android_kernel_cmhtcleo/arch/blackfin/kernel/setup.c
2010-08-27 11:19:57 +02:00

1306 lines
36 KiB
C

/*
* Copyright 2004-2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/delay.h>
#include <linux/console.h>
#include <linux/bootmem.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/tty.h>
#include <linux/pfn.h>
#ifdef CONFIG_MTD_UCLINUX
#include <linux/mtd/map.h>
#include <linux/ext2_fs.h>
#include <linux/cramfs_fs.h>
#include <linux/romfs_fs.h>
#endif
#include <asm/cplb.h>
#include <asm/cacheflush.h>
#include <asm/blackfin.h>
#include <asm/cplbinit.h>
#include <asm/div64.h>
#include <asm/cpu.h>
#include <asm/fixed_code.h>
#include <asm/early_printk.h>
u16 _bfin_swrst;
EXPORT_SYMBOL(_bfin_swrst);
unsigned long memory_start, memory_end, physical_mem_end;
unsigned long _rambase, _ramstart, _ramend;
unsigned long reserved_mem_dcache_on;
unsigned long reserved_mem_icache_on;
EXPORT_SYMBOL(memory_start);
EXPORT_SYMBOL(memory_end);
EXPORT_SYMBOL(physical_mem_end);
EXPORT_SYMBOL(_ramend);
EXPORT_SYMBOL(reserved_mem_dcache_on);
#ifdef CONFIG_MTD_UCLINUX
extern struct map_info uclinux_ram_map;
unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
unsigned long _ebss;
EXPORT_SYMBOL(memory_mtd_end);
EXPORT_SYMBOL(memory_mtd_start);
EXPORT_SYMBOL(mtd_size);
#endif
char __initdata command_line[COMMAND_LINE_SIZE];
void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
*init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
/* boot memmap, for parsing "memmap=" */
#define BFIN_MEMMAP_MAX 128 /* number of entries in bfin_memmap */
#define BFIN_MEMMAP_RAM 1
#define BFIN_MEMMAP_RESERVED 2
static struct bfin_memmap {
int nr_map;
struct bfin_memmap_entry {
unsigned long long addr; /* start of memory segment */
unsigned long long size;
unsigned long type;
} map[BFIN_MEMMAP_MAX];
} bfin_memmap __initdata;
/* for memmap sanitization */
struct change_member {
struct bfin_memmap_entry *pentry; /* pointer to original entry */
unsigned long long addr; /* address for this change point */
};
static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
static int early_init_clkin_hz(char *buf);
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
void __init generate_cplb_tables(void)
{
unsigned int cpu;
generate_cplb_tables_all();
/* Generate per-CPU I&D CPLB tables */
for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
generate_cplb_tables_cpu(cpu);
}
#endif
void __cpuinit bfin_setup_caches(unsigned int cpu)
{
#ifdef CONFIG_BFIN_ICACHE
bfin_icache_init(icplb_tbl[cpu]);
#endif
#ifdef CONFIG_BFIN_DCACHE
bfin_dcache_init(dcplb_tbl[cpu]);
#endif
/*
* In cache coherence emulation mode, we need to have the
* D-cache enabled before running any atomic operation which
* might involve cache invalidation (i.e. spinlock, rwlock).
* So printk's are deferred until then.
*/
#ifdef CONFIG_BFIN_ICACHE
printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
printk(KERN_INFO " External memory:"
# ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
" cacheable"
# else
" uncacheable"
# endif
" in instruction cache\n");
if (L2_LENGTH)
printk(KERN_INFO " L2 SRAM :"
# ifdef CONFIG_BFIN_L2_ICACHEABLE
" cacheable"
# else
" uncacheable"
# endif
" in instruction cache\n");
#else
printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
#endif
#ifdef CONFIG_BFIN_DCACHE
printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
printk(KERN_INFO " External memory:"
# if defined CONFIG_BFIN_EXTMEM_WRITEBACK
" cacheable (write-back)"
# elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
" cacheable (write-through)"
# else
" uncacheable"
# endif
" in data cache\n");
if (L2_LENGTH)
printk(KERN_INFO " L2 SRAM :"
# if defined CONFIG_BFIN_L2_WRITEBACK
" cacheable (write-back)"
# elif defined CONFIG_BFIN_L2_WRITETHROUGH
" cacheable (write-through)"
# else
" uncacheable"
# endif
" in data cache\n");
#else
printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
#endif
}
void __cpuinit bfin_setup_cpudata(unsigned int cpu)
{
struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
cpudata->idle = current;
cpudata->imemctl = bfin_read_IMEM_CONTROL();
cpudata->dmemctl = bfin_read_DMEM_CONTROL();
}
void __init bfin_cache_init(void)
{
#if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
generate_cplb_tables();
#endif
bfin_setup_caches(0);
}
void __init bfin_relocate_l1_mem(void)
{
unsigned long l1_code_length;
unsigned long l1_data_a_length;
unsigned long l1_data_b_length;
unsigned long l2_length;
early_shadow_stamp();
/*
* due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
* we know that everything about l1 text/data is nice and aligned,
* so copy by 4 byte chunks, and don't worry about overlapping
* src/dest.
*
* We can't use the dma_memcpy functions, since they can call
* scheduler functions which might be in L1 :( and core writes
* into L1 instruction cause bad access errors, so we are stuck,
* we are required to use DMA, but can't use the common dma
* functions. We can't use memcpy either - since that might be
* going to be in the relocated L1
*/
blackfin_dma_early_init();
/* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
l1_code_length = _etext_l1 - _stext_l1;
if (l1_code_length)
early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
/* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
l1_data_a_length = _sbss_l1 - _sdata_l1;
if (l1_data_a_length)
early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
/* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
if (l1_data_b_length)
early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
l1_data_a_length, l1_data_b_length);
early_dma_memcpy_done();
/* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
if (L2_LENGTH != 0) {
l2_length = _sbss_l2 - _stext_l2;
if (l2_length)
memcpy(_stext_l2, _l2_lma_start, l2_length);
}
}
/* add_memory_region to memmap */
static void __init add_memory_region(unsigned long long start,
unsigned long long size, int type)
{
int i;
i = bfin_memmap.nr_map;
if (i == BFIN_MEMMAP_MAX) {
printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
return;
}
bfin_memmap.map[i].addr = start;
bfin_memmap.map[i].size = size;
bfin_memmap.map[i].type = type;
bfin_memmap.nr_map++;
}
/*
* Sanitize the boot memmap, removing overlaps.
*/
static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
{
struct change_member *change_tmp;
unsigned long current_type, last_type;
unsigned long long last_addr;
int chgidx, still_changing;
int overlap_entries;
int new_entry;
int old_nr, new_nr, chg_nr;
int i;
/*
Visually we're performing the following (1,2,3,4 = memory types)
Sample memory map (w/overlaps):
____22__________________
______________________4_
____1111________________
_44_____________________
11111111________________
____________________33__
___________44___________
__________33333_________
______________22________
___________________2222_
_________111111111______
_____________________11_
_________________4______
Sanitized equivalent (no overlap):
1_______________________
_44_____________________
___1____________________
____22__________________
______11________________
_________1______________
__________3_____________
___________44___________
_____________33_________
_______________2________
________________1_______
_________________4______
___________________2____
____________________33__
______________________4_
*/
/* if there's only one memory region, don't bother */
if (*pnr_map < 2)
return -1;
old_nr = *pnr_map;
/* bail out if we find any unreasonable addresses in memmap */
for (i = 0; i < old_nr; i++)
if (map[i].addr + map[i].size < map[i].addr)
return -1;
/* create pointers for initial change-point information (for sorting) */
for (i = 0; i < 2*old_nr; i++)
change_point[i] = &change_point_list[i];
/* record all known change-points (starting and ending addresses),
omitting those that are for empty memory regions */
chgidx = 0;
for (i = 0; i < old_nr; i++) {
if (map[i].size != 0) {
change_point[chgidx]->addr = map[i].addr;
change_point[chgidx++]->pentry = &map[i];
change_point[chgidx]->addr = map[i].addr + map[i].size;
change_point[chgidx++]->pentry = &map[i];
}
}
chg_nr = chgidx; /* true number of change-points */
/* sort change-point list by memory addresses (low -> high) */
still_changing = 1;
while (still_changing) {
still_changing = 0;
for (i = 1; i < chg_nr; i++) {
/* if <current_addr> > <last_addr>, swap */
/* or, if current=<start_addr> & last=<end_addr>, swap */
if ((change_point[i]->addr < change_point[i-1]->addr) ||
((change_point[i]->addr == change_point[i-1]->addr) &&
(change_point[i]->addr == change_point[i]->pentry->addr) &&
(change_point[i-1]->addr != change_point[i-1]->pentry->addr))
) {
change_tmp = change_point[i];
change_point[i] = change_point[i-1];
change_point[i-1] = change_tmp;
still_changing = 1;
}
}
}
/* create a new memmap, removing overlaps */
overlap_entries = 0; /* number of entries in the overlap table */
new_entry = 0; /* index for creating new memmap entries */
last_type = 0; /* start with undefined memory type */
last_addr = 0; /* start with 0 as last starting address */
/* loop through change-points, determining affect on the new memmap */
for (chgidx = 0; chgidx < chg_nr; chgidx++) {
/* keep track of all overlapping memmap entries */
if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
/* add map entry to overlap list (> 1 entry implies an overlap) */
overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
} else {
/* remove entry from list (order independent, so swap with last) */
for (i = 0; i < overlap_entries; i++) {
if (overlap_list[i] == change_point[chgidx]->pentry)
overlap_list[i] = overlap_list[overlap_entries-1];
}
overlap_entries--;
}
/* if there are overlapping entries, decide which "type" to use */
/* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
current_type = 0;
for (i = 0; i < overlap_entries; i++)
if (overlap_list[i]->type > current_type)
current_type = overlap_list[i]->type;
/* continue building up new memmap based on this information */
if (current_type != last_type) {
if (last_type != 0) {
new_map[new_entry].size =
change_point[chgidx]->addr - last_addr;
/* move forward only if the new size was non-zero */
if (new_map[new_entry].size != 0)
if (++new_entry >= BFIN_MEMMAP_MAX)
break; /* no more space left for new entries */
}
if (current_type != 0) {
new_map[new_entry].addr = change_point[chgidx]->addr;
new_map[new_entry].type = current_type;
last_addr = change_point[chgidx]->addr;
}
last_type = current_type;
}
}
new_nr = new_entry; /* retain count for new entries */
/* copy new mapping into original location */
memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
*pnr_map = new_nr;
return 0;
}
static void __init print_memory_map(char *who)
{
int i;
for (i = 0; i < bfin_memmap.nr_map; i++) {
printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
bfin_memmap.map[i].addr,
bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
switch (bfin_memmap.map[i].type) {
case BFIN_MEMMAP_RAM:
printk(KERN_CONT "(usable)\n");
break;
case BFIN_MEMMAP_RESERVED:
printk(KERN_CONT "(reserved)\n");
break;
default:
printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
break;
}
}
}
static __init int parse_memmap(char *arg)
{
unsigned long long start_at, mem_size;
if (!arg)
return -EINVAL;
mem_size = memparse(arg, &arg);
if (*arg == '@') {
start_at = memparse(arg+1, &arg);
add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
} else if (*arg == '$') {
start_at = memparse(arg+1, &arg);
add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
}
return 0;
}
/*
* Initial parsing of the command line. Currently, we support:
* - Controlling the linux memory size: mem=xxx[KMG]
* - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
* $ -> reserved memory is dcacheable
* # -> reserved memory is icacheable
* - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
* @ from <start> to <start>+<mem>, type RAM
* $ from <start> to <start>+<mem>, type RESERVED
*/
static __init void parse_cmdline_early(char *cmdline_p)
{
char c = ' ', *to = cmdline_p;
unsigned int memsize;
for (;;) {
if (c == ' ') {
if (!memcmp(to, "mem=", 4)) {
to += 4;
memsize = memparse(to, &to);
if (memsize)
_ramend = memsize;
} else if (!memcmp(to, "max_mem=", 8)) {
to += 8;
memsize = memparse(to, &to);
if (memsize) {
physical_mem_end = memsize;
if (*to != ' ') {
if (*to == '$'
|| *(to + 1) == '$')
reserved_mem_dcache_on = 1;
if (*to == '#'
|| *(to + 1) == '#')
reserved_mem_icache_on = 1;
}
}
} else if (!memcmp(to, "clkin_hz=", 9)) {
to += 9;
early_init_clkin_hz(to);
#ifdef CONFIG_EARLY_PRINTK
} else if (!memcmp(to, "earlyprintk=", 12)) {
to += 12;
setup_early_printk(to);
#endif
} else if (!memcmp(to, "memmap=", 7)) {
to += 7;
parse_memmap(to);
}
}
c = *(to++);
if (!c)
break;
}
}
/*
* Setup memory defaults from user config.
* The physical memory layout looks like:
*
* [_rambase, _ramstart]: kernel image
* [memory_start, memory_end]: dynamic memory managed by kernel
* [memory_end, _ramend]: reserved memory
* [memory_mtd_start(memory_end),
* memory_mtd_start + mtd_size]: rootfs (if any)
* [_ramend - DMA_UNCACHED_REGION,
* _ramend]: uncached DMA region
* [_ramend, physical_mem_end]: memory not managed by kernel
*/
static __init void memory_setup(void)
{
#ifdef CONFIG_MTD_UCLINUX
unsigned long mtd_phys = 0;
#endif
unsigned long max_mem;
_rambase = (unsigned long)_stext;
_ramstart = (unsigned long)_end;
if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
console_init();
panic("DMA region exceeds memory limit: %lu.",
_ramend - _ramstart);
}
max_mem = memory_end = _ramend - DMA_UNCACHED_REGION;
#if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
/* Due to a Hardware Anomaly we need to limit the size of usable
* instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
* 05000263 - Hardware loop corrupted when taking an ICPLB exception
*/
# if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
if (max_mem >= 56 * 1024 * 1024)
max_mem = 56 * 1024 * 1024;
# else
if (max_mem >= 60 * 1024 * 1024)
max_mem = 60 * 1024 * 1024;
# endif /* CONFIG_DEBUG_HUNT_FOR_ZERO */
#endif /* ANOMALY_05000263 */
#ifdef CONFIG_MPU
/* Round up to multiple of 4MB */
memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
#else
memory_start = PAGE_ALIGN(_ramstart);
#endif
#if defined(CONFIG_MTD_UCLINUX)
/* generic memory mapped MTD driver */
memory_mtd_end = memory_end;
mtd_phys = _ramstart;
mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
# if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
mtd_size =
PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
# endif
# if defined(CONFIG_CRAMFS)
if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
# endif
# if defined(CONFIG_ROMFS_FS)
if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
&& ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1) {
mtd_size =
PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
/* ROM_FS is XIP, so if we found it, we need to limit memory */
if (memory_end > max_mem) {
pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
memory_end = max_mem;
}
}
# endif /* CONFIG_ROMFS_FS */
/* Since the default MTD_UCLINUX has no magic number, we just blindly
* read 8 past the end of the kernel's image, and look at it.
* When no image is attached, mtd_size is set to a random number
* Do some basic sanity checks before operating on things
*/
if (mtd_size == 0 || memory_end <= mtd_size) {
pr_emerg("Could not find valid ram mtd attached.\n");
} else {
memory_end -= mtd_size;
/* Relocate MTD image to the top of memory after the uncached memory area */
uclinux_ram_map.phys = memory_mtd_start = memory_end;
uclinux_ram_map.size = mtd_size;
pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
_end, mtd_size, (void *)memory_mtd_start);
dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
}
#endif /* CONFIG_MTD_UCLINUX */
/* We need lo limit memory, since everything could have a text section
* of userspace in it, and expose anomaly 05000263. If the anomaly
* doesn't exist, or we don't need to - then dont.
*/
if (memory_end > max_mem) {
pr_info("Limiting kernel memory to %liMB due to anomaly 05000263\n", max_mem >> 20);
memory_end = max_mem;
}
#ifdef CONFIG_MPU
page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
#endif
#if !defined(CONFIG_MTD_UCLINUX)
/*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
memory_end -= SIZE_4K;
#endif
init_mm.start_code = (unsigned long)_stext;
init_mm.end_code = (unsigned long)_etext;
init_mm.end_data = (unsigned long)_edata;
init_mm.brk = (unsigned long)0;
printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
printk(KERN_INFO "Memory map:\n"
" fixedcode = 0x%p-0x%p\n"
" text = 0x%p-0x%p\n"
" rodata = 0x%p-0x%p\n"
" bss = 0x%p-0x%p\n"
" data = 0x%p-0x%p\n"
" stack = 0x%p-0x%p\n"
" init = 0x%p-0x%p\n"
" available = 0x%p-0x%p\n"
#ifdef CONFIG_MTD_UCLINUX
" rootfs = 0x%p-0x%p\n"
#endif
#if DMA_UNCACHED_REGION > 0
" DMA Zone = 0x%p-0x%p\n"
#endif
, (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
_stext, _etext,
__start_rodata, __end_rodata,
__bss_start, __bss_stop,
_sdata, _edata,
(void *)&init_thread_union,
(void *)((int)(&init_thread_union) + 0x2000),
__init_begin, __init_end,
(void *)_ramstart, (void *)memory_end
#ifdef CONFIG_MTD_UCLINUX
, (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
#endif
#if DMA_UNCACHED_REGION > 0
, (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
#endif
);
}
/*
* Find the lowest, highest page frame number we have available
*/
void __init find_min_max_pfn(void)
{
int i;
max_pfn = 0;
min_low_pfn = memory_end;
for (i = 0; i < bfin_memmap.nr_map; i++) {
unsigned long start, end;
/* RAM? */
if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
continue;
start = PFN_UP(bfin_memmap.map[i].addr);
end = PFN_DOWN(bfin_memmap.map[i].addr +
bfin_memmap.map[i].size);
if (start >= end)
continue;
if (end > max_pfn)
max_pfn = end;
if (start < min_low_pfn)
min_low_pfn = start;
}
}
static __init void setup_bootmem_allocator(void)
{
int bootmap_size;
int i;
unsigned long start_pfn, end_pfn;
unsigned long curr_pfn, last_pfn, size;
/* mark memory between memory_start and memory_end usable */
add_memory_region(memory_start,
memory_end - memory_start, BFIN_MEMMAP_RAM);
/* sanity check for overlap */
sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
print_memory_map("boot memmap");
/* initialize globals in linux/bootmem.h */
find_min_max_pfn();
/* pfn of the last usable page frame */
if (max_pfn > memory_end >> PAGE_SHIFT)
max_pfn = memory_end >> PAGE_SHIFT;
/* pfn of last page frame directly mapped by kernel */
max_low_pfn = max_pfn;
/* pfn of the first usable page frame after kernel image*/
if (min_low_pfn < memory_start >> PAGE_SHIFT)
min_low_pfn = memory_start >> PAGE_SHIFT;
start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
end_pfn = memory_end >> PAGE_SHIFT;
/*
* give all the memory to the bootmap allocator, tell it to put the
* boot mem_map at the start of memory.
*/
bootmap_size = init_bootmem_node(NODE_DATA(0),
memory_start >> PAGE_SHIFT, /* map goes here */
start_pfn, end_pfn);
/* register the memmap regions with the bootmem allocator */
for (i = 0; i < bfin_memmap.nr_map; i++) {
/*
* Reserve usable memory
*/
if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
continue;
/*
* We are rounding up the start address of usable memory:
*/
curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
if (curr_pfn >= end_pfn)
continue;
/*
* ... and at the end of the usable range downwards:
*/
last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
bfin_memmap.map[i].size);
if (last_pfn > end_pfn)
last_pfn = end_pfn;
/*
* .. finally, did all the rounding and playing
* around just make the area go away?
*/
if (last_pfn <= curr_pfn)
continue;
size = last_pfn - curr_pfn;
free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
}
/* reserve memory before memory_start, including bootmap */
reserve_bootmem(PAGE_OFFSET,
memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
BOOTMEM_DEFAULT);
}
#define EBSZ_TO_MEG(ebsz) \
({ \
int meg = 0; \
switch (ebsz & 0xf) { \
case 0x1: meg = 16; break; \
case 0x3: meg = 32; break; \
case 0x5: meg = 64; break; \
case 0x7: meg = 128; break; \
case 0x9: meg = 256; break; \
case 0xb: meg = 512; break; \
} \
meg; \
})
static inline int __init get_mem_size(void)
{
#if defined(EBIU_SDBCTL)
# if defined(BF561_FAMILY)
int ret = 0;
u32 sdbctl = bfin_read_EBIU_SDBCTL();
ret += EBSZ_TO_MEG(sdbctl >> 0);
ret += EBSZ_TO_MEG(sdbctl >> 8);
ret += EBSZ_TO_MEG(sdbctl >> 16);
ret += EBSZ_TO_MEG(sdbctl >> 24);
return ret;
# else
return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
# endif
#elif defined(EBIU_DDRCTL1)
u32 ddrctl = bfin_read_EBIU_DDRCTL1();
int ret = 0;
switch (ddrctl & 0xc0000) {
case DEVSZ_64: ret = 64 / 8;
case DEVSZ_128: ret = 128 / 8;
case DEVSZ_256: ret = 256 / 8;
case DEVSZ_512: ret = 512 / 8;
}
switch (ddrctl & 0x30000) {
case DEVWD_4: ret *= 2;
case DEVWD_8: ret *= 2;
case DEVWD_16: break;
}
if ((ddrctl & 0xc000) == 0x4000)
ret *= 2;
return ret;
#endif
BUG();
}
void __init setup_arch(char **cmdline_p)
{
unsigned long sclk, cclk;
enable_shadow_console();
/* Check to make sure we are running on the right processor */
if (unlikely(CPUID != bfin_cpuid()))
printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
CPU, bfin_cpuid(), bfin_revid());
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#endif
#if defined(CONFIG_CMDLINE_BOOL)
strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
command_line[sizeof(command_line) - 1] = 0;
#endif
/* Keep a copy of command line */
*cmdline_p = &command_line[0];
memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
memset(&bfin_memmap, 0, sizeof(bfin_memmap));
/* If the user does not specify things on the command line, use
* what the bootloader set things up as
*/
physical_mem_end = 0;
parse_cmdline_early(&command_line[0]);
if (_ramend == 0)
_ramend = get_mem_size() * 1024 * 1024;
if (physical_mem_end == 0)
physical_mem_end = _ramend;
memory_setup();
/* Initialize Async memory banks */
bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
bfin_write_EBIU_AMGCTL(AMGCTLVAL);
#ifdef CONFIG_EBIU_MBSCTLVAL
bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
#endif
cclk = get_cclk();
sclk = get_sclk();
if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
#ifdef BF561_FAMILY
if (ANOMALY_05000266) {
bfin_read_IMDMA_D0_IRQ_STATUS();
bfin_read_IMDMA_D1_IRQ_STATUS();
}
#endif
printk(KERN_INFO "Hardware Trace ");
if (bfin_read_TBUFCTL() & 0x1)
printk(KERN_CONT "Active ");
else
printk(KERN_CONT "Off ");
if (bfin_read_TBUFCTL() & 0x2)
printk(KERN_CONT "and Enabled\n");
else
printk(KERN_CONT "and Disabled\n");
printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
/* Newer parts mirror SWRST bits in SYSCR */
#if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
defined(CONFIG_BF538) || defined(CONFIG_BF539)
_bfin_swrst = bfin_read_SWRST();
#else
/* Clear boot mode field */
_bfin_swrst = bfin_read_SYSCR() & ~0xf;
#endif
#ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
#endif
#ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
#endif
#ifdef CONFIG_SMP
if (_bfin_swrst & SWRST_DBL_FAULT_A) {
#else
if (_bfin_swrst & RESET_DOUBLE) {
#endif
printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
#ifdef CONFIG_DEBUG_DOUBLEFAULT
/* We assume the crashing kernel, and the current symbol table match */
printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
(int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
printk(KERN_NOTICE " DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
printk(KERN_NOTICE " ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
#endif
printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
init_retx);
} else if (_bfin_swrst & RESET_WDOG)
printk(KERN_INFO "Recovering from Watchdog event\n");
else if (_bfin_swrst & RESET_SOFTWARE)
printk(KERN_NOTICE "Reset caused by Software reset\n");
printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
if (bfin_compiled_revid() == 0xffff)
printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
else if (bfin_compiled_revid() == -1)
printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
else
printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
if (likely(CPUID == bfin_cpuid())) {
if (bfin_revid() != bfin_compiled_revid()) {
if (bfin_compiled_revid() == -1)
printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
bfin_revid());
else if (bfin_compiled_revid() != 0xffff) {
printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
bfin_compiled_revid(), bfin_revid());
if (bfin_compiled_revid() > bfin_revid())
panic("Error: you are missing anomaly workarounds for this rev");
}
}
if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
CPU, bfin_revid());
}
printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
cclk / 1000000, sclk / 1000000);
setup_bootmem_allocator();
paging_init();
/* Copy atomic sequences to their fixed location, and sanity check that
these locations are the ones that we advertise to userspace. */
memcpy((void *)FIXED_CODE_START, &fixed_code_start,
FIXED_CODE_END - FIXED_CODE_START);
BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
!= SIGRETURN_STUB - FIXED_CODE_START);
BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
!= ATOMIC_XCHG32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
!= ATOMIC_CAS32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
!= ATOMIC_ADD32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
!= ATOMIC_SUB32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
!= ATOMIC_IOR32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
!= ATOMIC_AND32 - FIXED_CODE_START);
BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
!= ATOMIC_XOR32 - FIXED_CODE_START);
BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
!= SAFE_USER_INSTRUCTION - FIXED_CODE_START);
#ifdef CONFIG_SMP
platform_init_cpus();
#endif
init_exception_vectors();
bfin_cache_init(); /* Initialize caches for the boot CPU */
}
static int __init topology_init(void)
{
unsigned int cpu;
/* Record CPU-private information for the boot processor. */
bfin_setup_cpudata(0);
for_each_possible_cpu(cpu) {
register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
}
return 0;
}
subsys_initcall(topology_init);
/* Get the input clock frequency */
static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
static u_long get_clkin_hz(void)
{
return cached_clkin_hz;
}
static int __init early_init_clkin_hz(char *buf)
{
cached_clkin_hz = simple_strtoul(buf, NULL, 0);
#ifdef BFIN_KERNEL_CLOCK
if (cached_clkin_hz != CONFIG_CLKIN_HZ)
panic("cannot change clkin_hz when reprogramming clocks");
#endif
return 1;
}
early_param("clkin_hz=", early_init_clkin_hz);
/* Get the voltage input multiplier */
static u_long get_vco(void)
{
static u_long cached_vco;
u_long msel, pll_ctl;
/* The assumption here is that VCO never changes at runtime.
* If, someday, we support that, then we'll have to change this.
*/
if (cached_vco)
return cached_vco;
pll_ctl = bfin_read_PLL_CTL();
msel = (pll_ctl >> 9) & 0x3F;
if (0 == msel)
msel = 64;
cached_vco = get_clkin_hz();
cached_vco >>= (1 & pll_ctl); /* DF bit */
cached_vco *= msel;
return cached_vco;
}
/* Get the Core clock */
u_long get_cclk(void)
{
static u_long cached_cclk_pll_div, cached_cclk;
u_long csel, ssel;
if (bfin_read_PLL_STAT() & 0x1)
return get_clkin_hz();
ssel = bfin_read_PLL_DIV();
if (ssel == cached_cclk_pll_div)
return cached_cclk;
else
cached_cclk_pll_div = ssel;
csel = ((ssel >> 4) & 0x03);
ssel &= 0xf;
if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
cached_cclk = get_vco() / ssel;
else
cached_cclk = get_vco() >> csel;
return cached_cclk;
}
EXPORT_SYMBOL(get_cclk);
/* Get the System clock */
u_long get_sclk(void)
{
static u_long cached_sclk;
u_long ssel;
/* The assumption here is that SCLK never changes at runtime.
* If, someday, we support that, then we'll have to change this.
*/
if (cached_sclk)
return cached_sclk;
if (bfin_read_PLL_STAT() & 0x1)
return get_clkin_hz();
ssel = bfin_read_PLL_DIV() & 0xf;
if (0 == ssel) {
printk(KERN_WARNING "Invalid System Clock\n");
ssel = 1;
}
cached_sclk = get_vco() / ssel;
return cached_sclk;
}
EXPORT_SYMBOL(get_sclk);
unsigned long sclk_to_usecs(unsigned long sclk)
{
u64 tmp = USEC_PER_SEC * (u64)sclk;
do_div(tmp, get_sclk());
return tmp;
}
EXPORT_SYMBOL(sclk_to_usecs);
unsigned long usecs_to_sclk(unsigned long usecs)
{
u64 tmp = get_sclk() * (u64)usecs;
do_div(tmp, USEC_PER_SEC);
return tmp;
}
EXPORT_SYMBOL(usecs_to_sclk);
/*
* Get CPU information for use by the procfs.
*/
static int show_cpuinfo(struct seq_file *m, void *v)
{
char *cpu, *mmu, *fpu, *vendor, *cache;
uint32_t revid;
int cpu_num = *(unsigned int *)v;
u_long sclk, cclk;
u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
cpu = CPU;
mmu = "none";
fpu = "none";
revid = bfin_revid();
sclk = get_sclk();
cclk = get_cclk();
switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
case 0xca:
vendor = "Analog Devices";
break;
default:
vendor = "unknown";
break;
}
seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
if (CPUID == bfin_cpuid())
seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
else
seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
CPUID, bfin_cpuid());
seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
"stepping\t: %d ",
cpu, cclk/1000000, sclk/1000000,
#ifdef CONFIG_MPU
"mpu on",
#else
"mpu off",
#endif
revid);
if (bfin_revid() != bfin_compiled_revid()) {
if (bfin_compiled_revid() == -1)
seq_printf(m, "(Compiled for Rev none)");
else if (bfin_compiled_revid() == 0xffff)
seq_printf(m, "(Compiled for Rev any)");
else
seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
}
seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
cclk/1000000, cclk%1000000,
sclk/1000000, sclk%1000000);
seq_printf(m, "bogomips\t: %lu.%02lu\n"
"Calibration\t: %lu loops\n",
(loops_per_jiffy * HZ) / 500000,
((loops_per_jiffy * HZ) / 5000) % 100,
(loops_per_jiffy * HZ));
/* Check Cache configutation */
switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
case ACACHE_BSRAM:
cache = "dbank-A/B\t: cache/sram";
dcache_size = 16;
dsup_banks = 1;
break;
case ACACHE_BCACHE:
cache = "dbank-A/B\t: cache/cache";
dcache_size = 32;
dsup_banks = 2;
break;
case ASRAM_BSRAM:
cache = "dbank-A/B\t: sram/sram";
dcache_size = 0;
dsup_banks = 0;
break;
default:
cache = "unknown";
dcache_size = 0;
dsup_banks = 0;
break;
}
/* Is it turned on? */
if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
dcache_size = 0;
if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
icache_size = 0;
seq_printf(m, "cache size\t: %d KB(L1 icache) "
"%d KB(L1 dcache) %d KB(L2 cache)\n",
icache_size, dcache_size, 0);
seq_printf(m, "%s\n", cache);
seq_printf(m, "external memory\t: "
#if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
"cacheable"
#else
"uncacheable"
#endif
" in instruction cache\n");
seq_printf(m, "external memory\t: "
#if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
"cacheable (write-back)"
#elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
"cacheable (write-through)"
#else
"uncacheable"
#endif
" in data cache\n");
if (icache_size)
seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
else
seq_printf(m, "icache setup\t: off\n");
seq_printf(m,
"dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
BFIN_DLINES);
#ifdef __ARCH_SYNC_CORE_DCACHE
seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
#endif
#ifdef __ARCH_SYNC_CORE_ICACHE
seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
#endif
if (cpu_num != num_possible_cpus() - 1)
return 0;
if (L2_LENGTH) {
seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
seq_printf(m, "L2 SRAM\t\t: "
#if defined(CONFIG_BFIN_L2_ICACHEABLE)
"cacheable"
#else
"uncacheable"
#endif
" in instruction cache\n");
seq_printf(m, "L2 SRAM\t\t: "
#if defined(CONFIG_BFIN_L2_WRITEBACK)
"cacheable (write-back)"
#elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
"cacheable (write-through)"
#else
"uncacheable"
#endif
" in data cache\n");
}
seq_printf(m, "board name\t: %s\n", bfin_board_name);
seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
((int)memory_end - (int)_stext) >> 10,
_stext,
(void *)memory_end);
seq_printf(m, "\n");
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
if (*pos == 0)
*pos = first_cpu(cpu_online_map);
if (*pos >= num_online_cpus())
return NULL;
return pos;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
*pos = next_cpu(*pos, cpu_online_map);
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start = c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
void __init cmdline_init(const char *r0)
{
early_shadow_stamp();
if (r0)
strncpy(command_line, r0, COMMAND_LINE_SIZE);
}