1438 lines
32 KiB
C
1438 lines
32 KiB
C
/*
|
|
* Debug Store support
|
|
*
|
|
* This provides a low-level interface to the hardware's Debug Store
|
|
* feature that is used for branch trace store (BTS) and
|
|
* precise-event based sampling (PEBS).
|
|
*
|
|
* It manages:
|
|
* - DS and BTS hardware configuration
|
|
* - buffer overflow handling (to be done)
|
|
* - buffer access
|
|
*
|
|
* It does not do:
|
|
* - security checking (is the caller allowed to trace the task)
|
|
* - buffer allocation (memory accounting)
|
|
*
|
|
*
|
|
* Copyright (C) 2007-2009 Intel Corporation.
|
|
* Markus Metzger <markus.t.metzger@intel.com>, 2007-2009
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/trace_clock.h>
|
|
|
|
#include <asm/ds.h>
|
|
|
|
#include "ds_selftest.h"
|
|
|
|
/*
|
|
* The configuration for a particular DS hardware implementation:
|
|
*/
|
|
struct ds_configuration {
|
|
/* The name of the configuration: */
|
|
const char *name;
|
|
|
|
/* The size of pointer-typed fields in DS, BTS, and PEBS: */
|
|
unsigned char sizeof_ptr_field;
|
|
|
|
/* The size of a BTS/PEBS record in bytes: */
|
|
unsigned char sizeof_rec[2];
|
|
|
|
/* The number of pebs counter reset values in the DS structure. */
|
|
unsigned char nr_counter_reset;
|
|
|
|
/* Control bit-masks indexed by enum ds_feature: */
|
|
unsigned long ctl[dsf_ctl_max];
|
|
};
|
|
static struct ds_configuration ds_cfg __read_mostly;
|
|
|
|
|
|
/* Maximal size of a DS configuration: */
|
|
#define MAX_SIZEOF_DS 0x80
|
|
|
|
/* Maximal size of a BTS record: */
|
|
#define MAX_SIZEOF_BTS (3 * 8)
|
|
|
|
/* BTS and PEBS buffer alignment: */
|
|
#define DS_ALIGNMENT (1 << 3)
|
|
|
|
/* Number of buffer pointers in DS: */
|
|
#define NUM_DS_PTR_FIELDS 8
|
|
|
|
/* Size of a pebs reset value in DS: */
|
|
#define PEBS_RESET_FIELD_SIZE 8
|
|
|
|
/* Mask of control bits in the DS MSR register: */
|
|
#define BTS_CONTROL \
|
|
( ds_cfg.ctl[dsf_bts] | \
|
|
ds_cfg.ctl[dsf_bts_kernel] | \
|
|
ds_cfg.ctl[dsf_bts_user] | \
|
|
ds_cfg.ctl[dsf_bts_overflow] )
|
|
|
|
/*
|
|
* A BTS or PEBS tracer.
|
|
*
|
|
* This holds the configuration of the tracer and serves as a handle
|
|
* to identify tracers.
|
|
*/
|
|
struct ds_tracer {
|
|
/* The DS context (partially) owned by this tracer. */
|
|
struct ds_context *context;
|
|
/* The buffer provided on ds_request() and its size in bytes. */
|
|
void *buffer;
|
|
size_t size;
|
|
};
|
|
|
|
struct bts_tracer {
|
|
/* The common DS part: */
|
|
struct ds_tracer ds;
|
|
|
|
/* The trace including the DS configuration: */
|
|
struct bts_trace trace;
|
|
|
|
/* Buffer overflow notification function: */
|
|
bts_ovfl_callback_t ovfl;
|
|
|
|
/* Active flags affecting trace collection. */
|
|
unsigned int flags;
|
|
};
|
|
|
|
struct pebs_tracer {
|
|
/* The common DS part: */
|
|
struct ds_tracer ds;
|
|
|
|
/* The trace including the DS configuration: */
|
|
struct pebs_trace trace;
|
|
|
|
/* Buffer overflow notification function: */
|
|
pebs_ovfl_callback_t ovfl;
|
|
};
|
|
|
|
/*
|
|
* Debug Store (DS) save area configuration (see Intel64 and IA32
|
|
* Architectures Software Developer's Manual, section 18.5)
|
|
*
|
|
* The DS configuration consists of the following fields; different
|
|
* architetures vary in the size of those fields.
|
|
*
|
|
* - double-word aligned base linear address of the BTS buffer
|
|
* - write pointer into the BTS buffer
|
|
* - end linear address of the BTS buffer (one byte beyond the end of
|
|
* the buffer)
|
|
* - interrupt pointer into BTS buffer
|
|
* (interrupt occurs when write pointer passes interrupt pointer)
|
|
* - double-word aligned base linear address of the PEBS buffer
|
|
* - write pointer into the PEBS buffer
|
|
* - end linear address of the PEBS buffer (one byte beyond the end of
|
|
* the buffer)
|
|
* - interrupt pointer into PEBS buffer
|
|
* (interrupt occurs when write pointer passes interrupt pointer)
|
|
* - value to which counter is reset following counter overflow
|
|
*
|
|
* Later architectures use 64bit pointers throughout, whereas earlier
|
|
* architectures use 32bit pointers in 32bit mode.
|
|
*
|
|
*
|
|
* We compute the base address for the first 8 fields based on:
|
|
* - the field size stored in the DS configuration
|
|
* - the relative field position
|
|
* - an offset giving the start of the respective region
|
|
*
|
|
* This offset is further used to index various arrays holding
|
|
* information for BTS and PEBS at the respective index.
|
|
*
|
|
* On later 32bit processors, we only access the lower 32bit of the
|
|
* 64bit pointer fields. The upper halves will be zeroed out.
|
|
*/
|
|
|
|
enum ds_field {
|
|
ds_buffer_base = 0,
|
|
ds_index,
|
|
ds_absolute_maximum,
|
|
ds_interrupt_threshold,
|
|
};
|
|
|
|
enum ds_qualifier {
|
|
ds_bts = 0,
|
|
ds_pebs
|
|
};
|
|
|
|
static inline unsigned long
|
|
ds_get(const unsigned char *base, enum ds_qualifier qual, enum ds_field field)
|
|
{
|
|
base += (ds_cfg.sizeof_ptr_field * (field + (4 * qual)));
|
|
return *(unsigned long *)base;
|
|
}
|
|
|
|
static inline void
|
|
ds_set(unsigned char *base, enum ds_qualifier qual, enum ds_field field,
|
|
unsigned long value)
|
|
{
|
|
base += (ds_cfg.sizeof_ptr_field * (field + (4 * qual)));
|
|
(*(unsigned long *)base) = value;
|
|
}
|
|
|
|
|
|
/*
|
|
* Locking is done only for allocating BTS or PEBS resources.
|
|
*/
|
|
static DEFINE_SPINLOCK(ds_lock);
|
|
|
|
/*
|
|
* We either support (system-wide) per-cpu or per-thread allocation.
|
|
* We distinguish the two based on the task_struct pointer, where a
|
|
* NULL pointer indicates per-cpu allocation for the current cpu.
|
|
*
|
|
* Allocations are use-counted. As soon as resources are allocated,
|
|
* further allocations must be of the same type (per-cpu or
|
|
* per-thread). We model this by counting allocations (i.e. the number
|
|
* of tracers of a certain type) for one type negatively:
|
|
* =0 no tracers
|
|
* >0 number of per-thread tracers
|
|
* <0 number of per-cpu tracers
|
|
*
|
|
* Tracers essentially gives the number of ds contexts for a certain
|
|
* type of allocation.
|
|
*/
|
|
static atomic_t tracers = ATOMIC_INIT(0);
|
|
|
|
static inline int get_tracer(struct task_struct *task)
|
|
{
|
|
int error;
|
|
|
|
spin_lock_irq(&ds_lock);
|
|
|
|
if (task) {
|
|
error = -EPERM;
|
|
if (atomic_read(&tracers) < 0)
|
|
goto out;
|
|
atomic_inc(&tracers);
|
|
} else {
|
|
error = -EPERM;
|
|
if (atomic_read(&tracers) > 0)
|
|
goto out;
|
|
atomic_dec(&tracers);
|
|
}
|
|
|
|
error = 0;
|
|
out:
|
|
spin_unlock_irq(&ds_lock);
|
|
return error;
|
|
}
|
|
|
|
static inline void put_tracer(struct task_struct *task)
|
|
{
|
|
if (task)
|
|
atomic_dec(&tracers);
|
|
else
|
|
atomic_inc(&tracers);
|
|
}
|
|
|
|
/*
|
|
* The DS context is either attached to a thread or to a cpu:
|
|
* - in the former case, the thread_struct contains a pointer to the
|
|
* attached context.
|
|
* - in the latter case, we use a static array of per-cpu context
|
|
* pointers.
|
|
*
|
|
* Contexts are use-counted. They are allocated on first access and
|
|
* deallocated when the last user puts the context.
|
|
*/
|
|
struct ds_context {
|
|
/* The DS configuration; goes into MSR_IA32_DS_AREA: */
|
|
unsigned char ds[MAX_SIZEOF_DS];
|
|
|
|
/* The owner of the BTS and PEBS configuration, respectively: */
|
|
struct bts_tracer *bts_master;
|
|
struct pebs_tracer *pebs_master;
|
|
|
|
/* Use count: */
|
|
unsigned long count;
|
|
|
|
/* Pointer to the context pointer field: */
|
|
struct ds_context **this;
|
|
|
|
/* The traced task; NULL for cpu tracing: */
|
|
struct task_struct *task;
|
|
|
|
/* The traced cpu; only valid if task is NULL: */
|
|
int cpu;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct ds_context *, cpu_context);
|
|
|
|
|
|
static struct ds_context *ds_get_context(struct task_struct *task, int cpu)
|
|
{
|
|
struct ds_context **p_context =
|
|
(task ? &task->thread.ds_ctx : &per_cpu(cpu_context, cpu));
|
|
struct ds_context *context = NULL;
|
|
struct ds_context *new_context = NULL;
|
|
|
|
/* Chances are small that we already have a context. */
|
|
new_context = kzalloc(sizeof(*new_context), GFP_KERNEL);
|
|
if (!new_context)
|
|
return NULL;
|
|
|
|
spin_lock_irq(&ds_lock);
|
|
|
|
context = *p_context;
|
|
if (likely(!context)) {
|
|
context = new_context;
|
|
|
|
context->this = p_context;
|
|
context->task = task;
|
|
context->cpu = cpu;
|
|
context->count = 0;
|
|
|
|
*p_context = context;
|
|
}
|
|
|
|
context->count++;
|
|
|
|
spin_unlock_irq(&ds_lock);
|
|
|
|
if (context != new_context)
|
|
kfree(new_context);
|
|
|
|
return context;
|
|
}
|
|
|
|
static void ds_put_context(struct ds_context *context)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long irq;
|
|
|
|
if (!context)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ds_lock, irq);
|
|
|
|
if (--context->count) {
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
return;
|
|
}
|
|
|
|
*(context->this) = NULL;
|
|
|
|
task = context->task;
|
|
|
|
if (task)
|
|
clear_tsk_thread_flag(task, TIF_DS_AREA_MSR);
|
|
|
|
/*
|
|
* We leave the (now dangling) pointer to the DS configuration in
|
|
* the DS_AREA msr. This is as good or as bad as replacing it with
|
|
* NULL - the hardware would crash if we enabled tracing.
|
|
*
|
|
* This saves us some problems with having to write an msr on a
|
|
* different cpu while preventing others from doing the same for the
|
|
* next context for that same cpu.
|
|
*/
|
|
|
|
spin_unlock_irqrestore(&ds_lock, irq);
|
|
|
|
/* The context might still be in use for context switching. */
|
|
if (task && (task != current))
|
|
wait_task_context_switch(task);
|
|
|
|
kfree(context);
|
|
}
|
|
|
|
static void ds_install_ds_area(struct ds_context *context)
|
|
{
|
|
unsigned long ds;
|
|
|
|
ds = (unsigned long)context->ds;
|
|
|
|
/*
|
|
* There is a race between the bts master and the pebs master.
|
|
*
|
|
* The thread/cpu access is synchronized via get/put_cpu() for
|
|
* task tracing and via wrmsr_on_cpu for cpu tracing.
|
|
*
|
|
* If bts and pebs are collected for the same task or same cpu,
|
|
* the same confiuration is written twice.
|
|
*/
|
|
if (context->task) {
|
|
get_cpu();
|
|
if (context->task == current)
|
|
wrmsrl(MSR_IA32_DS_AREA, ds);
|
|
set_tsk_thread_flag(context->task, TIF_DS_AREA_MSR);
|
|
put_cpu();
|
|
} else
|
|
wrmsr_on_cpu(context->cpu, MSR_IA32_DS_AREA,
|
|
(u32)((u64)ds), (u32)((u64)ds >> 32));
|
|
}
|
|
|
|
/*
|
|
* Call the tracer's callback on a buffer overflow.
|
|
*
|
|
* context: the ds context
|
|
* qual: the buffer type
|
|
*/
|
|
static void ds_overflow(struct ds_context *context, enum ds_qualifier qual)
|
|
{
|
|
switch (qual) {
|
|
case ds_bts:
|
|
if (context->bts_master &&
|
|
context->bts_master->ovfl)
|
|
context->bts_master->ovfl(context->bts_master);
|
|
break;
|
|
case ds_pebs:
|
|
if (context->pebs_master &&
|
|
context->pebs_master->ovfl)
|
|
context->pebs_master->ovfl(context->pebs_master);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Write raw data into the BTS or PEBS buffer.
|
|
*
|
|
* The remainder of any partially written record is zeroed out.
|
|
*
|
|
* context: the DS context
|
|
* qual: the buffer type
|
|
* record: the data to write
|
|
* size: the size of the data
|
|
*/
|
|
static int ds_write(struct ds_context *context, enum ds_qualifier qual,
|
|
const void *record, size_t size)
|
|
{
|
|
int bytes_written = 0;
|
|
|
|
if (!record)
|
|
return -EINVAL;
|
|
|
|
while (size) {
|
|
unsigned long base, index, end, write_end, int_th;
|
|
unsigned long write_size, adj_write_size;
|
|
|
|
/*
|
|
* Write as much as possible without producing an
|
|
* overflow interrupt.
|
|
*
|
|
* Interrupt_threshold must either be
|
|
* - bigger than absolute_maximum or
|
|
* - point to a record between buffer_base and absolute_maximum
|
|
*
|
|
* Index points to a valid record.
|
|
*/
|
|
base = ds_get(context->ds, qual, ds_buffer_base);
|
|
index = ds_get(context->ds, qual, ds_index);
|
|
end = ds_get(context->ds, qual, ds_absolute_maximum);
|
|
int_th = ds_get(context->ds, qual, ds_interrupt_threshold);
|
|
|
|
write_end = min(end, int_th);
|
|
|
|
/*
|
|
* If we are already beyond the interrupt threshold,
|
|
* we fill the entire buffer.
|
|
*/
|
|
if (write_end <= index)
|
|
write_end = end;
|
|
|
|
if (write_end <= index)
|
|
break;
|
|
|
|
write_size = min((unsigned long) size, write_end - index);
|
|
memcpy((void *)index, record, write_size);
|
|
|
|
record = (const char *)record + write_size;
|
|
size -= write_size;
|
|
bytes_written += write_size;
|
|
|
|
adj_write_size = write_size / ds_cfg.sizeof_rec[qual];
|
|
adj_write_size *= ds_cfg.sizeof_rec[qual];
|
|
|
|
/* Zero out trailing bytes. */
|
|
memset((char *)index + write_size, 0,
|
|
adj_write_size - write_size);
|
|
index += adj_write_size;
|
|
|
|
if (index >= end)
|
|
index = base;
|
|
ds_set(context->ds, qual, ds_index, index);
|
|
|
|
if (index >= int_th)
|
|
ds_overflow(context, qual);
|
|
}
|
|
|
|
return bytes_written;
|
|
}
|
|
|
|
|
|
/*
|
|
* Branch Trace Store (BTS) uses the following format. Different
|
|
* architectures vary in the size of those fields.
|
|
* - source linear address
|
|
* - destination linear address
|
|
* - flags
|
|
*
|
|
* Later architectures use 64bit pointers throughout, whereas earlier
|
|
* architectures use 32bit pointers in 32bit mode.
|
|
*
|
|
* We compute the base address for the fields based on:
|
|
* - the field size stored in the DS configuration
|
|
* - the relative field position
|
|
*
|
|
* In order to store additional information in the BTS buffer, we use
|
|
* a special source address to indicate that the record requires
|
|
* special interpretation.
|
|
*
|
|
* Netburst indicated via a bit in the flags field whether the branch
|
|
* was predicted; this is ignored.
|
|
*
|
|
* We use two levels of abstraction:
|
|
* - the raw data level defined here
|
|
* - an arch-independent level defined in ds.h
|
|
*/
|
|
|
|
enum bts_field {
|
|
bts_from,
|
|
bts_to,
|
|
bts_flags,
|
|
|
|
bts_qual = bts_from,
|
|
bts_clock = bts_to,
|
|
bts_pid = bts_flags,
|
|
|
|
bts_qual_mask = (bts_qual_max - 1),
|
|
bts_escape = ((unsigned long)-1 & ~bts_qual_mask)
|
|
};
|
|
|
|
static inline unsigned long bts_get(const char *base, unsigned long field)
|
|
{
|
|
base += (ds_cfg.sizeof_ptr_field * field);
|
|
return *(unsigned long *)base;
|
|
}
|
|
|
|
static inline void bts_set(char *base, unsigned long field, unsigned long val)
|
|
{
|
|
base += (ds_cfg.sizeof_ptr_field * field);
|
|
(*(unsigned long *)base) = val;
|
|
}
|
|
|
|
|
|
/*
|
|
* The raw BTS data is architecture dependent.
|
|
*
|
|
* For higher-level users, we give an arch-independent view.
|
|
* - ds.h defines struct bts_struct
|
|
* - bts_read translates one raw bts record into a bts_struct
|
|
* - bts_write translates one bts_struct into the raw format and
|
|
* writes it into the top of the parameter tracer's buffer.
|
|
*
|
|
* return: bytes read/written on success; -Eerrno, otherwise
|
|
*/
|
|
static int
|
|
bts_read(struct bts_tracer *tracer, const void *at, struct bts_struct *out)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
if (at < tracer->trace.ds.begin)
|
|
return -EINVAL;
|
|
|
|
if (tracer->trace.ds.end < (at + tracer->trace.ds.size))
|
|
return -EINVAL;
|
|
|
|
memset(out, 0, sizeof(*out));
|
|
if ((bts_get(at, bts_qual) & ~bts_qual_mask) == bts_escape) {
|
|
out->qualifier = (bts_get(at, bts_qual) & bts_qual_mask);
|
|
out->variant.event.clock = bts_get(at, bts_clock);
|
|
out->variant.event.pid = bts_get(at, bts_pid);
|
|
} else {
|
|
out->qualifier = bts_branch;
|
|
out->variant.lbr.from = bts_get(at, bts_from);
|
|
out->variant.lbr.to = bts_get(at, bts_to);
|
|
|
|
if (!out->variant.lbr.from && !out->variant.lbr.to)
|
|
out->qualifier = bts_invalid;
|
|
}
|
|
|
|
return ds_cfg.sizeof_rec[ds_bts];
|
|
}
|
|
|
|
static int bts_write(struct bts_tracer *tracer, const struct bts_struct *in)
|
|
{
|
|
unsigned char raw[MAX_SIZEOF_BTS];
|
|
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
if (MAX_SIZEOF_BTS < ds_cfg.sizeof_rec[ds_bts])
|
|
return -EOVERFLOW;
|
|
|
|
switch (in->qualifier) {
|
|
case bts_invalid:
|
|
bts_set(raw, bts_from, 0);
|
|
bts_set(raw, bts_to, 0);
|
|
bts_set(raw, bts_flags, 0);
|
|
break;
|
|
case bts_branch:
|
|
bts_set(raw, bts_from, in->variant.lbr.from);
|
|
bts_set(raw, bts_to, in->variant.lbr.to);
|
|
bts_set(raw, bts_flags, 0);
|
|
break;
|
|
case bts_task_arrives:
|
|
case bts_task_departs:
|
|
bts_set(raw, bts_qual, (bts_escape | in->qualifier));
|
|
bts_set(raw, bts_clock, in->variant.event.clock);
|
|
bts_set(raw, bts_pid, in->variant.event.pid);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ds_write(tracer->ds.context, ds_bts, raw,
|
|
ds_cfg.sizeof_rec[ds_bts]);
|
|
}
|
|
|
|
|
|
static void ds_write_config(struct ds_context *context,
|
|
struct ds_trace *cfg, enum ds_qualifier qual)
|
|
{
|
|
unsigned char *ds = context->ds;
|
|
|
|
ds_set(ds, qual, ds_buffer_base, (unsigned long)cfg->begin);
|
|
ds_set(ds, qual, ds_index, (unsigned long)cfg->top);
|
|
ds_set(ds, qual, ds_absolute_maximum, (unsigned long)cfg->end);
|
|
ds_set(ds, qual, ds_interrupt_threshold, (unsigned long)cfg->ith);
|
|
}
|
|
|
|
static void ds_read_config(struct ds_context *context,
|
|
struct ds_trace *cfg, enum ds_qualifier qual)
|
|
{
|
|
unsigned char *ds = context->ds;
|
|
|
|
cfg->begin = (void *)ds_get(ds, qual, ds_buffer_base);
|
|
cfg->top = (void *)ds_get(ds, qual, ds_index);
|
|
cfg->end = (void *)ds_get(ds, qual, ds_absolute_maximum);
|
|
cfg->ith = (void *)ds_get(ds, qual, ds_interrupt_threshold);
|
|
}
|
|
|
|
static void ds_init_ds_trace(struct ds_trace *trace, enum ds_qualifier qual,
|
|
void *base, size_t size, size_t ith,
|
|
unsigned int flags) {
|
|
unsigned long buffer, adj;
|
|
|
|
/*
|
|
* Adjust the buffer address and size to meet alignment
|
|
* constraints:
|
|
* - buffer is double-word aligned
|
|
* - size is multiple of record size
|
|
*
|
|
* We checked the size at the very beginning; we have enough
|
|
* space to do the adjustment.
|
|
*/
|
|
buffer = (unsigned long)base;
|
|
|
|
adj = ALIGN(buffer, DS_ALIGNMENT) - buffer;
|
|
buffer += adj;
|
|
size -= adj;
|
|
|
|
trace->n = size / ds_cfg.sizeof_rec[qual];
|
|
trace->size = ds_cfg.sizeof_rec[qual];
|
|
|
|
size = (trace->n * trace->size);
|
|
|
|
trace->begin = (void *)buffer;
|
|
trace->top = trace->begin;
|
|
trace->end = (void *)(buffer + size);
|
|
/*
|
|
* The value for 'no threshold' is -1, which will set the
|
|
* threshold outside of the buffer, just like we want it.
|
|
*/
|
|
ith *= ds_cfg.sizeof_rec[qual];
|
|
trace->ith = (void *)(buffer + size - ith);
|
|
|
|
trace->flags = flags;
|
|
}
|
|
|
|
|
|
static int ds_request(struct ds_tracer *tracer, struct ds_trace *trace,
|
|
enum ds_qualifier qual, struct task_struct *task,
|
|
int cpu, void *base, size_t size, size_t th)
|
|
{
|
|
struct ds_context *context;
|
|
int error;
|
|
size_t req_size;
|
|
|
|
error = -EOPNOTSUPP;
|
|
if (!ds_cfg.sizeof_rec[qual])
|
|
goto out;
|
|
|
|
error = -EINVAL;
|
|
if (!base)
|
|
goto out;
|
|
|
|
req_size = ds_cfg.sizeof_rec[qual];
|
|
/* We might need space for alignment adjustments. */
|
|
if (!IS_ALIGNED((unsigned long)base, DS_ALIGNMENT))
|
|
req_size += DS_ALIGNMENT;
|
|
|
|
error = -EINVAL;
|
|
if (size < req_size)
|
|
goto out;
|
|
|
|
if (th != (size_t)-1) {
|
|
th *= ds_cfg.sizeof_rec[qual];
|
|
|
|
error = -EINVAL;
|
|
if (size <= th)
|
|
goto out;
|
|
}
|
|
|
|
tracer->buffer = base;
|
|
tracer->size = size;
|
|
|
|
error = -ENOMEM;
|
|
context = ds_get_context(task, cpu);
|
|
if (!context)
|
|
goto out;
|
|
tracer->context = context;
|
|
|
|
/*
|
|
* Defer any tracer-specific initialization work for the context until
|
|
* context ownership has been clarified.
|
|
*/
|
|
|
|
error = 0;
|
|
out:
|
|
return error;
|
|
}
|
|
|
|
static struct bts_tracer *ds_request_bts(struct task_struct *task, int cpu,
|
|
void *base, size_t size,
|
|
bts_ovfl_callback_t ovfl, size_t th,
|
|
unsigned int flags)
|
|
{
|
|
struct bts_tracer *tracer;
|
|
int error;
|
|
|
|
/* Buffer overflow notification is not yet implemented. */
|
|
error = -EOPNOTSUPP;
|
|
if (ovfl)
|
|
goto out;
|
|
|
|
error = get_tracer(task);
|
|
if (error < 0)
|
|
goto out;
|
|
|
|
error = -ENOMEM;
|
|
tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
|
|
if (!tracer)
|
|
goto out_put_tracer;
|
|
tracer->ovfl = ovfl;
|
|
|
|
/* Do some more error checking and acquire a tracing context. */
|
|
error = ds_request(&tracer->ds, &tracer->trace.ds,
|
|
ds_bts, task, cpu, base, size, th);
|
|
if (error < 0)
|
|
goto out_tracer;
|
|
|
|
/* Claim the bts part of the tracing context we acquired above. */
|
|
spin_lock_irq(&ds_lock);
|
|
|
|
error = -EPERM;
|
|
if (tracer->ds.context->bts_master)
|
|
goto out_unlock;
|
|
tracer->ds.context->bts_master = tracer;
|
|
|
|
spin_unlock_irq(&ds_lock);
|
|
|
|
/*
|
|
* Now that we own the bts part of the context, let's complete the
|
|
* initialization for that part.
|
|
*/
|
|
ds_init_ds_trace(&tracer->trace.ds, ds_bts, base, size, th, flags);
|
|
ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
|
|
ds_install_ds_area(tracer->ds.context);
|
|
|
|
tracer->trace.read = bts_read;
|
|
tracer->trace.write = bts_write;
|
|
|
|
/* Start tracing. */
|
|
ds_resume_bts(tracer);
|
|
|
|
return tracer;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&ds_lock);
|
|
ds_put_context(tracer->ds.context);
|
|
out_tracer:
|
|
kfree(tracer);
|
|
out_put_tracer:
|
|
put_tracer(task);
|
|
out:
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
struct bts_tracer *ds_request_bts_task(struct task_struct *task,
|
|
void *base, size_t size,
|
|
bts_ovfl_callback_t ovfl,
|
|
size_t th, unsigned int flags)
|
|
{
|
|
return ds_request_bts(task, 0, base, size, ovfl, th, flags);
|
|
}
|
|
|
|
struct bts_tracer *ds_request_bts_cpu(int cpu, void *base, size_t size,
|
|
bts_ovfl_callback_t ovfl,
|
|
size_t th, unsigned int flags)
|
|
{
|
|
return ds_request_bts(NULL, cpu, base, size, ovfl, th, flags);
|
|
}
|
|
|
|
static struct pebs_tracer *ds_request_pebs(struct task_struct *task, int cpu,
|
|
void *base, size_t size,
|
|
pebs_ovfl_callback_t ovfl, size_t th,
|
|
unsigned int flags)
|
|
{
|
|
struct pebs_tracer *tracer;
|
|
int error;
|
|
|
|
/* Buffer overflow notification is not yet implemented. */
|
|
error = -EOPNOTSUPP;
|
|
if (ovfl)
|
|
goto out;
|
|
|
|
error = get_tracer(task);
|
|
if (error < 0)
|
|
goto out;
|
|
|
|
error = -ENOMEM;
|
|
tracer = kzalloc(sizeof(*tracer), GFP_KERNEL);
|
|
if (!tracer)
|
|
goto out_put_tracer;
|
|
tracer->ovfl = ovfl;
|
|
|
|
/* Do some more error checking and acquire a tracing context. */
|
|
error = ds_request(&tracer->ds, &tracer->trace.ds,
|
|
ds_pebs, task, cpu, base, size, th);
|
|
if (error < 0)
|
|
goto out_tracer;
|
|
|
|
/* Claim the pebs part of the tracing context we acquired above. */
|
|
spin_lock_irq(&ds_lock);
|
|
|
|
error = -EPERM;
|
|
if (tracer->ds.context->pebs_master)
|
|
goto out_unlock;
|
|
tracer->ds.context->pebs_master = tracer;
|
|
|
|
spin_unlock_irq(&ds_lock);
|
|
|
|
/*
|
|
* Now that we own the pebs part of the context, let's complete the
|
|
* initialization for that part.
|
|
*/
|
|
ds_init_ds_trace(&tracer->trace.ds, ds_pebs, base, size, th, flags);
|
|
ds_write_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
|
|
ds_install_ds_area(tracer->ds.context);
|
|
|
|
/* Start tracing. */
|
|
ds_resume_pebs(tracer);
|
|
|
|
return tracer;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&ds_lock);
|
|
ds_put_context(tracer->ds.context);
|
|
out_tracer:
|
|
kfree(tracer);
|
|
out_put_tracer:
|
|
put_tracer(task);
|
|
out:
|
|
return ERR_PTR(error);
|
|
}
|
|
|
|
struct pebs_tracer *ds_request_pebs_task(struct task_struct *task,
|
|
void *base, size_t size,
|
|
pebs_ovfl_callback_t ovfl,
|
|
size_t th, unsigned int flags)
|
|
{
|
|
return ds_request_pebs(task, 0, base, size, ovfl, th, flags);
|
|
}
|
|
|
|
struct pebs_tracer *ds_request_pebs_cpu(int cpu, void *base, size_t size,
|
|
pebs_ovfl_callback_t ovfl,
|
|
size_t th, unsigned int flags)
|
|
{
|
|
return ds_request_pebs(NULL, cpu, base, size, ovfl, th, flags);
|
|
}
|
|
|
|
static void ds_free_bts(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
task = tracer->ds.context->task;
|
|
|
|
WARN_ON_ONCE(tracer->ds.context->bts_master != tracer);
|
|
tracer->ds.context->bts_master = NULL;
|
|
|
|
/* Make sure tracing stopped and the tracer is not in use. */
|
|
if (task && (task != current))
|
|
wait_task_context_switch(task);
|
|
|
|
ds_put_context(tracer->ds.context);
|
|
put_tracer(task);
|
|
|
|
kfree(tracer);
|
|
}
|
|
|
|
void ds_release_bts(struct bts_tracer *tracer)
|
|
{
|
|
might_sleep();
|
|
|
|
if (!tracer)
|
|
return;
|
|
|
|
ds_suspend_bts(tracer);
|
|
ds_free_bts(tracer);
|
|
}
|
|
|
|
int ds_release_bts_noirq(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long irq;
|
|
int error;
|
|
|
|
if (!tracer)
|
|
return 0;
|
|
|
|
task = tracer->ds.context->task;
|
|
|
|
local_irq_save(irq);
|
|
|
|
error = -EPERM;
|
|
if (!task &&
|
|
(tracer->ds.context->cpu != smp_processor_id()))
|
|
goto out;
|
|
|
|
error = -EPERM;
|
|
if (task && (task != current))
|
|
goto out;
|
|
|
|
ds_suspend_bts_noirq(tracer);
|
|
ds_free_bts(tracer);
|
|
|
|
error = 0;
|
|
out:
|
|
local_irq_restore(irq);
|
|
return error;
|
|
}
|
|
|
|
static void update_task_debugctlmsr(struct task_struct *task,
|
|
unsigned long debugctlmsr)
|
|
{
|
|
task->thread.debugctlmsr = debugctlmsr;
|
|
|
|
get_cpu();
|
|
if (task == current)
|
|
update_debugctlmsr(debugctlmsr);
|
|
put_cpu();
|
|
}
|
|
|
|
void ds_suspend_bts(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long debugctlmsr;
|
|
int cpu;
|
|
|
|
if (!tracer)
|
|
return;
|
|
|
|
tracer->flags = 0;
|
|
|
|
task = tracer->ds.context->task;
|
|
cpu = tracer->ds.context->cpu;
|
|
|
|
WARN_ON(!task && irqs_disabled());
|
|
|
|
debugctlmsr = (task ?
|
|
task->thread.debugctlmsr :
|
|
get_debugctlmsr_on_cpu(cpu));
|
|
debugctlmsr &= ~BTS_CONTROL;
|
|
|
|
if (task)
|
|
update_task_debugctlmsr(task, debugctlmsr);
|
|
else
|
|
update_debugctlmsr_on_cpu(cpu, debugctlmsr);
|
|
}
|
|
|
|
int ds_suspend_bts_noirq(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long debugctlmsr, irq;
|
|
int cpu, error = 0;
|
|
|
|
if (!tracer)
|
|
return 0;
|
|
|
|
tracer->flags = 0;
|
|
|
|
task = tracer->ds.context->task;
|
|
cpu = tracer->ds.context->cpu;
|
|
|
|
local_irq_save(irq);
|
|
|
|
error = -EPERM;
|
|
if (!task && (cpu != smp_processor_id()))
|
|
goto out;
|
|
|
|
debugctlmsr = (task ?
|
|
task->thread.debugctlmsr :
|
|
get_debugctlmsr());
|
|
debugctlmsr &= ~BTS_CONTROL;
|
|
|
|
if (task)
|
|
update_task_debugctlmsr(task, debugctlmsr);
|
|
else
|
|
update_debugctlmsr(debugctlmsr);
|
|
|
|
error = 0;
|
|
out:
|
|
local_irq_restore(irq);
|
|
return error;
|
|
}
|
|
|
|
static unsigned long ds_bts_control(struct bts_tracer *tracer)
|
|
{
|
|
unsigned long control;
|
|
|
|
control = ds_cfg.ctl[dsf_bts];
|
|
if (!(tracer->trace.ds.flags & BTS_KERNEL))
|
|
control |= ds_cfg.ctl[dsf_bts_kernel];
|
|
if (!(tracer->trace.ds.flags & BTS_USER))
|
|
control |= ds_cfg.ctl[dsf_bts_user];
|
|
|
|
return control;
|
|
}
|
|
|
|
void ds_resume_bts(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long debugctlmsr;
|
|
int cpu;
|
|
|
|
if (!tracer)
|
|
return;
|
|
|
|
tracer->flags = tracer->trace.ds.flags;
|
|
|
|
task = tracer->ds.context->task;
|
|
cpu = tracer->ds.context->cpu;
|
|
|
|
WARN_ON(!task && irqs_disabled());
|
|
|
|
debugctlmsr = (task ?
|
|
task->thread.debugctlmsr :
|
|
get_debugctlmsr_on_cpu(cpu));
|
|
debugctlmsr |= ds_bts_control(tracer);
|
|
|
|
if (task)
|
|
update_task_debugctlmsr(task, debugctlmsr);
|
|
else
|
|
update_debugctlmsr_on_cpu(cpu, debugctlmsr);
|
|
}
|
|
|
|
int ds_resume_bts_noirq(struct bts_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long debugctlmsr, irq;
|
|
int cpu, error = 0;
|
|
|
|
if (!tracer)
|
|
return 0;
|
|
|
|
tracer->flags = tracer->trace.ds.flags;
|
|
|
|
task = tracer->ds.context->task;
|
|
cpu = tracer->ds.context->cpu;
|
|
|
|
local_irq_save(irq);
|
|
|
|
error = -EPERM;
|
|
if (!task && (cpu != smp_processor_id()))
|
|
goto out;
|
|
|
|
debugctlmsr = (task ?
|
|
task->thread.debugctlmsr :
|
|
get_debugctlmsr());
|
|
debugctlmsr |= ds_bts_control(tracer);
|
|
|
|
if (task)
|
|
update_task_debugctlmsr(task, debugctlmsr);
|
|
else
|
|
update_debugctlmsr(debugctlmsr);
|
|
|
|
error = 0;
|
|
out:
|
|
local_irq_restore(irq);
|
|
return error;
|
|
}
|
|
|
|
static void ds_free_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
task = tracer->ds.context->task;
|
|
|
|
WARN_ON_ONCE(tracer->ds.context->pebs_master != tracer);
|
|
tracer->ds.context->pebs_master = NULL;
|
|
|
|
ds_put_context(tracer->ds.context);
|
|
put_tracer(task);
|
|
|
|
kfree(tracer);
|
|
}
|
|
|
|
void ds_release_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
might_sleep();
|
|
|
|
if (!tracer)
|
|
return;
|
|
|
|
ds_suspend_pebs(tracer);
|
|
ds_free_pebs(tracer);
|
|
}
|
|
|
|
int ds_release_pebs_noirq(struct pebs_tracer *tracer)
|
|
{
|
|
struct task_struct *task;
|
|
unsigned long irq;
|
|
int error;
|
|
|
|
if (!tracer)
|
|
return 0;
|
|
|
|
task = tracer->ds.context->task;
|
|
|
|
local_irq_save(irq);
|
|
|
|
error = -EPERM;
|
|
if (!task &&
|
|
(tracer->ds.context->cpu != smp_processor_id()))
|
|
goto out;
|
|
|
|
error = -EPERM;
|
|
if (task && (task != current))
|
|
goto out;
|
|
|
|
ds_suspend_pebs_noirq(tracer);
|
|
ds_free_pebs(tracer);
|
|
|
|
error = 0;
|
|
out:
|
|
local_irq_restore(irq);
|
|
return error;
|
|
}
|
|
|
|
void ds_suspend_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
|
|
}
|
|
|
|
int ds_suspend_pebs_noirq(struct pebs_tracer *tracer)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void ds_resume_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
|
|
}
|
|
|
|
int ds_resume_pebs_noirq(struct pebs_tracer *tracer)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
const struct bts_trace *ds_read_bts(struct bts_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return NULL;
|
|
|
|
ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_bts);
|
|
return &tracer->trace;
|
|
}
|
|
|
|
const struct pebs_trace *ds_read_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return NULL;
|
|
|
|
ds_read_config(tracer->ds.context, &tracer->trace.ds, ds_pebs);
|
|
|
|
tracer->trace.counters = ds_cfg.nr_counter_reset;
|
|
memcpy(tracer->trace.counter_reset,
|
|
tracer->ds.context->ds +
|
|
(NUM_DS_PTR_FIELDS * ds_cfg.sizeof_ptr_field),
|
|
ds_cfg.nr_counter_reset * PEBS_RESET_FIELD_SIZE);
|
|
|
|
return &tracer->trace;
|
|
}
|
|
|
|
int ds_reset_bts(struct bts_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
tracer->trace.ds.top = tracer->trace.ds.begin;
|
|
|
|
ds_set(tracer->ds.context->ds, ds_bts, ds_index,
|
|
(unsigned long)tracer->trace.ds.top);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ds_reset_pebs(struct pebs_tracer *tracer)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
tracer->trace.ds.top = tracer->trace.ds.begin;
|
|
|
|
ds_set(tracer->ds.context->ds, ds_pebs, ds_index,
|
|
(unsigned long)tracer->trace.ds.top);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ds_set_pebs_reset(struct pebs_tracer *tracer,
|
|
unsigned int counter, u64 value)
|
|
{
|
|
if (!tracer)
|
|
return -EINVAL;
|
|
|
|
if (ds_cfg.nr_counter_reset < counter)
|
|
return -EINVAL;
|
|
|
|
*(u64 *)(tracer->ds.context->ds +
|
|
(NUM_DS_PTR_FIELDS * ds_cfg.sizeof_ptr_field) +
|
|
(counter * PEBS_RESET_FIELD_SIZE)) = value;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct ds_configuration ds_cfg_netburst = {
|
|
.name = "Netburst",
|
|
.ctl[dsf_bts] = (1 << 2) | (1 << 3),
|
|
.ctl[dsf_bts_kernel] = (1 << 5),
|
|
.ctl[dsf_bts_user] = (1 << 6),
|
|
.nr_counter_reset = 1,
|
|
};
|
|
static const struct ds_configuration ds_cfg_pentium_m = {
|
|
.name = "Pentium M",
|
|
.ctl[dsf_bts] = (1 << 6) | (1 << 7),
|
|
.nr_counter_reset = 1,
|
|
};
|
|
static const struct ds_configuration ds_cfg_core2_atom = {
|
|
.name = "Core 2/Atom",
|
|
.ctl[dsf_bts] = (1 << 6) | (1 << 7),
|
|
.ctl[dsf_bts_kernel] = (1 << 9),
|
|
.ctl[dsf_bts_user] = (1 << 10),
|
|
.nr_counter_reset = 1,
|
|
};
|
|
static const struct ds_configuration ds_cfg_core_i7 = {
|
|
.name = "Core i7",
|
|
.ctl[dsf_bts] = (1 << 6) | (1 << 7),
|
|
.ctl[dsf_bts_kernel] = (1 << 9),
|
|
.ctl[dsf_bts_user] = (1 << 10),
|
|
.nr_counter_reset = 4,
|
|
};
|
|
|
|
static void
|
|
ds_configure(const struct ds_configuration *cfg,
|
|
struct cpuinfo_x86 *cpu)
|
|
{
|
|
unsigned long nr_pebs_fields = 0;
|
|
|
|
printk(KERN_INFO "[ds] using %s configuration\n", cfg->name);
|
|
|
|
#ifdef __i386__
|
|
nr_pebs_fields = 10;
|
|
#else
|
|
nr_pebs_fields = 18;
|
|
#endif
|
|
|
|
/*
|
|
* Starting with version 2, architectural performance
|
|
* monitoring supports a format specifier.
|
|
*/
|
|
if ((cpuid_eax(0xa) & 0xff) > 1) {
|
|
unsigned long perf_capabilities, format;
|
|
|
|
rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_capabilities);
|
|
|
|
format = (perf_capabilities >> 8) & 0xf;
|
|
|
|
switch (format) {
|
|
case 0:
|
|
nr_pebs_fields = 18;
|
|
break;
|
|
case 1:
|
|
nr_pebs_fields = 22;
|
|
break;
|
|
default:
|
|
printk(KERN_INFO
|
|
"[ds] unknown PEBS format: %lu\n", format);
|
|
nr_pebs_fields = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
memset(&ds_cfg, 0, sizeof(ds_cfg));
|
|
ds_cfg = *cfg;
|
|
|
|
ds_cfg.sizeof_ptr_field =
|
|
(cpu_has(cpu, X86_FEATURE_DTES64) ? 8 : 4);
|
|
|
|
ds_cfg.sizeof_rec[ds_bts] = ds_cfg.sizeof_ptr_field * 3;
|
|
ds_cfg.sizeof_rec[ds_pebs] = ds_cfg.sizeof_ptr_field * nr_pebs_fields;
|
|
|
|
if (!cpu_has(cpu, X86_FEATURE_BTS)) {
|
|
ds_cfg.sizeof_rec[ds_bts] = 0;
|
|
printk(KERN_INFO "[ds] bts not available\n");
|
|
}
|
|
if (!cpu_has(cpu, X86_FEATURE_PEBS)) {
|
|
ds_cfg.sizeof_rec[ds_pebs] = 0;
|
|
printk(KERN_INFO "[ds] pebs not available\n");
|
|
}
|
|
|
|
printk(KERN_INFO "[ds] sizes: address: %u bit, ",
|
|
8 * ds_cfg.sizeof_ptr_field);
|
|
printk("bts/pebs record: %u/%u bytes\n",
|
|
ds_cfg.sizeof_rec[ds_bts], ds_cfg.sizeof_rec[ds_pebs]);
|
|
|
|
WARN_ON_ONCE(MAX_PEBS_COUNTERS < ds_cfg.nr_counter_reset);
|
|
}
|
|
|
|
void __cpuinit ds_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Only configure the first cpu. Others are identical. */
|
|
if (ds_cfg.name)
|
|
return;
|
|
|
|
switch (c->x86) {
|
|
case 0x6:
|
|
switch (c->x86_model) {
|
|
case 0x9:
|
|
case 0xd: /* Pentium M */
|
|
ds_configure(&ds_cfg_pentium_m, c);
|
|
break;
|
|
case 0xf:
|
|
case 0x17: /* Core2 */
|
|
case 0x1c: /* Atom */
|
|
ds_configure(&ds_cfg_core2_atom, c);
|
|
break;
|
|
case 0x1a: /* Core i7 */
|
|
ds_configure(&ds_cfg_core_i7, c);
|
|
break;
|
|
default:
|
|
/* Sorry, don't know about them. */
|
|
break;
|
|
}
|
|
break;
|
|
case 0xf:
|
|
switch (c->x86_model) {
|
|
case 0x0:
|
|
case 0x1:
|
|
case 0x2: /* Netburst */
|
|
ds_configure(&ds_cfg_netburst, c);
|
|
break;
|
|
default:
|
|
/* Sorry, don't know about them. */
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
/* Sorry, don't know about them. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void ds_take_timestamp(struct ds_context *context,
|
|
enum bts_qualifier qualifier,
|
|
struct task_struct *task)
|
|
{
|
|
struct bts_tracer *tracer = context->bts_master;
|
|
struct bts_struct ts;
|
|
|
|
/* Prevent compilers from reading the tracer pointer twice. */
|
|
barrier();
|
|
|
|
if (!tracer || !(tracer->flags & BTS_TIMESTAMPS))
|
|
return;
|
|
|
|
memset(&ts, 0, sizeof(ts));
|
|
ts.qualifier = qualifier;
|
|
ts.variant.event.clock = trace_clock_global();
|
|
ts.variant.event.pid = task->pid;
|
|
|
|
bts_write(tracer, &ts);
|
|
}
|
|
|
|
/*
|
|
* Change the DS configuration from tracing prev to tracing next.
|
|
*/
|
|
void ds_switch_to(struct task_struct *prev, struct task_struct *next)
|
|
{
|
|
struct ds_context *prev_ctx = prev->thread.ds_ctx;
|
|
struct ds_context *next_ctx = next->thread.ds_ctx;
|
|
unsigned long debugctlmsr = next->thread.debugctlmsr;
|
|
|
|
/* Make sure all data is read before we start. */
|
|
barrier();
|
|
|
|
if (prev_ctx) {
|
|
update_debugctlmsr(0);
|
|
|
|
ds_take_timestamp(prev_ctx, bts_task_departs, prev);
|
|
}
|
|
|
|
if (next_ctx) {
|
|
ds_take_timestamp(next_ctx, bts_task_arrives, next);
|
|
|
|
wrmsrl(MSR_IA32_DS_AREA, (unsigned long)next_ctx->ds);
|
|
}
|
|
|
|
update_debugctlmsr(debugctlmsr);
|
|
}
|
|
|
|
static __init int ds_selftest(void)
|
|
{
|
|
if (ds_cfg.sizeof_rec[ds_bts]) {
|
|
int error;
|
|
|
|
error = ds_selftest_bts();
|
|
if (error) {
|
|
WARN(1, "[ds] selftest failed. disabling bts.\n");
|
|
ds_cfg.sizeof_rec[ds_bts] = 0;
|
|
}
|
|
}
|
|
|
|
if (ds_cfg.sizeof_rec[ds_pebs]) {
|
|
int error;
|
|
|
|
error = ds_selftest_pebs();
|
|
if (error) {
|
|
WARN(1, "[ds] selftest failed. disabling pebs.\n");
|
|
ds_cfg.sizeof_rec[ds_pebs] = 0;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
device_initcall(ds_selftest);
|