278 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			8.3 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2004-2009 Analog Devices Inc.
 | 
						|
 *
 | 
						|
 * Licensed under the ADI BSD license or the GPL-2 (or later)
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/linkage.h>
 | 
						|
 | 
						|
#define CARRY AC0
 | 
						|
 | 
						|
#ifdef CONFIG_ARITHMETIC_OPS_L1
 | 
						|
.section .l1.text
 | 
						|
#else
 | 
						|
.text
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
ENTRY(___udivsi3)
 | 
						|
 | 
						|
  CC = R0 < R1 (IU);    /* If X < Y, always return 0 */
 | 
						|
  IF CC JUMP .Lreturn_ident;
 | 
						|
 | 
						|
  R2 = R1 << 16;
 | 
						|
  CC = R2 <= R0 (IU);
 | 
						|
  IF CC JUMP .Lidents;
 | 
						|
 | 
						|
  R2 = R0 >> 31;       /* if X is a 31-bit number */
 | 
						|
  R3 = R1 >> 15;       /* and Y is a 15-bit number */
 | 
						|
  R2 = R2 | R3;        /* then it's okay to use the DIVQ builtins (fallthrough to fast)*/
 | 
						|
  CC = R2;
 | 
						|
  IF CC JUMP .Ly_16bit;
 | 
						|
 | 
						|
/* METHOD 1: FAST DIVQ
 | 
						|
   We know we have a 31-bit dividend, and 15-bit divisor so we can use the
 | 
						|
   simple divq approach (first setting AQ to 0 - implying unsigned division,
 | 
						|
   then 16 DIVQ's).
 | 
						|
*/
 | 
						|
 | 
						|
  AQ = CC;             /* Clear AQ (CC==0) */
 | 
						|
 | 
						|
/* ISR States: When dividing two integers (32.0/16.0) using divide primitives,
 | 
						|
   we need to shift the dividend one bit to the left.
 | 
						|
   We have already checked that we have a 31-bit number so we are safe to do
 | 
						|
   that.
 | 
						|
*/
 | 
						|
  R0 <<= 1;
 | 
						|
  DIVQ(R0, R1); // 1
 | 
						|
  DIVQ(R0, R1); // 2
 | 
						|
  DIVQ(R0, R1); // 3
 | 
						|
  DIVQ(R0, R1); // 4
 | 
						|
  DIVQ(R0, R1); // 5
 | 
						|
  DIVQ(R0, R1); // 6
 | 
						|
  DIVQ(R0, R1); // 7
 | 
						|
  DIVQ(R0, R1); // 8
 | 
						|
  DIVQ(R0, R1); // 9
 | 
						|
  DIVQ(R0, R1); // 10
 | 
						|
  DIVQ(R0, R1); // 11
 | 
						|
  DIVQ(R0, R1); // 12
 | 
						|
  DIVQ(R0, R1); // 13
 | 
						|
  DIVQ(R0, R1); // 14
 | 
						|
  DIVQ(R0, R1); // 15
 | 
						|
  DIVQ(R0, R1); // 16
 | 
						|
  R0 = R0.L (Z);
 | 
						|
  RTS;
 | 
						|
 | 
						|
.Ly_16bit:
 | 
						|
  /* We know that the upper 17 bits of Y might have bits set,
 | 
						|
  ** or that the sign bit of X might have a bit. If Y is a
 | 
						|
  ** 16-bit number, but not bigger, then we can use the builtins
 | 
						|
  ** with a post-divide correction.
 | 
						|
  ** R3 currently holds Y>>15, which means R3's LSB is the
 | 
						|
  ** bit we're interested in.
 | 
						|
  */
 | 
						|
 | 
						|
  /* According to the ISR, to use the Divide primitives for
 | 
						|
  ** unsigned integer divide, the useable range is 31 bits
 | 
						|
  */
 | 
						|
  CC = ! BITTST(R0, 31);
 | 
						|
 | 
						|
  /* IF condition is true we can scale our inputs and use the divide primitives,
 | 
						|
  ** with some post-adjustment
 | 
						|
  */
 | 
						|
  R3 += -1;		/* if so, Y is 0x00008nnn */
 | 
						|
  CC &= AZ;
 | 
						|
 | 
						|
  /* If condition is true we can scale our inputs and use the divide primitives,
 | 
						|
  ** with some post-adjustment
 | 
						|
  */
 | 
						|
  R3 = R1 >> 1;		/* Pre-scaled divisor for primitive case */
 | 
						|
  R2 = R0 >> 16;
 | 
						|
 | 
						|
  R2 = R3 - R2;		/* shifted divisor < upper 16 bits of dividend */
 | 
						|
  CC &= CARRY;
 | 
						|
  IF CC JUMP .Lshift_and_correct;
 | 
						|
 | 
						|
  /* Fall through to the identities */
 | 
						|
 | 
						|
/* METHOD 2: identities and manual calculation
 | 
						|
   We are not able to use the divide primites, but may still catch some special
 | 
						|
   cases.
 | 
						|
*/
 | 
						|
.Lidents:
 | 
						|
  /* Test for common identities. Value to be returned is placed in R2. */
 | 
						|
  CC = R0 == 0;        /* 0/Y => 0 */
 | 
						|
  IF CC JUMP .Lreturn_r0;
 | 
						|
  CC = R0 == R1;       /* X==Y => 1 */
 | 
						|
  IF CC JUMP .Lreturn_ident;
 | 
						|
  CC = R1 == 1;        /* X/1 => X */
 | 
						|
  IF CC JUMP .Lreturn_ident;
 | 
						|
 | 
						|
  R2.L = ONES R1;
 | 
						|
  R2 = R2.L (Z);
 | 
						|
  CC = R2 == 1;
 | 
						|
  IF CC JUMP .Lpower_of_two;
 | 
						|
 | 
						|
  [--SP] = (R7:5);                /* Push registers R5-R7 */
 | 
						|
 | 
						|
  /* Idents don't match. Go for the full operation. */
 | 
						|
 | 
						|
 | 
						|
  R6 = 2;                         /* assume we'll shift two */
 | 
						|
  R3 = 1;
 | 
						|
 | 
						|
  P2 = R1;
 | 
						|
                                  /* If either R0 or R1 have sign set, */
 | 
						|
                                  /* divide them by two, and note it's */
 | 
						|
                                  /* been done. */
 | 
						|
  CC = R1 < 0;
 | 
						|
  R2 = R1 >> 1;
 | 
						|
  IF CC R1 = R2;                  /* Possibly-shifted R1 */
 | 
						|
  IF !CC R6 = R3;                 /* R1 doesn't, so at most 1 shifted */
 | 
						|
 | 
						|
  P0 = 0;
 | 
						|
  R3 = -R1;
 | 
						|
  [--SP] = R3;
 | 
						|
  R2 = R0 >> 1;
 | 
						|
  R2 = R0 >> 1;
 | 
						|
  CC = R0 < 0;
 | 
						|
  IF CC P0 = R6;                  /* Number of values divided */
 | 
						|
  IF !CC R2 = R0;                 /* Shifted R0 */
 | 
						|
 | 
						|
                                  /* P0 is 0, 1 (NR/=2) or 2 (NR/=2, DR/=2) */
 | 
						|
 | 
						|
                                  /* r2 holds Copy dividend  */
 | 
						|
  R3 = 0;                         /* Clear partial remainder */
 | 
						|
  R7 = 0;                         /* Initialise quotient bit */
 | 
						|
 | 
						|
  P1 = 32;                        /* Set loop counter */
 | 
						|
  LSETUP(.Lulst, .Lulend) LC0 = P1; /* Set loop counter */
 | 
						|
.Lulst:  R6 = R2 >> 31;             /* R6 = sign bit of R2, for carry */
 | 
						|
       R2 = R2 << 1;              /* Shift 64 bit dividend up by 1 bit */
 | 
						|
       R3 = R3 << 1 || R5 = [SP];
 | 
						|
       R3 = R3 | R6;              /* Include any carry */
 | 
						|
       CC = R7 < 0;               /* Check quotient(AQ) */
 | 
						|
                                  /* If AQ==0, we'll sub divisor */
 | 
						|
       IF CC R5 = R1;             /* and if AQ==1, we'll add it. */
 | 
						|
       R3 = R3 + R5;              /* Add/sub divsor to partial remainder */
 | 
						|
       R7 = R3 ^ R1;              /* Generate next quotient bit */
 | 
						|
 | 
						|
       R5 = R7 >> 31;             /* Get AQ */
 | 
						|
       BITTGL(R5, 0);             /* Invert it, to get what we'll shift */
 | 
						|
.Lulend: R2 = R2 + R5;              /* and "shift" it in. */
 | 
						|
 | 
						|
  CC = P0 == 0;                   /* Check how many inputs we shifted */
 | 
						|
  IF CC JUMP .Lno_mult;            /* if none... */
 | 
						|
  R6 = R2 << 1;
 | 
						|
  CC = P0 == 1;
 | 
						|
  IF CC R2 = R6;                  /* if 1, Q = Q*2 */
 | 
						|
  IF !CC R1 = P2;                 /* if 2, restore stored divisor */
 | 
						|
 | 
						|
  R3 = R2;                        /* Copy of R2 */
 | 
						|
  R3 *= R1;                       /* Q * divisor */
 | 
						|
  R5 = R0 - R3;                   /* Z = (dividend - Q * divisor) */
 | 
						|
  CC = R1 <= R5 (IU);             /* Check if divisor <= Z? */
 | 
						|
  R6 = CC;                        /* if yes, R6 = 1 */
 | 
						|
  R2 = R2 + R6;                   /* if yes, add one to quotient(Q) */
 | 
						|
.Lno_mult:
 | 
						|
  SP += 4;
 | 
						|
  (R7:5) = [SP++];                /* Pop registers R5-R7 */
 | 
						|
  R0 = R2;                        /* Store quotient */
 | 
						|
  RTS;
 | 
						|
 | 
						|
.Lreturn_ident:
 | 
						|
  CC = R0 < R1 (IU);    /* If X < Y, always return 0 */
 | 
						|
  R2 = 0;
 | 
						|
  IF CC JUMP .Ltrue_return_ident;
 | 
						|
  R2 = -1 (X);         /* X/0 => 0xFFFFFFFF */
 | 
						|
  CC = R1 == 0;
 | 
						|
  IF CC JUMP .Ltrue_return_ident;
 | 
						|
  R2 = -R2;            /* R2 now 1 */
 | 
						|
  CC = R0 == R1;       /* X==Y => 1 */
 | 
						|
  IF CC JUMP .Ltrue_return_ident;
 | 
						|
  R2 = R0;             /* X/1 => X */
 | 
						|
  /*FALLTHRU*/
 | 
						|
 | 
						|
.Ltrue_return_ident:
 | 
						|
  R0 = R2;
 | 
						|
.Lreturn_r0:
 | 
						|
  RTS;
 | 
						|
 | 
						|
.Lpower_of_two:
 | 
						|
  /* Y has a single bit set, which means it's a power of two.
 | 
						|
  ** That means we can perform the division just by shifting
 | 
						|
  ** X to the right the appropriate number of bits
 | 
						|
  */
 | 
						|
 | 
						|
  /* signbits returns the number of sign bits, minus one.
 | 
						|
  ** 1=>30, 2=>29, ..., 0x40000000=>0. Which means we need
 | 
						|
  ** to shift right n-signbits spaces. It also means 0x80000000
 | 
						|
  ** is a special case, because that *also* gives a signbits of 0
 | 
						|
  */
 | 
						|
 | 
						|
  R2 = R0 >> 31;
 | 
						|
  CC = R1 < 0;
 | 
						|
  IF CC JUMP .Ltrue_return_ident;
 | 
						|
 | 
						|
  R1.l = SIGNBITS R1;
 | 
						|
  R1 = R1.L (Z);
 | 
						|
  R1 += -30;
 | 
						|
  R0 = LSHIFT R0 by R1.L;
 | 
						|
  RTS;
 | 
						|
 | 
						|
/* METHOD 3: PRESCALE AND USE THE DIVIDE PRIMITIVES WITH SOME POST-CORRECTION
 | 
						|
  Two scaling operations are required to use the divide primitives with a
 | 
						|
  divisor > 0x7FFFF.
 | 
						|
  Firstly (as in method 1) we need to shift the dividend 1 to the left for
 | 
						|
  integer division.
 | 
						|
  Secondly we need to shift both the divisor and dividend 1 to the right so
 | 
						|
  both are in range for the primitives.
 | 
						|
  The left/right shift of the dividend does nothing so we can skip it.
 | 
						|
*/
 | 
						|
.Lshift_and_correct:
 | 
						|
  R2 = R0;
 | 
						|
  // R3 is already R1 >> 1
 | 
						|
  CC=!CC;
 | 
						|
  AQ = CC;                        /* Clear AQ, got here with CC = 0 */
 | 
						|
  DIVQ(R2, R3); // 1
 | 
						|
  DIVQ(R2, R3); // 2
 | 
						|
  DIVQ(R2, R3); // 3
 | 
						|
  DIVQ(R2, R3); // 4
 | 
						|
  DIVQ(R2, R3); // 5
 | 
						|
  DIVQ(R2, R3); // 6
 | 
						|
  DIVQ(R2, R3); // 7
 | 
						|
  DIVQ(R2, R3); // 8
 | 
						|
  DIVQ(R2, R3); // 9
 | 
						|
  DIVQ(R2, R3); // 10
 | 
						|
  DIVQ(R2, R3); // 11
 | 
						|
  DIVQ(R2, R3); // 12
 | 
						|
  DIVQ(R2, R3); // 13
 | 
						|
  DIVQ(R2, R3); // 14
 | 
						|
  DIVQ(R2, R3); // 15
 | 
						|
  DIVQ(R2, R3); // 16
 | 
						|
 | 
						|
  /* According to the Instruction Set Reference:
 | 
						|
     To divide by a divisor > 0x7FFF,
 | 
						|
     1. prescale and perform divide to obtain quotient (Q) (done above),
 | 
						|
     2. multiply quotient by unscaled divisor (result M)
 | 
						|
     3. subtract the product from the divident to get an error (E = X - M)
 | 
						|
     4. if E < divisor (Y) subtract 1, if E > divisor (Y) add 1, else return quotient (Q)
 | 
						|
   */
 | 
						|
  R3 = R2.L (Z);		/* Q = X' / Y' */
 | 
						|
  R2 = R3;		/* Preserve Q */
 | 
						|
  R2 *= R1;		/* M = Q * Y */
 | 
						|
  R2 = R0 - R2;		/* E = X - M */
 | 
						|
  R0 = R3;		/* Copy Q into result reg */
 | 
						|
 | 
						|
/* Correction: If result of the multiply is negative, we overflowed
 | 
						|
   and need to correct the result by subtracting 1 from the result.*/
 | 
						|
  R3 = 0xFFFF (Z);
 | 
						|
  R2 = R2 >> 16;		/* E >> 16 */
 | 
						|
  CC = R2 == R3;
 | 
						|
  R3 = 1 ;
 | 
						|
  R1 = R0 - R3;
 | 
						|
  IF CC R0 = R1;
 | 
						|
  RTS;
 | 
						|
 | 
						|
ENDPROC(___udivsi3)
 |