172 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
/*
 | 
						|
 * umul.S:      This routine was taken from glibc-1.09 and is covered
 | 
						|
 *              by the GNU Library General Public License Version 2.
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Unsigned multiply.  Returns %o0 * %o1 in %o1%o0 (i.e., %o1 holds the
 | 
						|
 * upper 32 bits of the 64-bit product).
 | 
						|
 *
 | 
						|
 * This code optimizes short (less than 13-bit) multiplies.  Short
 | 
						|
 * multiplies require 25 instruction cycles, and long ones require
 | 
						|
 * 45 instruction cycles.
 | 
						|
 *
 | 
						|
 * On return, overflow has occurred (%o1 is not zero) if and only if
 | 
						|
 * the Z condition code is clear, allowing, e.g., the following:
 | 
						|
 *
 | 
						|
 *	call	.umul
 | 
						|
 *	nop
 | 
						|
 *	bnz	overflow	(or tnz)
 | 
						|
 */
 | 
						|
 | 
						|
	.globl .umul
 | 
						|
	.globl _Umul
 | 
						|
.umul:
 | 
						|
_Umul:	/* needed for export */
 | 
						|
	or	%o0, %o1, %o4
 | 
						|
	mov	%o0, %y		! multiplier -> Y
 | 
						|
 | 
						|
	andncc	%o4, 0xfff, %g0	! test bits 12..31 of *both* args
 | 
						|
	be	Lmul_shortway	! if zero, can do it the short way
 | 
						|
	 andcc	%g0, %g0, %o4	! zero the partial product and clear N and V
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Long multiply.  32 steps, followed by a final shift step.
 | 
						|
	 */
 | 
						|
	mulscc	%o4, %o1, %o4	! 1
 | 
						|
	mulscc	%o4, %o1, %o4	! 2
 | 
						|
	mulscc	%o4, %o1, %o4	! 3
 | 
						|
	mulscc	%o4, %o1, %o4	! 4
 | 
						|
	mulscc	%o4, %o1, %o4	! 5
 | 
						|
	mulscc	%o4, %o1, %o4	! 6
 | 
						|
	mulscc	%o4, %o1, %o4	! 7
 | 
						|
	mulscc	%o4, %o1, %o4	! 8
 | 
						|
	mulscc	%o4, %o1, %o4	! 9
 | 
						|
	mulscc	%o4, %o1, %o4	! 10
 | 
						|
	mulscc	%o4, %o1, %o4	! 11
 | 
						|
	mulscc	%o4, %o1, %o4	! 12
 | 
						|
	mulscc	%o4, %o1, %o4	! 13
 | 
						|
	mulscc	%o4, %o1, %o4	! 14
 | 
						|
	mulscc	%o4, %o1, %o4	! 15
 | 
						|
	mulscc	%o4, %o1, %o4	! 16
 | 
						|
	mulscc	%o4, %o1, %o4	! 17
 | 
						|
	mulscc	%o4, %o1, %o4	! 18
 | 
						|
	mulscc	%o4, %o1, %o4	! 19
 | 
						|
	mulscc	%o4, %o1, %o4	! 20
 | 
						|
	mulscc	%o4, %o1, %o4	! 21
 | 
						|
	mulscc	%o4, %o1, %o4	! 22
 | 
						|
	mulscc	%o4, %o1, %o4	! 23
 | 
						|
	mulscc	%o4, %o1, %o4	! 24
 | 
						|
	mulscc	%o4, %o1, %o4	! 25
 | 
						|
	mulscc	%o4, %o1, %o4	! 26
 | 
						|
	mulscc	%o4, %o1, %o4	! 27
 | 
						|
	mulscc	%o4, %o1, %o4	! 28
 | 
						|
	mulscc	%o4, %o1, %o4	! 29
 | 
						|
	mulscc	%o4, %o1, %o4	! 30
 | 
						|
	mulscc	%o4, %o1, %o4	! 31
 | 
						|
	mulscc	%o4, %o1, %o4	! 32
 | 
						|
	mulscc	%o4, %g0, %o4	! final shift
 | 
						|
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Normally, with the shift-and-add approach, if both numbers are
 | 
						|
	 * positive you get the correct result.  With 32-bit two's-complement
 | 
						|
	 * numbers, -x is represented as
 | 
						|
	 *
 | 
						|
	 *		  x		    32
 | 
						|
	 *	( 2  -  ------ ) mod 2  *  2
 | 
						|
	 *		   32
 | 
						|
	 *		  2
 | 
						|
	 *
 | 
						|
	 * (the `mod 2' subtracts 1 from 1.bbbb).  To avoid lots of 2^32s,
 | 
						|
	 * we can treat this as if the radix point were just to the left
 | 
						|
	 * of the sign bit (multiply by 2^32), and get
 | 
						|
	 *
 | 
						|
	 *	-x  =  (2 - x) mod 2
 | 
						|
	 *
 | 
						|
	 * Then, ignoring the `mod 2's for convenience:
 | 
						|
	 *
 | 
						|
	 *   x *  y	= xy
 | 
						|
	 *  -x *  y	= 2y - xy
 | 
						|
	 *   x * -y	= 2x - xy
 | 
						|
	 *  -x * -y	= 4 - 2x - 2y + xy
 | 
						|
	 *
 | 
						|
	 * For signed multiplies, we subtract (x << 32) from the partial
 | 
						|
	 * product to fix this problem for negative multipliers (see mul.s).
 | 
						|
	 * Because of the way the shift into the partial product is calculated
 | 
						|
	 * (N xor V), this term is automatically removed for the multiplicand,
 | 
						|
	 * so we don't have to adjust.
 | 
						|
	 *
 | 
						|
	 * But for unsigned multiplies, the high order bit wasn't a sign bit,
 | 
						|
	 * and the correction is wrong.  So for unsigned multiplies where the
 | 
						|
	 * high order bit is one, we end up with xy - (y << 32).  To fix it
 | 
						|
	 * we add y << 32.
 | 
						|
	 */
 | 
						|
#if 0
 | 
						|
	tst	%o1
 | 
						|
	bl,a	1f		! if %o1 < 0 (high order bit = 1),
 | 
						|
	 add	%o4, %o0, %o4	! %o4 += %o0 (add y to upper half)
 | 
						|
 | 
						|
1:
 | 
						|
	rd	%y, %o0		! get lower half of product
 | 
						|
	retl
 | 
						|
	 addcc	%o4, %g0, %o1	! put upper half in place and set Z for %o1==0
 | 
						|
#else
 | 
						|
	/* Faster code from tege@sics.se.  */
 | 
						|
	sra	%o1, 31, %o2	! make mask from sign bit
 | 
						|
	and	%o0, %o2, %o2	! %o2 = 0 or %o0, depending on sign of %o1
 | 
						|
	rd	%y, %o0		! get lower half of product
 | 
						|
	retl
 | 
						|
	 addcc	%o4, %o2, %o1	! add compensation and put upper half in place
 | 
						|
#endif
 | 
						|
 | 
						|
Lmul_shortway:
 | 
						|
	/*
 | 
						|
	 * Short multiply.  12 steps, followed by a final shift step.
 | 
						|
	 * The resulting bits are off by 12 and (32-12) = 20 bit positions,
 | 
						|
	 * but there is no problem with %o0 being negative (unlike above),
 | 
						|
	 * and overflow is impossible (the answer is at most 24 bits long).
 | 
						|
	 */
 | 
						|
	mulscc	%o4, %o1, %o4	! 1
 | 
						|
	mulscc	%o4, %o1, %o4	! 2
 | 
						|
	mulscc	%o4, %o1, %o4	! 3
 | 
						|
	mulscc	%o4, %o1, %o4	! 4
 | 
						|
	mulscc	%o4, %o1, %o4	! 5
 | 
						|
	mulscc	%o4, %o1, %o4	! 6
 | 
						|
	mulscc	%o4, %o1, %o4	! 7
 | 
						|
	mulscc	%o4, %o1, %o4	! 8
 | 
						|
	mulscc	%o4, %o1, %o4	! 9
 | 
						|
	mulscc	%o4, %o1, %o4	! 10
 | 
						|
	mulscc	%o4, %o1, %o4	! 11
 | 
						|
	mulscc	%o4, %o1, %o4	! 12
 | 
						|
	mulscc	%o4, %g0, %o4	! final shift
 | 
						|
 | 
						|
	/*
 | 
						|
	 * %o4 has 20 of the bits that should be in the result; %y has
 | 
						|
	 * the bottom 12 (as %y's top 12).  That is:
 | 
						|
	 *
 | 
						|
	 *	  %o4		    %y
 | 
						|
	 * +----------------+----------------+
 | 
						|
	 * | -12- |   -20-  | -12- |   -20-  |
 | 
						|
	 * +------(---------+------)---------+
 | 
						|
	 *	   -----result-----
 | 
						|
	 *
 | 
						|
	 * The 12 bits of %o4 left of the `result' area are all zero;
 | 
						|
	 * in fact, all top 20 bits of %o4 are zero.
 | 
						|
	 */
 | 
						|
 | 
						|
	rd	%y, %o5
 | 
						|
	sll	%o4, 12, %o0	! shift middle bits left 12
 | 
						|
	srl	%o5, 20, %o5	! shift low bits right 20
 | 
						|
	or	%o5, %o0, %o0
 | 
						|
	retl
 | 
						|
	 addcc	%g0, %g0, %o1	! %o1 = zero, and set Z
 | 
						|
 | 
						|
	.globl	.umul_patch
 | 
						|
.umul_patch:
 | 
						|
	umul	%o0, %o1, %o0
 | 
						|
	retl
 | 
						|
	 rd	%y, %o1
 | 
						|
	nop
 |