCI: Transfer Mode register 0x0c */
|
|
xfer_reg = SFIELD(xfer_reg, XFER_DMA_ENABLE, bytes <= 4 ? 0 : use_dma);
|
|
xfer_reg = SFIELD(xfer_reg, XFER_CMD_12_EN, 0);
|
|
if (GFIELD(cmd_arg, CMD53_RW_FLAG) == SDIOH_XFER_TYPE_READ)
|
|
xfer_reg = SFIELD(xfer_reg, XFER_DATA_DIRECTION, 1);
|
|
else
|
|
xfer_reg = SFIELD(xfer_reg, XFER_DATA_DIRECTION, 0);
|
|
/* See table 2-8 Host Controller spec ver 1.00 */
|
|
xfer_reg = SFIELD(xfer_reg, XFER_BLK_COUNT_EN, 0); /* Dont care */
|
|
xfer_reg = SFIELD(xfer_reg, XFER_MULTI_BLOCK, 0);
|
|
|
|
sdstd_wreg16(sdioh_info, SD_BlockSize, bytes);
|
|
|
|
sdstd_wreg16(sdioh_info, SD_BlockCount, 1);
|
|
|
|
retries = RETRIES_SMALL;
|
|
while (GFIELD(sdstd_rreg(sdioh_info, SD_PresentState),
|
|
PRES_DAT_INHIBIT) && --retries)
|
|
sd_err(("%s: Waiting for Data Inhibit cmd = %d\n",
|
|
__FUNCTION__, cmd));
|
|
if (!retries) {
|
|
sd_err(("%s: Data Inhibit timeout\n", __FUNCTION__));
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
return ERROR;
|
|
}
|
|
sdstd_wreg16(sdioh_info, SD_TransferMode, xfer_reg);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
sd_err(("%s: Unknown command\n", __FUNCTION__));
|
|
return ERROR;
|
|
}
|
|
|
|
if (sdioh_info->sd_mode == SDIOH_MODE_SPI) {
|
|
cmd_reg = SFIELD(cmd_reg, CMD_CRC_EN, 0);
|
|
cmd_reg = SFIELD(cmd_reg, CMD_INDEX_EN, 0);
|
|
}
|
|
|
|
/* Setup and issue the SDIO command */
|
|
sdstd_wreg(sdioh_info, SD_Arg0, arg);
|
|
sdstd_wreg16(sdioh_info, SD_Command, cmd_reg);
|
|
|
|
/* If we are in polled mode, wait for the command to complete.
|
|
* In interrupt mode, return immediately. The calling function will
|
|
* know that the command has completed when the CMDATDONE interrupt
|
|
* is asserted
|
|
*/
|
|
if (sdioh_info->polled_mode) {
|
|
uint16 int_reg = 0;
|
|
int retries = RETRIES_LARGE;
|
|
|
|
do {
|
|
int_reg = sdstd_rreg16(sdioh_info, SD_IntrStatus);
|
|
} while (--retries &&
|
|
(GFIELD(int_reg, INTSTAT_ERROR_INT) == 0) &&
|
|
(GFIELD(int_reg, INTSTAT_CMD_COMPLETE) == 0));
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: CMD_COMPLETE timeout: intrStatus: 0x%x "
|
|
"error stat 0x%x state 0x%x\n",
|
|
__FUNCTION__, int_reg,
|
|
sdstd_rreg16(sdioh_info, SD_ErrorIntrStatus),
|
|
sdstd_rreg(sdioh_info, SD_PresentState)));
|
|
|
|
/* Attempt to reset CMD line when we get a CMD timeout */
|
|
sdstd_wreg8(sdioh_info, SD_SoftwareReset, SFIELD(0, SW_RESET_CMD, 1));
|
|
retries = RETRIES_LARGE;
|
|
do {
|
|
sd_trace(("%s: waiting for CMD line reset\n", __FUNCTION__));
|
|
} while ((GFIELD(sdstd_rreg8(sdioh_info, SD_SoftwareReset),
|
|
SW_RESET_CMD)) && retries--);
|
|
|
|
if (!retries) {
|
|
sd_err(("%s: Timeout waiting for CMD line reset\n", __FUNCTION__));
|
|
}
|
|
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
return (ERROR);
|
|
}
|
|
|
|
/* Clear Command Complete interrupt */
|
|
int_reg = SFIELD(0, INTSTAT_CMD_COMPLETE, 1);
|
|
sdstd_wreg16(sdioh_info, SD_IntrStatus, int_reg);
|
|
|
|
/* Check for Errors */
|
|
if (sdstd_check_errs(sdioh_info, cmd, arg)) {
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
return ERROR;
|
|
}
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
|
|
static int
|
|
sdstd_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo, uint32 addr, int nbytes, uint32 *data)
|
|
{
|
|
int status;
|
|
uint32 cmd_arg;
|
|
uint32 rsp5;
|
|
uint16 int_reg, int_bit;
|
|
uint flags;
|
|
int num_blocks, blocksize;
|
|
bool local_blockmode, local_dma;
|
|
bool read = rw == SDIOH_READ ? 1 : 0;
|
|
bool yield = FALSE;
|
|
|
|
ASSERT(nbytes);
|
|
|
|
cmd_arg = 0;
|
|
|
|
sd_data(("%s: %s 53 addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
|
|
__FUNCTION__, read ? "Rd" : "Wr", addr, nbytes, sd->r_cnt, sd->t_cnt));
|
|
|
|
if (read) sd->r_cnt++; else sd->t_cnt++;
|
|
|
|
local_blockmode = sd->sd_blockmode;
|
|
local_dma = USE_DMA(sd);
|
|
|
|
/* Don't bother with block mode on small xfers */
|
|
if (nbytes < sd->client_block_size[func]) {
|
|
sd_data(("setting local blockmode to false: nbytes (%d) != block_size (%d)\n",
|
|
nbytes, sd->client_block_size[func]));
|
|
local_blockmode = FALSE;
|
|
local_dma = FALSE;
|
|
}
|
|
|
|
if (local_blockmode) {
|
|
blocksize = MIN(sd->client_block_size[func], nbytes);
|
|
num_blocks = nbytes/blocksize;
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, num_blocks);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 1);
|
|
} else {
|
|
num_blocks = 1;
|
|
blocksize = nbytes;
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BYTE_BLK_CNT, nbytes);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_BLK_MODE, 0);
|
|
}
|
|
|
|
if (local_dma && !read) {
|
|
bcopy(data, sd->dma_buf, nbytes);
|
|
sd_sync_dma(sd, read, nbytes);
|
|
}
|
|
|
|
if (fifo)
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 0);
|
|
else
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_OP_CODE, 1);
|
|
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_FUNCTION, func);
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_REG_ADDR, addr);
|
|
if (read)
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_READ);
|
|
else
|
|
cmd_arg = SFIELD(cmd_arg, CMD53_RW_FLAG, SDIOH_XFER_TYPE_WRITE);
|
|
|
|
sd->data_xfer_count = nbytes;
|
|
|
|
/* sdstd_cmd_issue() returns with the command complete bit
|
|
* in the ISR already cleared
|
|
*/
|
|
if ((status = sdstd_cmd_issue(sd, local_dma, SDIOH_CMD_53, cmd_arg)) != SUCCESS) {
|
|
sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__, (read ? "read" : "write")));
|
|
return status;
|
|
}
|
|
|
|
sdstd_cmd_getrsp(sd, &rsp5, 1);
|
|
|
|
if ((flags = GFIELD(rsp5, RSP5_FLAGS)) != 0x10) {
|
|
sd_err(("%s: Rsp5: nbytes %d, dma %d blockmode %d, read %d "
|
|
"numblocks %d, blocksize %d\n",
|
|
__FUNCTION__, nbytes, local_dma, local_dma, read, num_blocks, blocksize));
|
|
|
|
if (flags & 1)
|
|
sd_err(("%s: rsp5: Command not accepted: arg out of range 0x%x, "
|
|
"bytes %d dma %d\n",
|
|
__FUNCTION__, flags, GFIELD(cmd_arg, CMD53_BYTE_BLK_CNT),
|
|
GFIELD(cmd_arg, CMD53_BLK_MODE)));
|
|
if (flags & 0x8)
|
|
sd_err(("%s: Rsp5: General Error\n", __FUNCTION__));
|
|
|
|
sd_err(("%s: rsp5 flags = 0x%x, expecting 0x10 returning error\n",
|
|
__FUNCTION__, flags));
|
|
if (trap_errs)
|
|
ASSERT(0);
|
|
return ERROR;
|
|
}
|
|
|
|
if (GFIELD(rsp5, RSP5_STUFF))
|
|
sd_err(("%s: rsp5 stuff is 0x%x: expecting 0\n",
|
|
__FUNCTION__, GFIELD(rsp5, RSP5_STUFF)));
|
|
|
|
#ifdef BCMSDYIELD
|
|
yield = sd_yieldcpu && ((uint)nbytes >= sd_minyield);
|
|
#endif
|
|
|
|
if (!local_dma) {
|
|
int bytes, i;
|
|
uint32 tmp;
|
|
for (i = 0; i < num_blocks; i++) {
|
|
int words;
|
|
|
|
/* Decide which status bit we're waiting for */
|
|
if (read)
|
|
int_bit = SFIELD(0, INTSTAT_BUF_READ_READY, 1);
|
|
else
|
|
int_bit = SFIELD(0, INTSTAT_BUF_WRITE_READY, 1);
|
|
|
|
/* If not on, wait for it (or for xfer error) */
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
if (!(int_reg & int_bit))
|
|
int_reg = sdstd_waitbits(sd, int_bit, ERRINT_TRANSFER_ERRS, yield);
|
|
|
|
/* Confirm we got the bit w/o error */
|
|
if (!(int_reg & int_bit) || GFIELD(int_reg, INTSTAT_ERROR_INT)) {
|
|
sd_err(("%s: Error or timeout for Buf_%s_Ready: intStat: 0x%x "
|
|
"errint: 0x%x PresentState 0x%x\n",
|
|
__FUNCTION__, read ? "Read" : "Write", int_reg,
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus),
|
|
sdstd_rreg(sd, SD_PresentState)));
|
|
sdstd_dumpregs(sd);
|
|
sdstd_check_errs(sd, SDIOH_CMD_53, cmd_arg);
|
|
return (ERROR);
|
|
}
|
|
|
|
/* Clear Buf Ready bit */
|
|
sdstd_wreg16(sd, SD_IntrStatus, int_bit);
|
|
|
|
/* At this point we have Buffer Ready, write the data 4 bytes at a time */
|
|
for (words = blocksize/4; words; words--) {
|
|
if (read)
|
|
*data = sdstd_rreg(sd, SD_BufferDataPort0);
|
|
else
|
|
sdstd_wreg(sd, SD_BufferDataPort0, *data);
|
|
data++;
|
|
}
|
|
|
|
/* Handle < 4 bytes. wlc_pio.c currently (as of 12/20/05) truncates buflen
|
|
* to be evenly divisable by 4. However dongle passes arbitrary lengths,
|
|
* so handle it here
|
|
*/
|
|
bytes = blocksize % 4;
|
|
|
|
/* If no leftover bytes, go to next block */
|
|
if (!bytes)
|
|
continue;
|
|
|
|
switch (bytes) {
|
|
case 1:
|
|
/* R/W 8 bits */
|
|
if (read)
|
|
*(data++) = (uint32)(sdstd_rreg8(sd, SD_BufferDataPort0));
|
|
else
|
|
sdstd_wreg8(sd, SD_BufferDataPort0,
|
|
(uint8)(*(data++) & 0xff));
|
|
break;
|
|
case 2:
|
|
/* R/W 16 bits */
|
|
if (read)
|
|
*(data++) = (uint32)sdstd_rreg16(sd, SD_BufferDataPort0);
|
|
else
|
|
sdstd_wreg16(sd, SD_BufferDataPort0, (uint16)(*(data++)));
|
|
break;
|
|
case 3:
|
|
/* R/W 24 bits:
|
|
* SD_BufferDataPort0[0-15] | SD_BufferDataPort1[16-23]
|
|
*/
|
|
if (read) {
|
|
tmp = (uint32)sdstd_rreg16(sd, SD_BufferDataPort0);
|
|
tmp |= ((uint32)(sdstd_rreg8(sd,
|
|
SD_BufferDataPort1)) << 16);
|
|
*(data++) = tmp;
|
|
} else {
|
|
tmp = *(data++);
|
|
sdstd_wreg16(sd, SD_BufferDataPort0, (uint16)tmp & 0xffff);
|
|
sdstd_wreg8(sd, SD_BufferDataPort1,
|
|
(uint8)((tmp >> 16) & 0xff));
|
|
}
|
|
break;
|
|
default:
|
|
sd_err(("%s: Unexpected bytes leftover %d\n",
|
|
__FUNCTION__, bytes));
|
|
ASSERT(0);
|
|
break;
|
|
}
|
|
}
|
|
} /* End PIO processing */
|
|
|
|
/* Wait for Transfer Complete or Transfer Error */
|
|
int_bit = SFIELD(0, INTSTAT_XFER_COMPLETE, 1);
|
|
|
|
/* If not on, wait for it (or for xfer error) */
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
if (!(int_reg & int_bit))
|
|
int_reg = sdstd_waitbits(sd, int_bit, ERRINT_TRANSFER_ERRS, yield);
|
|
|
|
/* Check for any errors from the data phase */
|
|
if (sdstd_check_errs(sd, SDIOH_CMD_53, cmd_arg))
|
|
return ERROR;
|
|
|
|
/* May have gotten a software timeout if not blocking? */
|
|
int_reg = sdstd_rreg16(sd, SD_IntrStatus);
|
|
if (!(int_reg & int_bit)) {
|
|
sd_err(("%s: Error or Timeout for xfer complete; %s, dma %d, State 0x%08x, "
|
|
"intr 0x%04x, Err 0x%04x, len = %d, rcnt %d, tcnt %d\n",
|
|
__FUNCTION__, read ? "R" : "W", local_dma,
|
|
sdstd_rreg(sd, SD_PresentState), int_reg,
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus), nbytes,
|
|
sd->r_cnt, sd->t_cnt));
|
|
sdstd_dumpregs(sd);
|
|
return ERROR;
|
|
}
|
|
|
|
/* Clear the status bits */
|
|
int_reg = int_bit;
|
|
if (local_dma) {
|
|
/* DMA Complete */
|
|
/* Reads in particular don't have DMA_COMPLETE set */
|
|
int_reg = SFIELD(int_reg, INTSTAT_DMA_INT, 1);
|
|
}
|
|
sdstd_wreg16(sd, SD_IntrStatus, int_reg);
|
|
|
|
/* Fetch data */
|
|
if (local_dma && read) {
|
|
sd_sync_dma(sd, read, nbytes);
|
|
bcopy(sd->dma_buf, data, nbytes);
|
|
}
|
|
return SUCCESS;
|
|
}
|
|
|
|
static int
|
|
set_client_block_size(sdioh_info_t *sd, int func, int block_size)
|
|
{
|
|
int base;
|
|
int err = 0;
|
|
|
|
|
|
sd_err(("%s: Setting block size %d, func %d\n", __FUNCTION__, block_size, func));
|
|
sd->client_block_size[func] = block_size;
|
|
|
|
/* Set the block size in the SDIO Card register */
|
|
base = func * SDIOD_FBR_SIZE;
|
|
err = sdstd_card_regwrite(sd, 0, base+SDIOD_CCCR_BLKSIZE_0, 1, block_size & 0xff);
|
|
if (!err) {
|
|
err = sdstd_card_regwrite(sd, 0, base+SDIOD_CCCR_BLKSIZE_1, 1,
|
|
(block_size >> 8) & 0xff);
|
|
}
|
|
|
|
/* Do not set the block size in the SDIO Host register, that
|
|
* is func dependent and will get done on an individual
|
|
* transaction basis
|
|
*/
|
|
|
|
return (err ? BCME_SDIO_ERROR : 0);
|
|
}
|
|
|
|
/* Reset and re-initialize the device */
|
|
int sdioh_sdio_reset(sdioh_info_t *si)
|
|
{
|
|
uint8 hreg;
|
|
|
|
/* Reset the attached device (use slower clock for safety) */
|
|
sdstd_start_clock(si, 128);
|
|
sdstd_reset(si, 0, 1);
|
|
|
|
/* Reset portions of the host state accordingly */
|
|
hreg = sdstd_rreg8(si, SD_HostCntrl);
|
|
hreg = SFIELD(hreg, HOST_HI_SPEED_EN, 0);
|
|
hreg = SFIELD(hreg, HOST_DATA_WIDTH, 0);
|
|
si->sd_mode = SDIOH_MODE_SD1;
|
|
|
|
/* Reinitialize the card */
|
|
si->card_init_done = FALSE;
|
|
return sdstd_client_init(si);
|
|
}
|
|
|
|
|
|
static void
|
|
sd_map_dma(sdioh_info_t * sd)
|
|
{
|
|
|
|
void *va;
|
|
|
|
if ((va = DMA_ALLOC_CONSISTENT(sd->osh, SD_PAGE,
|
|
&sd->dma_start_phys, 0x12, 12)) == NULL) {
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
sd->dma_start_buf = 0;
|
|
sd->dma_buf = (void *)0;
|
|
sd->dma_phys = 0;
|
|
sd->alloced_dma_size = SD_PAGE;
|
|
sd_err(("%s: DMA_ALLOC failed. Disabling DMA support.\n", __FUNCTION__));
|
|
} else {
|
|
sd->dma_start_buf = va;
|
|
sd->dma_buf = (void *)ROUNDUP((uintptr)va, SD_PAGE);
|
|
sd->dma_phys = ROUNDUP((sd->dma_start_phys), SD_PAGE);
|
|
sd->alloced_dma_size = SD_PAGE;
|
|
sd_err(("%s: Mapped DMA Buffer %dbytes @virt/phys: %p/0x%lx\n",
|
|
__FUNCTION__, sd->alloced_dma_size, sd->dma_buf, sd->dma_phys));
|
|
sd_fill_dma_data_buf(sd, 0xA5);
|
|
}
|
|
|
|
if ((va = DMA_ALLOC_CONSISTENT(sd->osh, SD_PAGE,
|
|
&sd->adma2_dscr_start_phys, 0x12, 12)) == NULL) {
|
|
sd->sd_dma_mode = DMA_MODE_NONE;
|
|
sd->adma2_dscr_start_buf = 0;
|
|
sd->adma2_dscr_buf = (void *)0;
|
|
sd->adma2_dscr_phys = 0;
|
|
sd->alloced_adma2_dscr_size = 0;
|
|
sd_err(("%s: DMA_ALLOC failed for descriptor buffer. "
|
|
"Disabling DMA support.\n", __FUNCTION__));
|
|
} else {
|
|
sd->adma2_dscr_start_buf = va;
|
|
sd->adma2_dscr_buf = (void *)ROUNDUP((uintptr)va, SD_PAGE);
|
|
sd->adma2_dscr_phys = ROUNDUP((sd->adma2_dscr_start_phys), SD_PAGE);
|
|
sd->alloced_adma2_dscr_size = SD_PAGE;
|
|
}
|
|
|
|
sd_err(("%s: Mapped ADMA2 Descriptor Buffer %dbytes @virt/phys: %p/0x%lx\n",
|
|
__FUNCTION__, sd->alloced_adma2_dscr_size, sd->adma2_dscr_buf,
|
|
sd->adma2_dscr_phys));
|
|
sd_clear_adma_dscr_buf(sd);
|
|
}
|
|
|
|
static void
|
|
sd_unmap_dma(sdioh_info_t * sd)
|
|
{
|
|
if (sd->dma_start_buf) {
|
|
DMA_FREE_CONSISTENT(sd->osh, sd->dma_start_buf, sd->alloced_dma_size,
|
|
sd->dma_start_phys, 0x12);
|
|
}
|
|
|
|
if (sd->adma2_dscr_start_buf) {
|
|
DMA_FREE_CONSISTENT(sd->osh, sd->adma2_dscr_start_buf, sd->alloced_adma2_dscr_size,
|
|
sd->adma2_dscr_start_phys, 0x12);
|
|
}
|
|
}
|
|
|
|
static void sd_clear_adma_dscr_buf(sdioh_info_t *sd)
|
|
{
|
|
bzero((char *)sd->adma2_dscr_buf, SD_PAGE);
|
|
sd_dump_adma_dscr(sd);
|
|
}
|
|
|
|
static void sd_fill_dma_data_buf(sdioh_info_t *sd, uint8 data)
|
|
{
|
|
memset((char *)sd->dma_buf, data, SD_PAGE);
|
|
}
|
|
|
|
|
|
static void sd_create_adma_descriptor(sdioh_info_t *sd, uint32 index,
|
|
uint32 addr_phys, uint16 length, uint16 flags)
|
|
{
|
|
adma2_dscr_32b_t *adma2_dscr_table;
|
|
adma1_dscr_t *adma1_dscr_table;
|
|
|
|
adma2_dscr_table = sd->adma2_dscr_buf;
|
|
adma1_dscr_table = sd->adma2_dscr_buf;
|
|
|
|
switch (sd->sd_dma_mode) {
|
|
case DMA_MODE_ADMA2:
|
|
sd_dma(("%s: creating ADMA2 descriptor for index %d\n",
|
|
__FUNCTION__, index));
|
|
|
|
adma2_dscr_table[index].phys_addr = addr_phys;
|
|
adma2_dscr_table[index].len_attr = length << 16;
|
|
adma2_dscr_table[index].len_attr |= flags;
|
|
break;
|
|
case DMA_MODE_ADMA1:
|
|
/* ADMA1 requires two descriptors, one for len
|
|
* and the other for data transfer
|
|
*/
|
|
index <<= 1;
|
|
|
|
sd_dma(("%s: creating ADMA1 descriptor for index %d\n",
|
|
__FUNCTION__, index));
|
|
|
|
adma1_dscr_table[index].phys_addr_attr = length << 12;
|
|
adma1_dscr_table[index].phys_addr_attr |= (ADMA1_ATTRIBUTE_ACT_SET |
|
|
ADMA2_ATTRIBUTE_VALID);
|
|
adma1_dscr_table[index+1].phys_addr_attr = addr_phys & 0xFFFFF000;
|
|
adma1_dscr_table[index+1].phys_addr_attr |= (flags & 0x3f);
|
|
break;
|
|
default:
|
|
sd_err(("%s: cannot create ADMA descriptor for DMA mode %d\n",
|
|
__FUNCTION__, sd->sd_dma_mode));
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
static void sd_dump_adma_dscr(sdioh_info_t *sd)
|
|
{
|
|
adma2_dscr_32b_t *adma2_dscr_table;
|
|
adma1_dscr_t *adma1_dscr_table;
|
|
uint32 i = 0;
|
|
uint16 flags;
|
|
char flags_str[32];
|
|
|
|
ASSERT(sd->adma2_dscr_buf != NULL);
|
|
|
|
adma2_dscr_table = sd->adma2_dscr_buf;
|
|
adma1_dscr_table = sd->adma2_dscr_buf;
|
|
|
|
switch (sd->sd_dma_mode) {
|
|
case DMA_MODE_ADMA2:
|
|
sd_err(("ADMA2 Descriptor Table (%dbytes) @virt/phys: %p/0x%lx\n",
|
|
SD_PAGE, sd->adma2_dscr_buf, sd->adma2_dscr_phys));
|
|
sd_err((" #[Descr VA ] Buffer PA | Len | Flags (5:4 2 1 0)"
|
|
" |\n"));
|
|
while (adma2_dscr_table->len_attr & ADMA2_ATTRIBUTE_VALID) {
|
|
flags = adma2_dscr_table->len_attr & 0xFFFF;
|
|
sprintf(flags_str, "%s%s%s%s",
|
|
((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_LINK) ? "LINK " :
|
|
((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_TRAN) ? "TRAN " :
|
|
((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_NOP) ? "NOP " : "RSV ",
|
|
(flags & ADMA2_ATTRIBUTE_INT ? "INT " : " "),
|
|
(flags & ADMA2_ATTRIBUTE_END ? "END " : " "),
|
|
(flags & ADMA2_ATTRIBUTE_VALID ? "VALID" : ""));
|
|
sd_err(("%2d[0x%p]: 0x%08x | 0x%04x | 0x%04x (%s) |\n",
|
|
i, adma2_dscr_table, adma2_dscr_table->phys_addr,
|
|
adma2_dscr_table->len_attr >> 16, flags, flags_str));
|
|
i++;
|
|
|
|
/* Follow LINK descriptors or skip to next. */
|
|
if ((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_LINK) {
|
|
adma2_dscr_table = phys_to_virt(
|
|
adma2_dscr_table->phys_addr);
|
|
} else {
|
|
adma2_dscr_table++;
|
|
}
|
|
|
|
}
|
|
break;
|
|
case DMA_MODE_ADMA1:
|
|
sd_err(("ADMA1 Descriptor Table (%dbytes) @virt/phys: %p/0x%lx\n",
|
|
SD_PAGE, sd->adma2_dscr_buf, sd->adma2_dscr_phys));
|
|
sd_err((" #[Descr VA ] Buffer PA | Flags (5:4 2 1 0) |\n"));
|
|
|
|
for (i = 0; adma1_dscr_table->phys_addr_attr & ADMA2_ATTRIBUTE_VALID; i++) {
|
|
flags = adma1_dscr_table->phys_addr_attr & 0x3F;
|
|
sprintf(flags_str, "%s%s%s%s",
|
|
((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_LINK) ? "LINK " :
|
|
((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_TRAN) ? "TRAN " :
|
|
((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_NOP) ? "NOP " : "SET ",
|
|
(flags & ADMA2_ATTRIBUTE_INT ? "INT " : " "),
|
|
(flags & ADMA2_ATTRIBUTE_END ? "END " : " "),
|
|
(flags & ADMA2_ATTRIBUTE_VALID ? "VALID" : ""));
|
|
sd_err(("%2d[0x%p]: 0x%08x | 0x%04x | (%s) |\n",
|
|
i, adma1_dscr_table,
|
|
adma1_dscr_table->phys_addr_attr & 0xFFFFF000,
|
|
flags, flags_str));
|
|
|
|
/* Follow LINK descriptors or skip to next. */
|
|
if ((flags & ADMA2_ATTRIBUTE_ACT_LINK) ==
|
|
ADMA2_ATTRIBUTE_ACT_LINK) {
|
|
adma1_dscr_table = phys_to_virt(
|
|
adma1_dscr_table->phys_addr_attr & 0xFFFFF000);
|
|
} else {
|
|
adma1_dscr_table++;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
sd_err(("Unknown DMA Descriptor Table Format.\n"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void sdstd_dumpregs(sdioh_info_t *sd)
|
|
{
|
|
sd_err(("IntrStatus: 0x%04x ErrorIntrStatus 0x%04x\n",
|
|
sdstd_rreg16(sd, SD_IntrStatus),
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatus)));
|
|
sd_err(("IntrStatusEnable: 0x%04x ErrorIntrStatusEnable 0x%04x\n",
|
|
sdstd_rreg16(sd, SD_IntrStatusEnable),
|
|
sdstd_rreg16(sd, SD_ErrorIntrStatusEnable)));
|
|
sd_err(("IntrSignalEnable: 0x%04x ErrorIntrSignalEnable 0x%04x\n",
|
|
sdstd_rreg16(sd, SD_IntrSignalEnable),
|
|
sdstd_rreg16(sd, SD_ErrorIntrSignalEnable)));
|
|
}
|