2247 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2247 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel support for the ptrace() and syscall tracing interfaces.
 | |
|  *
 | |
|  * Copyright (C) 1999-2005 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  * Copyright (C) 2006 Intel Co
 | |
|  *  2006-08-12	- IA64 Native Utrace implementation support added by
 | |
|  *	Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
 | |
|  *
 | |
|  * Derived from the x86 and Alpha versions.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/audit.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/regset.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/tracehook.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/ptrace_offsets.h>
 | |
| #include <asm/rse.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unwind.h>
 | |
| #ifdef CONFIG_PERFMON
 | |
| #include <asm/perfmon.h>
 | |
| #endif
 | |
| 
 | |
| #include "entry.h"
 | |
| 
 | |
| /*
 | |
|  * Bits in the PSR that we allow ptrace() to change:
 | |
|  *	be, up, ac, mfl, mfh (the user mask; five bits total)
 | |
|  *	db (debug breakpoint fault; one bit)
 | |
|  *	id (instruction debug fault disable; one bit)
 | |
|  *	dd (data debug fault disable; one bit)
 | |
|  *	ri (restart instruction; two bits)
 | |
|  *	is (instruction set; one bit)
 | |
|  */
 | |
| #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS	\
 | |
| 		   | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
 | |
| 
 | |
| #define MASK(nbits)	((1UL << (nbits)) - 1)	/* mask with NBITS bits set */
 | |
| #define PFM_MASK	MASK(38)
 | |
| 
 | |
| #define PTRACE_DEBUG	0
 | |
| 
 | |
| #if PTRACE_DEBUG
 | |
| # define dprintk(format...)	printk(format)
 | |
| # define inline
 | |
| #else
 | |
| # define dprintk(format...)
 | |
| #endif
 | |
| 
 | |
| /* Return TRUE if PT was created due to kernel-entry via a system-call.  */
 | |
| 
 | |
| static inline int
 | |
| in_syscall (struct pt_regs *pt)
 | |
| {
 | |
| 	return (long) pt->cr_ifs >= 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
 | |
|  * bitset where bit i is set iff the NaT bit of register i is set.
 | |
|  */
 | |
| unsigned long
 | |
| ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
 | |
| {
 | |
| #	define GET_BITS(first, last, unat)				\
 | |
| 	({								\
 | |
| 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
 | |
| 		unsigned long nbits = (last - first + 1);		\
 | |
| 		unsigned long mask = MASK(nbits) << first;		\
 | |
| 		unsigned long dist;					\
 | |
| 		if (bit < first)					\
 | |
| 			dist = 64 + bit - first;			\
 | |
| 		else							\
 | |
| 			dist = bit - first;				\
 | |
| 		ia64_rotr(unat, dist) & mask;				\
 | |
| 	})
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	/*
 | |
| 	 * Registers that are stored consecutively in struct pt_regs
 | |
| 	 * can be handled in parallel.  If the register order in
 | |
| 	 * struct_pt_regs changes, this code MUST be updated.
 | |
| 	 */
 | |
| 	val  = GET_BITS( 1,  1, scratch_unat);
 | |
| 	val |= GET_BITS( 2,  3, scratch_unat);
 | |
| 	val |= GET_BITS(12, 13, scratch_unat);
 | |
| 	val |= GET_BITS(14, 14, scratch_unat);
 | |
| 	val |= GET_BITS(15, 15, scratch_unat);
 | |
| 	val |= GET_BITS( 8, 11, scratch_unat);
 | |
| 	val |= GET_BITS(16, 31, scratch_unat);
 | |
| 	return val;
 | |
| 
 | |
| #	undef GET_BITS
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set the NaT bits for the scratch registers according to NAT and
 | |
|  * return the resulting unat (assuming the scratch registers are
 | |
|  * stored in PT).
 | |
|  */
 | |
| unsigned long
 | |
| ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
 | |
| {
 | |
| #	define PUT_BITS(first, last, nat)				\
 | |
| 	({								\
 | |
| 		unsigned long bit = ia64_unat_pos(&pt->r##first);	\
 | |
| 		unsigned long nbits = (last - first + 1);		\
 | |
| 		unsigned long mask = MASK(nbits) << first;		\
 | |
| 		long dist;						\
 | |
| 		if (bit < first)					\
 | |
| 			dist = 64 + bit - first;			\
 | |
| 		else							\
 | |
| 			dist = bit - first;				\
 | |
| 		ia64_rotl(nat & mask, dist);				\
 | |
| 	})
 | |
| 	unsigned long scratch_unat;
 | |
| 
 | |
| 	/*
 | |
| 	 * Registers that are stored consecutively in struct pt_regs
 | |
| 	 * can be handled in parallel.  If the register order in
 | |
| 	 * struct_pt_regs changes, this code MUST be updated.
 | |
| 	 */
 | |
| 	scratch_unat  = PUT_BITS( 1,  1, nat);
 | |
| 	scratch_unat |= PUT_BITS( 2,  3, nat);
 | |
| 	scratch_unat |= PUT_BITS(12, 13, nat);
 | |
| 	scratch_unat |= PUT_BITS(14, 14, nat);
 | |
| 	scratch_unat |= PUT_BITS(15, 15, nat);
 | |
| 	scratch_unat |= PUT_BITS( 8, 11, nat);
 | |
| 	scratch_unat |= PUT_BITS(16, 31, nat);
 | |
| 
 | |
| 	return scratch_unat;
 | |
| 
 | |
| #	undef PUT_BITS
 | |
| }
 | |
| 
 | |
| #define IA64_MLX_TEMPLATE	0x2
 | |
| #define IA64_MOVL_OPCODE	6
 | |
| 
 | |
| void
 | |
| ia64_increment_ip (struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long w0, ri = ia64_psr(regs)->ri + 1;
 | |
| 
 | |
| 	if (ri > 2) {
 | |
| 		ri = 0;
 | |
| 		regs->cr_iip += 16;
 | |
| 	} else if (ri == 2) {
 | |
| 		get_user(w0, (char __user *) regs->cr_iip + 0);
 | |
| 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 | |
| 			/*
 | |
| 			 * rfi'ing to slot 2 of an MLX bundle causes
 | |
| 			 * an illegal operation fault.  We don't want
 | |
| 			 * that to happen...
 | |
| 			 */
 | |
| 			ri = 0;
 | |
| 			regs->cr_iip += 16;
 | |
| 		}
 | |
| 	}
 | |
| 	ia64_psr(regs)->ri = ri;
 | |
| }
 | |
| 
 | |
| void
 | |
| ia64_decrement_ip (struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long w0, ri = ia64_psr(regs)->ri - 1;
 | |
| 
 | |
| 	if (ia64_psr(regs)->ri == 0) {
 | |
| 		regs->cr_iip -= 16;
 | |
| 		ri = 2;
 | |
| 		get_user(w0, (char __user *) regs->cr_iip + 0);
 | |
| 		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
 | |
| 			/*
 | |
| 			 * rfi'ing to slot 2 of an MLX bundle causes
 | |
| 			 * an illegal operation fault.  We don't want
 | |
| 			 * that to happen...
 | |
| 			 */
 | |
| 			ri = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	ia64_psr(regs)->ri = ri;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine is used to read an rnat bits that are stored on the
 | |
|  * kernel backing store.  Since, in general, the alignment of the user
 | |
|  * and kernel are different, this is not completely trivial.  In
 | |
|  * essence, we need to construct the user RNAT based on up to two
 | |
|  * kernel RNAT values and/or the RNAT value saved in the child's
 | |
|  * pt_regs.
 | |
|  *
 | |
|  * user rbs
 | |
|  *
 | |
|  * +--------+ <-- lowest address
 | |
|  * | slot62 |
 | |
|  * +--------+
 | |
|  * |  rnat  | 0x....1f8
 | |
|  * +--------+
 | |
|  * | slot00 | \
 | |
|  * +--------+ |
 | |
|  * | slot01 | > child_regs->ar_rnat
 | |
|  * +--------+ |
 | |
|  * | slot02 | /				kernel rbs
 | |
|  * +--------+				+--------+
 | |
|  *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 | |
|  * +- - - - +				+--------+
 | |
|  *					| slot62 |
 | |
|  * +- - - - +				+--------+
 | |
|  *					|  rnat	 |
 | |
|  * +- - - - +				+--------+
 | |
|  *   vrnat				| slot00 |
 | |
|  * +- - - - +				+--------+
 | |
|  *					=	 =
 | |
|  *					+--------+
 | |
|  *					| slot00 | \
 | |
|  *					+--------+ |
 | |
|  *					| slot01 | > child_stack->ar_rnat
 | |
|  *					+--------+ |
 | |
|  *					| slot02 | /
 | |
|  *					+--------+
 | |
|  *						  <--- child_stack->ar_bspstore
 | |
|  *
 | |
|  * The way to think of this code is as follows: bit 0 in the user rnat
 | |
|  * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 | |
|  * value.  The kernel rnat value holding this bit is stored in
 | |
|  * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 | |
|  * form the upper bits of the user rnat value.
 | |
|  *
 | |
|  * Boundary cases:
 | |
|  *
 | |
|  * o when reading the rnat "below" the first rnat slot on the kernel
 | |
|  *   backing store, rnat0/rnat1 are set to 0 and the low order bits are
 | |
|  *   merged in from pt->ar_rnat.
 | |
|  *
 | |
|  * o when reading the rnat "above" the last rnat slot on the kernel
 | |
|  *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 | |
|  */
 | |
| static unsigned long
 | |
| get_rnat (struct task_struct *task, struct switch_stack *sw,
 | |
| 	  unsigned long *krbs, unsigned long *urnat_addr,
 | |
| 	  unsigned long *urbs_end)
 | |
| {
 | |
| 	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
 | |
| 	unsigned long umask = 0, mask, m;
 | |
| 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 | |
| 	long num_regs, nbits;
 | |
| 	struct pt_regs *pt;
 | |
| 
 | |
| 	pt = task_pt_regs(task);
 | |
| 	kbsp = (unsigned long *) sw->ar_bspstore;
 | |
| 	ubspstore = (unsigned long *) pt->ar_bspstore;
 | |
| 
 | |
| 	if (urbs_end < urnat_addr)
 | |
| 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
 | |
| 	else
 | |
| 		nbits = 63;
 | |
| 	mask = MASK(nbits);
 | |
| 	/*
 | |
| 	 * First, figure out which bit number slot 0 in user-land maps
 | |
| 	 * to in the kernel rnat.  Do this by figuring out how many
 | |
| 	 * register slots we're beyond the user's backingstore and
 | |
| 	 * then computing the equivalent address in kernel space.
 | |
| 	 */
 | |
| 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 | |
| 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 | |
| 	shift = ia64_rse_slot_num(slot0_kaddr);
 | |
| 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 | |
| 	rnat0_kaddr = rnat1_kaddr - 64;
 | |
| 
 | |
| 	if (ubspstore + 63 > urnat_addr) {
 | |
| 		/* some bits need to be merged in from pt->ar_rnat */
 | |
| 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 | |
| 		urnat = (pt->ar_rnat & umask);
 | |
| 		mask &= ~umask;
 | |
| 		if (!mask)
 | |
| 			return urnat;
 | |
| 	}
 | |
| 
 | |
| 	m = mask << shift;
 | |
| 	if (rnat0_kaddr >= kbsp)
 | |
| 		rnat0 = sw->ar_rnat;
 | |
| 	else if (rnat0_kaddr > krbs)
 | |
| 		rnat0 = *rnat0_kaddr;
 | |
| 	urnat |= (rnat0 & m) >> shift;
 | |
| 
 | |
| 	m = mask >> (63 - shift);
 | |
| 	if (rnat1_kaddr >= kbsp)
 | |
| 		rnat1 = sw->ar_rnat;
 | |
| 	else if (rnat1_kaddr > krbs)
 | |
| 		rnat1 = *rnat1_kaddr;
 | |
| 	urnat |= (rnat1 & m) << (63 - shift);
 | |
| 	return urnat;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The reverse of get_rnat.
 | |
|  */
 | |
| static void
 | |
| put_rnat (struct task_struct *task, struct switch_stack *sw,
 | |
| 	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
 | |
| 	  unsigned long *urbs_end)
 | |
| {
 | |
| 	unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
 | |
| 	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
 | |
| 	long num_regs, nbits;
 | |
| 	struct pt_regs *pt;
 | |
| 	unsigned long cfm, *urbs_kargs;
 | |
| 
 | |
| 	pt = task_pt_regs(task);
 | |
| 	kbsp = (unsigned long *) sw->ar_bspstore;
 | |
| 	ubspstore = (unsigned long *) pt->ar_bspstore;
 | |
| 
 | |
| 	urbs_kargs = urbs_end;
 | |
| 	if (in_syscall(pt)) {
 | |
| 		/*
 | |
| 		 * If entered via syscall, don't allow user to set rnat bits
 | |
| 		 * for syscall args.
 | |
| 		 */
 | |
| 		cfm = pt->cr_ifs;
 | |
| 		urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
 | |
| 	}
 | |
| 
 | |
| 	if (urbs_kargs >= urnat_addr)
 | |
| 		nbits = 63;
 | |
| 	else {
 | |
| 		if ((urnat_addr - 63) >= urbs_kargs)
 | |
| 			return;
 | |
| 		nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
 | |
| 	}
 | |
| 	mask = MASK(nbits);
 | |
| 
 | |
| 	/*
 | |
| 	 * First, figure out which bit number slot 0 in user-land maps
 | |
| 	 * to in the kernel rnat.  Do this by figuring out how many
 | |
| 	 * register slots we're beyond the user's backingstore and
 | |
| 	 * then computing the equivalent address in kernel space.
 | |
| 	 */
 | |
| 	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
 | |
| 	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
 | |
| 	shift = ia64_rse_slot_num(slot0_kaddr);
 | |
| 	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
 | |
| 	rnat0_kaddr = rnat1_kaddr - 64;
 | |
| 
 | |
| 	if (ubspstore + 63 > urnat_addr) {
 | |
| 		/* some bits need to be place in pt->ar_rnat: */
 | |
| 		umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
 | |
| 		pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
 | |
| 		mask &= ~umask;
 | |
| 		if (!mask)
 | |
| 			return;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
 | |
| 	 * rnat slot is ignored. so we don't have to clear it here.
 | |
| 	 */
 | |
| 	rnat0 = (urnat << shift);
 | |
| 	m = mask << shift;
 | |
| 	if (rnat0_kaddr >= kbsp)
 | |
| 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
 | |
| 	else if (rnat0_kaddr > krbs)
 | |
| 		*rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
 | |
| 
 | |
| 	rnat1 = (urnat >> (63 - shift));
 | |
| 	m = mask >> (63 - shift);
 | |
| 	if (rnat1_kaddr >= kbsp)
 | |
| 		sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
 | |
| 	else if (rnat1_kaddr > krbs)
 | |
| 		*rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| on_kernel_rbs (unsigned long addr, unsigned long bspstore,
 | |
| 	       unsigned long urbs_end)
 | |
| {
 | |
| 	unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
 | |
| 						      urbs_end);
 | |
| 	return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read a word from the user-level backing store of task CHILD.  ADDR
 | |
|  * is the user-level address to read the word from, VAL a pointer to
 | |
|  * the return value, and USER_BSP gives the end of the user-level
 | |
|  * backing store (i.e., it's the address that would be in ar.bsp after
 | |
|  * the user executed a "cover" instruction).
 | |
|  *
 | |
|  * This routine takes care of accessing the kernel register backing
 | |
|  * store for those registers that got spilled there.  It also takes
 | |
|  * care of calculating the appropriate RNaT collection words.
 | |
|  */
 | |
| long
 | |
| ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
 | |
| 	   unsigned long user_rbs_end, unsigned long addr, long *val)
 | |
| {
 | |
| 	unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
 | |
| 	struct pt_regs *child_regs;
 | |
| 	size_t copied;
 | |
| 	long ret;
 | |
| 
 | |
| 	urbs_end = (long *) user_rbs_end;
 | |
| 	laddr = (unsigned long *) addr;
 | |
| 	child_regs = task_pt_regs(child);
 | |
| 	bspstore = (unsigned long *) child_regs->ar_bspstore;
 | |
| 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 | |
| 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 | |
| 			  (unsigned long) urbs_end))
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Attempt to read the RBS in an area that's actually
 | |
| 		 * on the kernel RBS => read the corresponding bits in
 | |
| 		 * the kernel RBS.
 | |
| 		 */
 | |
| 		rnat_addr = ia64_rse_rnat_addr(laddr);
 | |
| 		ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
 | |
| 
 | |
| 		if (laddr == rnat_addr) {
 | |
| 			/* return NaT collection word itself */
 | |
| 			*val = ret;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
 | |
| 			/*
 | |
| 			 * It is implementation dependent whether the
 | |
| 			 * data portion of a NaT value gets saved on a
 | |
| 			 * st8.spill or RSE spill (e.g., see EAS 2.6,
 | |
| 			 * 4.4.4.6 Register Spill and Fill).  To get
 | |
| 			 * consistent behavior across all possible
 | |
| 			 * IA-64 implementations, we return zero in
 | |
| 			 * this case.
 | |
| 			 */
 | |
| 			*val = 0;
 | |
| 			return 0;
 | |
| 		}
 | |
| 
 | |
| 		if (laddr < urbs_end) {
 | |
| 			/*
 | |
| 			 * The desired word is on the kernel RBS and
 | |
| 			 * is not a NaT.
 | |
| 			 */
 | |
| 			regnum = ia64_rse_num_regs(bspstore, laddr);
 | |
| 			*val = *ia64_rse_skip_regs(krbs, regnum);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 	copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
 | |
| 	if (copied != sizeof(ret))
 | |
| 		return -EIO;
 | |
| 	*val = ret;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long
 | |
| ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
 | |
| 	   unsigned long user_rbs_end, unsigned long addr, long val)
 | |
| {
 | |
| 	unsigned long *bspstore, *krbs, regnum, *laddr;
 | |
| 	unsigned long *urbs_end = (long *) user_rbs_end;
 | |
| 	struct pt_regs *child_regs;
 | |
| 
 | |
| 	laddr = (unsigned long *) addr;
 | |
| 	child_regs = task_pt_regs(child);
 | |
| 	bspstore = (unsigned long *) child_regs->ar_bspstore;
 | |
| 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 | |
| 	if (on_kernel_rbs(addr, (unsigned long) bspstore,
 | |
| 			  (unsigned long) urbs_end))
 | |
| 	{
 | |
| 		/*
 | |
| 		 * Attempt to write the RBS in an area that's actually
 | |
| 		 * on the kernel RBS => write the corresponding bits
 | |
| 		 * in the kernel RBS.
 | |
| 		 */
 | |
| 		if (ia64_rse_is_rnat_slot(laddr))
 | |
| 			put_rnat(child, child_stack, krbs, laddr, val,
 | |
| 				 urbs_end);
 | |
| 		else {
 | |
| 			if (laddr < urbs_end) {
 | |
| 				regnum = ia64_rse_num_regs(bspstore, laddr);
 | |
| 				*ia64_rse_skip_regs(krbs, regnum) = val;
 | |
| 			}
 | |
| 		}
 | |
| 	} else if (access_process_vm(child, addr, &val, sizeof(val), 1)
 | |
| 		   != sizeof(val))
 | |
| 		return -EIO;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate the address of the end of the user-level register backing
 | |
|  * store.  This is the address that would have been stored in ar.bsp
 | |
|  * if the user had executed a "cover" instruction right before
 | |
|  * entering the kernel.  If CFMP is not NULL, it is used to return the
 | |
|  * "current frame mask" that was active at the time the kernel was
 | |
|  * entered.
 | |
|  */
 | |
| unsigned long
 | |
| ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
 | |
| 		       unsigned long *cfmp)
 | |
| {
 | |
| 	unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
 | |
| 	long ndirty;
 | |
| 
 | |
| 	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
 | |
| 	bspstore = (unsigned long *) pt->ar_bspstore;
 | |
| 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 | |
| 
 | |
| 	if (in_syscall(pt))
 | |
| 		ndirty += (cfm & 0x7f);
 | |
| 	else
 | |
| 		cfm &= ~(1UL << 63);	/* clear valid bit */
 | |
| 
 | |
| 	if (cfmp)
 | |
| 		*cfmp = cfm;
 | |
| 	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Synchronize (i.e, write) the RSE backing store living in kernel
 | |
|  * space to the VM of the CHILD task.  SW and PT are the pointers to
 | |
|  * the switch_stack and pt_regs structures, respectively.
 | |
|  * USER_RBS_END is the user-level address at which the backing store
 | |
|  * ends.
 | |
|  */
 | |
| long
 | |
| ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
 | |
| 		    unsigned long user_rbs_start, unsigned long user_rbs_end)
 | |
| {
 | |
| 	unsigned long addr, val;
 | |
| 	long ret;
 | |
| 
 | |
| 	/* now copy word for word from kernel rbs to user rbs: */
 | |
| 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 | |
| 		ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 		if (access_process_vm(child, addr, &val, sizeof(val), 1)
 | |
| 		    != sizeof(val))
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static long
 | |
| ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
 | |
| 		unsigned long user_rbs_start, unsigned long user_rbs_end)
 | |
| {
 | |
| 	unsigned long addr, val;
 | |
| 	long ret;
 | |
| 
 | |
| 	/* now copy word for word from user rbs to kernel rbs: */
 | |
| 	for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
 | |
| 		if (access_process_vm(child, addr, &val, sizeof(val), 0)
 | |
| 				!= sizeof(val))
 | |
| 			return -EIO;
 | |
| 
 | |
| 		ret = ia64_poke(child, sw, user_rbs_end, addr, val);
 | |
| 		if (ret < 0)
 | |
| 			return ret;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
 | |
| 			    unsigned long, unsigned long);
 | |
| 
 | |
| static void do_sync_rbs(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	struct pt_regs *pt;
 | |
| 	unsigned long urbs_end;
 | |
| 	syncfunc_t fn = arg;
 | |
| 
 | |
| 	if (unw_unwind_to_user(info) < 0)
 | |
| 		return;
 | |
| 	pt = task_pt_regs(info->task);
 | |
| 	urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
 | |
| 
 | |
| 	fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * when a thread is stopped (ptraced), debugger might change thread's user
 | |
|  * stack (change memory directly), and we must avoid the RSE stored in kernel
 | |
|  * to override user stack (user space's RSE is newer than kernel's in the
 | |
|  * case). To workaround the issue, we copy kernel RSE to user RSE before the
 | |
|  * task is stopped, so user RSE has updated data.  we then copy user RSE to
 | |
|  * kernel after the task is resummed from traced stop and kernel will use the
 | |
|  * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
 | |
|  * synchronize user RSE to kernel.
 | |
|  */
 | |
| void ia64_ptrace_stop(void)
 | |
| {
 | |
| 	if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
 | |
| 		return;
 | |
| 	set_notify_resume(current);
 | |
| 	unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to read back the register backing store.
 | |
|  */
 | |
| void ia64_sync_krbs(void)
 | |
| {
 | |
| 	clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
 | |
| 
 | |
| 	unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * After PTRACE_ATTACH, a thread's register backing store area in user
 | |
|  * space is assumed to contain correct data whenever the thread is
 | |
|  * stopped.  arch_ptrace_stop takes care of this on tracing stops.
 | |
|  * But if the child was already stopped for job control when we attach
 | |
|  * to it, then it might not ever get into ptrace_stop by the time we
 | |
|  * want to examine the user memory containing the RBS.
 | |
|  */
 | |
| void
 | |
| ptrace_attach_sync_user_rbs (struct task_struct *child)
 | |
| {
 | |
| 	int stopped = 0;
 | |
| 	struct unw_frame_info info;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the child is in TASK_STOPPED, we need to change that to
 | |
| 	 * TASK_TRACED momentarily while we operate on it.  This ensures
 | |
| 	 * that the child won't be woken up and return to user mode while
 | |
| 	 * we are doing the sync.  (It can only be woken up for SIGKILL.)
 | |
| 	 */
 | |
| 
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (child->signal) {
 | |
| 		spin_lock_irq(&child->sighand->siglock);
 | |
| 		if (child->state == TASK_STOPPED &&
 | |
| 		    !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
 | |
| 			set_notify_resume(child);
 | |
| 
 | |
| 			child->state = TASK_TRACED;
 | |
| 			stopped = 1;
 | |
| 		}
 | |
| 		spin_unlock_irq(&child->sighand->siglock);
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| 
 | |
| 	if (!stopped)
 | |
| 		return;
 | |
| 
 | |
| 	unw_init_from_blocked_task(&info, child);
 | |
| 	do_sync_rbs(&info, ia64_sync_user_rbs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now move the child back into TASK_STOPPED if it should be in a
 | |
| 	 * job control stop, so that SIGCONT can be used to wake it up.
 | |
| 	 */
 | |
| 	read_lock(&tasklist_lock);
 | |
| 	if (child->signal) {
 | |
| 		spin_lock_irq(&child->sighand->siglock);
 | |
| 		if (child->state == TASK_TRACED &&
 | |
| 		    (child->signal->flags & SIGNAL_STOP_STOPPED)) {
 | |
| 			child->state = TASK_STOPPED;
 | |
| 		}
 | |
| 		spin_unlock_irq(&child->sighand->siglock);
 | |
| 	}
 | |
| 	read_unlock(&tasklist_lock);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| thread_matches (struct task_struct *thread, unsigned long addr)
 | |
| {
 | |
| 	unsigned long thread_rbs_end;
 | |
| 	struct pt_regs *thread_regs;
 | |
| 
 | |
| 	if (ptrace_check_attach(thread, 0) < 0)
 | |
| 		/*
 | |
| 		 * If the thread is not in an attachable state, we'll
 | |
| 		 * ignore it.  The net effect is that if ADDR happens
 | |
| 		 * to overlap with the portion of the thread's
 | |
| 		 * register backing store that is currently residing
 | |
| 		 * on the thread's kernel stack, then ptrace() may end
 | |
| 		 * up accessing a stale value.  But if the thread
 | |
| 		 * isn't stopped, that's a problem anyhow, so we're
 | |
| 		 * doing as well as we can...
 | |
| 		 */
 | |
| 		return 0;
 | |
| 
 | |
| 	thread_regs = task_pt_regs(thread);
 | |
| 	thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
 | |
| 	if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;	/* looks like we've got a winner */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write f32-f127 back to task->thread.fph if it has been modified.
 | |
|  */
 | |
| inline void
 | |
| ia64_flush_fph (struct task_struct *task)
 | |
| {
 | |
| 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent migrating this task while
 | |
| 	 * we're fiddling with the FPU state
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	if (ia64_is_local_fpu_owner(task) && psr->mfh) {
 | |
| 		psr->mfh = 0;
 | |
| 		task->thread.flags |= IA64_THREAD_FPH_VALID;
 | |
| 		ia64_save_fpu(&task->thread.fph[0]);
 | |
| 	}
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Sync the fph state of the task so that it can be manipulated
 | |
|  * through thread.fph.  If necessary, f32-f127 are written back to
 | |
|  * thread.fph or, if the fph state hasn't been used before, thread.fph
 | |
|  * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 | |
|  * ensure that the task picks up the state from thread.fph when it
 | |
|  * executes again.
 | |
|  */
 | |
| void
 | |
| ia64_sync_fph (struct task_struct *task)
 | |
| {
 | |
| 	struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
 | |
| 
 | |
| 	ia64_flush_fph(task);
 | |
| 	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
 | |
| 		task->thread.flags |= IA64_THREAD_FPH_VALID;
 | |
| 		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
 | |
| 	}
 | |
| 	ia64_drop_fpu(task);
 | |
| 	psr->dfh = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Change the machine-state of CHILD such that it will return via the normal
 | |
|  * kernel exit-path, rather than the syscall-exit path.
 | |
|  */
 | |
| static void
 | |
| convert_to_non_syscall (struct task_struct *child, struct pt_regs  *pt,
 | |
| 			unsigned long cfm)
 | |
| {
 | |
| 	struct unw_frame_info info, prev_info;
 | |
| 	unsigned long ip, sp, pr;
 | |
| 
 | |
| 	unw_init_from_blocked_task(&info, child);
 | |
| 	while (1) {
 | |
| 		prev_info = info;
 | |
| 		if (unw_unwind(&info) < 0)
 | |
| 			return;
 | |
| 
 | |
| 		unw_get_sp(&info, &sp);
 | |
| 		if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
 | |
| 		    < IA64_PT_REGS_SIZE) {
 | |
| 			dprintk("ptrace.%s: ran off the top of the kernel "
 | |
| 				"stack\n", __func__);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (unw_get_pr (&prev_info, &pr) < 0) {
 | |
| 			unw_get_rp(&prev_info, &ip);
 | |
| 			dprintk("ptrace.%s: failed to read "
 | |
| 				"predicate register (ip=0x%lx)\n",
 | |
| 				__func__, ip);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (unw_is_intr_frame(&info)
 | |
| 		    && (pr & (1UL << PRED_USER_STACK)))
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Note: at the time of this call, the target task is blocked
 | |
| 	 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
 | |
| 	 * (aka, "pLvSys") we redirect execution from
 | |
| 	 * .work_pending_syscall_end to .work_processed_kernel.
 | |
| 	 */
 | |
| 	unw_get_pr(&prev_info, &pr);
 | |
| 	pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
 | |
| 	pr |=  (1UL << PRED_NON_SYSCALL);
 | |
| 	unw_set_pr(&prev_info, pr);
 | |
| 
 | |
| 	pt->cr_ifs = (1UL << 63) | cfm;
 | |
| 	/*
 | |
| 	 * Clear the memory that is NOT written on syscall-entry to
 | |
| 	 * ensure we do not leak kernel-state to user when execution
 | |
| 	 * resumes.
 | |
| 	 */
 | |
| 	pt->r2 = 0;
 | |
| 	pt->r3 = 0;
 | |
| 	pt->r14 = 0;
 | |
| 	memset(&pt->r16, 0, 16*8);	/* clear r16-r31 */
 | |
| 	memset(&pt->f6, 0, 6*16);	/* clear f6-f11 */
 | |
| 	pt->b7 = 0;
 | |
| 	pt->ar_ccv = 0;
 | |
| 	pt->ar_csd = 0;
 | |
| 	pt->ar_ssd = 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| access_nat_bits (struct task_struct *child, struct pt_regs *pt,
 | |
| 		 struct unw_frame_info *info,
 | |
| 		 unsigned long *data, int write_access)
 | |
| {
 | |
| 	unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
 | |
| 	char nat = 0;
 | |
| 
 | |
| 	if (write_access) {
 | |
| 		nat_bits = *data;
 | |
| 		scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
 | |
| 		if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
 | |
| 			dprintk("ptrace: failed to set ar.unat\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		for (regnum = 4; regnum <= 7; ++regnum) {
 | |
| 			unw_get_gr(info, regnum, &dummy, &nat);
 | |
| 			unw_set_gr(info, regnum, dummy,
 | |
| 				   (nat_bits >> regnum) & 1);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
 | |
| 			dprintk("ptrace: failed to read ar.unat\n");
 | |
| 			return -1;
 | |
| 		}
 | |
| 		nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
 | |
| 		for (regnum = 4; regnum <= 7; ++regnum) {
 | |
| 			unw_get_gr(info, regnum, &dummy, &nat);
 | |
| 			nat_bits |= (nat != 0) << regnum;
 | |
| 		}
 | |
| 		*data = nat_bits;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| access_uarea (struct task_struct *child, unsigned long addr,
 | |
| 	      unsigned long *data, int write_access);
 | |
| 
 | |
| static long
 | |
| ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 | |
| {
 | |
| 	unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
 | |
| 	struct unw_frame_info info;
 | |
| 	struct ia64_fpreg fpval;
 | |
| 	struct switch_stack *sw;
 | |
| 	struct pt_regs *pt;
 | |
| 	long ret, retval = 0;
 | |
| 	char nat = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	pt = task_pt_regs(child);
 | |
| 	sw = (struct switch_stack *) (child->thread.ksp + 16);
 | |
| 	unw_init_from_blocked_task(&info, child);
 | |
| 	if (unw_unwind_to_user(&info) < 0) {
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (((unsigned long) ppr & 0x7) != 0) {
 | |
| 		dprintk("ptrace:unaligned register address %p\n", ppr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
 | |
| 	    || access_uarea(child, PT_AR_EC, &ec, 0) < 0
 | |
| 	    || access_uarea(child, PT_AR_LC, &lc, 0) < 0
 | |
| 	    || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
 | |
| 	    || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
 | |
| 	    || access_uarea(child, PT_CFM, &cfm, 0)
 | |
| 	    || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	/* control regs */
 | |
| 
 | |
| 	retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
 | |
| 	retval |= __put_user(psr, &ppr->cr_ipsr);
 | |
| 
 | |
| 	/* app regs */
 | |
| 
 | |
| 	retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 | |
| 	retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
 | |
| 	retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 | |
| 	retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 | |
| 	retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 | |
| 	retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 | |
| 
 | |
| 	retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
 | |
| 	retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
 | |
| 	retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 | |
| 	retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
 | |
| 	retval |= __put_user(cfm, &ppr->cfm);
 | |
| 
 | |
| 	/* gr1-gr3 */
 | |
| 
 | |
| 	retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
 | |
| 	retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
 | |
| 
 | |
| 	/* gr4-gr7 */
 | |
| 
 | |
| 	for (i = 4; i < 8; i++) {
 | |
| 		if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
 | |
| 			return -EIO;
 | |
| 		retval |= __put_user(val, &ppr->gr[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* gr8-gr11 */
 | |
| 
 | |
| 	retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
 | |
| 
 | |
| 	/* gr12-gr15 */
 | |
| 
 | |
| 	retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
 | |
| 	retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
 | |
| 	retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
 | |
| 
 | |
| 	/* gr16-gr31 */
 | |
| 
 | |
| 	retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
 | |
| 
 | |
| 	/* b0 */
 | |
| 
 | |
| 	retval |= __put_user(pt->b0, &ppr->br[0]);
 | |
| 
 | |
| 	/* b1-b5 */
 | |
| 
 | |
| 	for (i = 1; i < 6; i++) {
 | |
| 		if (unw_access_br(&info, i, &val, 0) < 0)
 | |
| 			return -EIO;
 | |
| 		__put_user(val, &ppr->br[i]);
 | |
| 	}
 | |
| 
 | |
| 	/* b6-b7 */
 | |
| 
 | |
| 	retval |= __put_user(pt->b6, &ppr->br[6]);
 | |
| 	retval |= __put_user(pt->b7, &ppr->br[7]);
 | |
| 
 | |
| 	/* fr2-fr5 */
 | |
| 
 | |
| 	for (i = 2; i < 6; i++) {
 | |
| 		if (unw_get_fr(&info, i, &fpval) < 0)
 | |
| 			return -EIO;
 | |
| 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 | |
| 	}
 | |
| 
 | |
| 	/* fr6-fr11 */
 | |
| 
 | |
| 	retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
 | |
| 				 sizeof(struct ia64_fpreg) * 6);
 | |
| 
 | |
| 	/* fp scratch regs(12-15) */
 | |
| 
 | |
| 	retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
 | |
| 				 sizeof(struct ia64_fpreg) * 4);
 | |
| 
 | |
| 	/* fr16-fr31 */
 | |
| 
 | |
| 	for (i = 16; i < 32; i++) {
 | |
| 		if (unw_get_fr(&info, i, &fpval) < 0)
 | |
| 			return -EIO;
 | |
| 		retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
 | |
| 	}
 | |
| 
 | |
| 	/* fph */
 | |
| 
 | |
| 	ia64_flush_fph(child);
 | |
| 	retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
 | |
| 				 sizeof(ppr->fr[32]) * 96);
 | |
| 
 | |
| 	/*  preds */
 | |
| 
 | |
| 	retval |= __put_user(pt->pr, &ppr->pr);
 | |
| 
 | |
| 	/* nat bits */
 | |
| 
 | |
| 	retval |= __put_user(nat_bits, &ppr->nat);
 | |
| 
 | |
| 	ret = retval ? -EIO : 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static long
 | |
| ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
 | |
| {
 | |
| 	unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
 | |
| 	struct unw_frame_info info;
 | |
| 	struct switch_stack *sw;
 | |
| 	struct ia64_fpreg fpval;
 | |
| 	struct pt_regs *pt;
 | |
| 	long ret, retval = 0;
 | |
| 	int i;
 | |
| 
 | |
| 	memset(&fpval, 0, sizeof(fpval));
 | |
| 
 | |
| 	if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
 | |
| 		return -EIO;
 | |
| 
 | |
| 	pt = task_pt_regs(child);
 | |
| 	sw = (struct switch_stack *) (child->thread.ksp + 16);
 | |
| 	unw_init_from_blocked_task(&info, child);
 | |
| 	if (unw_unwind_to_user(&info) < 0) {
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	if (((unsigned long) ppr & 0x7) != 0) {
 | |
| 		dprintk("ptrace:unaligned register address %p\n", ppr);
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* control regs */
 | |
| 
 | |
| 	retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
 | |
| 	retval |= __get_user(psr, &ppr->cr_ipsr);
 | |
| 
 | |
| 	/* app regs */
 | |
| 
 | |
| 	retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
 | |
| 	retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
 | |
| 	retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
 | |
| 	retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
 | |
| 	retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
 | |
| 	retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
 | |
| 
 | |
| 	retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
 | |
| 	retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
 | |
| 	retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
 | |
| 	retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
 | |
| 	retval |= __get_user(cfm, &ppr->cfm);
 | |
| 
 | |
| 	/* gr1-gr3 */
 | |
| 
 | |
| 	retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
 | |
| 	retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
 | |
| 
 | |
| 	/* gr4-gr7 */
 | |
| 
 | |
| 	for (i = 4; i < 8; i++) {
 | |
| 		retval |= __get_user(val, &ppr->gr[i]);
 | |
| 		/* NaT bit will be set via PT_NAT_BITS: */
 | |
| 		if (unw_set_gr(&info, i, val, 0) < 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* gr8-gr11 */
 | |
| 
 | |
| 	retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
 | |
| 
 | |
| 	/* gr12-gr15 */
 | |
| 
 | |
| 	retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
 | |
| 	retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
 | |
| 	retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
 | |
| 
 | |
| 	/* gr16-gr31 */
 | |
| 
 | |
| 	retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
 | |
| 
 | |
| 	/* b0 */
 | |
| 
 | |
| 	retval |= __get_user(pt->b0, &ppr->br[0]);
 | |
| 
 | |
| 	/* b1-b5 */
 | |
| 
 | |
| 	for (i = 1; i < 6; i++) {
 | |
| 		retval |= __get_user(val, &ppr->br[i]);
 | |
| 		unw_set_br(&info, i, val);
 | |
| 	}
 | |
| 
 | |
| 	/* b6-b7 */
 | |
| 
 | |
| 	retval |= __get_user(pt->b6, &ppr->br[6]);
 | |
| 	retval |= __get_user(pt->b7, &ppr->br[7]);
 | |
| 
 | |
| 	/* fr2-fr5 */
 | |
| 
 | |
| 	for (i = 2; i < 6; i++) {
 | |
| 		retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
 | |
| 		if (unw_set_fr(&info, i, fpval) < 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* fr6-fr11 */
 | |
| 
 | |
| 	retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
 | |
| 				   sizeof(ppr->fr[6]) * 6);
 | |
| 
 | |
| 	/* fp scratch regs(12-15) */
 | |
| 
 | |
| 	retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
 | |
| 				   sizeof(ppr->fr[12]) * 4);
 | |
| 
 | |
| 	/* fr16-fr31 */
 | |
| 
 | |
| 	for (i = 16; i < 32; i++) {
 | |
| 		retval |= __copy_from_user(&fpval, &ppr->fr[i],
 | |
| 					   sizeof(fpval));
 | |
| 		if (unw_set_fr(&info, i, fpval) < 0)
 | |
| 			return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	/* fph */
 | |
| 
 | |
| 	ia64_sync_fph(child);
 | |
| 	retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
 | |
| 				   sizeof(ppr->fr[32]) * 96);
 | |
| 
 | |
| 	/* preds */
 | |
| 
 | |
| 	retval |= __get_user(pt->pr, &ppr->pr);
 | |
| 
 | |
| 	/* nat bits */
 | |
| 
 | |
| 	retval |= __get_user(nat_bits, &ppr->nat);
 | |
| 
 | |
| 	retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
 | |
| 	retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
 | |
| 	retval |= access_uarea(child, PT_AR_EC, &ec, 1);
 | |
| 	retval |= access_uarea(child, PT_AR_LC, &lc, 1);
 | |
| 	retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
 | |
| 	retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
 | |
| 	retval |= access_uarea(child, PT_CFM, &cfm, 1);
 | |
| 	retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
 | |
| 
 | |
| 	ret = retval ? -EIO : 0;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void
 | |
| user_enable_single_step (struct task_struct *child)
 | |
| {
 | |
| 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
 | |
| 
 | |
| 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
 | |
| 	child_psr->ss = 1;
 | |
| }
 | |
| 
 | |
| void
 | |
| user_enable_block_step (struct task_struct *child)
 | |
| {
 | |
| 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
 | |
| 
 | |
| 	set_tsk_thread_flag(child, TIF_SINGLESTEP);
 | |
| 	child_psr->tb = 1;
 | |
| }
 | |
| 
 | |
| void
 | |
| user_disable_single_step (struct task_struct *child)
 | |
| {
 | |
| 	struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
 | |
| 
 | |
| 	/* make sure the single step/taken-branch trap bits are not set: */
 | |
| 	clear_tsk_thread_flag(child, TIF_SINGLESTEP);
 | |
| 	child_psr->ss = 0;
 | |
| 	child_psr->tb = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called by kernel/ptrace.c when detaching..
 | |
|  *
 | |
|  * Make sure the single step bit is not set.
 | |
|  */
 | |
| void
 | |
| ptrace_disable (struct task_struct *child)
 | |
| {
 | |
| 	user_disable_single_step(child);
 | |
| }
 | |
| 
 | |
| long
 | |
| arch_ptrace (struct task_struct *child, long request, long addr, long data)
 | |
| {
 | |
| 	switch (request) {
 | |
| 	case PTRACE_PEEKTEXT:
 | |
| 	case PTRACE_PEEKDATA:
 | |
| 		/* read word at location addr */
 | |
| 		if (access_process_vm(child, addr, &data, sizeof(data), 0)
 | |
| 		    != sizeof(data))
 | |
| 			return -EIO;
 | |
| 		/* ensure return value is not mistaken for error code */
 | |
| 		force_successful_syscall_return();
 | |
| 		return data;
 | |
| 
 | |
| 	/* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
 | |
| 	 * by the generic ptrace_request().
 | |
| 	 */
 | |
| 
 | |
| 	case PTRACE_PEEKUSR:
 | |
| 		/* read the word at addr in the USER area */
 | |
| 		if (access_uarea(child, addr, &data, 0) < 0)
 | |
| 			return -EIO;
 | |
| 		/* ensure return value is not mistaken for error code */
 | |
| 		force_successful_syscall_return();
 | |
| 		return data;
 | |
| 
 | |
| 	case PTRACE_POKEUSR:
 | |
| 		/* write the word at addr in the USER area */
 | |
| 		if (access_uarea(child, addr, &data, 1) < 0)
 | |
| 			return -EIO;
 | |
| 		return 0;
 | |
| 
 | |
| 	case PTRACE_OLD_GETSIGINFO:
 | |
| 		/* for backwards-compatibility */
 | |
| 		return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
 | |
| 
 | |
| 	case PTRACE_OLD_SETSIGINFO:
 | |
| 		/* for backwards-compatibility */
 | |
| 		return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
 | |
| 
 | |
| 	case PTRACE_GETREGS:
 | |
| 		return ptrace_getregs(child,
 | |
| 				      (struct pt_all_user_regs __user *) data);
 | |
| 
 | |
| 	case PTRACE_SETREGS:
 | |
| 		return ptrace_setregs(child,
 | |
| 				      (struct pt_all_user_regs __user *) data);
 | |
| 
 | |
| 	default:
 | |
| 		return ptrace_request(child, request, addr, data);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* "asmlinkage" so the input arguments are preserved... */
 | |
| 
 | |
| asmlinkage long
 | |
| syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
 | |
| 		     long arg4, long arg5, long arg6, long arg7,
 | |
| 		     struct pt_regs regs)
 | |
| {
 | |
| 	if (test_thread_flag(TIF_SYSCALL_TRACE))
 | |
| 		if (tracehook_report_syscall_entry(®s))
 | |
| 			return -ENOSYS;
 | |
| 
 | |
| 	/* copy user rbs to kernel rbs */
 | |
| 	if (test_thread_flag(TIF_RESTORE_RSE))
 | |
| 		ia64_sync_krbs();
 | |
| 
 | |
| 	if (unlikely(current->audit_context)) {
 | |
| 		long syscall;
 | |
| 		int arch;
 | |
| 
 | |
| 		if (IS_IA32_PROCESS(®s)) {
 | |
| 			syscall = regs.r1;
 | |
| 			arch = AUDIT_ARCH_I386;
 | |
| 		} else {
 | |
| 			syscall = regs.r15;
 | |
| 			arch = AUDIT_ARCH_IA64;
 | |
| 		}
 | |
| 
 | |
| 		audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* "asmlinkage" so the input arguments are preserved... */
 | |
| 
 | |
| asmlinkage void
 | |
| syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
 | |
| 		     long arg4, long arg5, long arg6, long arg7,
 | |
| 		     struct pt_regs regs)
 | |
| {
 | |
| 	int step;
 | |
| 
 | |
| 	if (unlikely(current->audit_context)) {
 | |
| 		int success = AUDITSC_RESULT(regs.r10);
 | |
| 		long result = regs.r8;
 | |
| 
 | |
| 		if (success != AUDITSC_SUCCESS)
 | |
| 			result = -result;
 | |
| 		audit_syscall_exit(success, result);
 | |
| 	}
 | |
| 
 | |
| 	step = test_thread_flag(TIF_SINGLESTEP);
 | |
| 	if (step || test_thread_flag(TIF_SYSCALL_TRACE))
 | |
| 		tracehook_report_syscall_exit(®s, step);
 | |
| 
 | |
| 	/* copy user rbs to kernel rbs */
 | |
| 	if (test_thread_flag(TIF_RESTORE_RSE))
 | |
| 		ia64_sync_krbs();
 | |
| }
 | |
| 
 | |
| /* Utrace implementation starts here */
 | |
| struct regset_get {
 | |
| 	void *kbuf;
 | |
| 	void __user *ubuf;
 | |
| };
 | |
| 
 | |
| struct regset_set {
 | |
| 	const void *kbuf;
 | |
| 	const void __user *ubuf;
 | |
| };
 | |
| 
 | |
| struct regset_getset {
 | |
| 	struct task_struct *target;
 | |
| 	const struct user_regset *regset;
 | |
| 	union {
 | |
| 		struct regset_get get;
 | |
| 		struct regset_set set;
 | |
| 	} u;
 | |
| 	unsigned int pos;
 | |
| 	unsigned int count;
 | |
| 	int ret;
 | |
| };
 | |
| 
 | |
| static int
 | |
| access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
 | |
| 		unsigned long addr, unsigned long *data, int write_access)
 | |
| {
 | |
| 	struct pt_regs *pt;
 | |
| 	unsigned long *ptr = NULL;
 | |
| 	int ret;
 | |
| 	char nat = 0;
 | |
| 
 | |
| 	pt = task_pt_regs(target);
 | |
| 	switch (addr) {
 | |
| 	case ELF_GR_OFFSET(1):
 | |
| 		ptr = &pt->r1;
 | |
| 		break;
 | |
| 	case ELF_GR_OFFSET(2):
 | |
| 	case ELF_GR_OFFSET(3):
 | |
| 		ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
 | |
| 		break;
 | |
| 	case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
 | |
| 		if (write_access) {
 | |
| 			/* read NaT bit first: */
 | |
| 			unsigned long dummy;
 | |
| 
 | |
| 			ret = unw_get_gr(info, addr/8, &dummy, &nat);
 | |
| 			if (ret < 0)
 | |
| 				return ret;
 | |
| 		}
 | |
| 		return unw_access_gr(info, addr/8, data, &nat, write_access);
 | |
| 	case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
 | |
| 		ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
 | |
| 		break;
 | |
| 	case ELF_GR_OFFSET(12):
 | |
| 	case ELF_GR_OFFSET(13):
 | |
| 		ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
 | |
| 		break;
 | |
| 	case ELF_GR_OFFSET(14):
 | |
| 		ptr = &pt->r14;
 | |
| 		break;
 | |
| 	case ELF_GR_OFFSET(15):
 | |
| 		ptr = &pt->r15;
 | |
| 	}
 | |
| 	if (write_access)
 | |
| 		*ptr = *data;
 | |
| 	else
 | |
| 		*data = *ptr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
 | |
| 		unsigned long addr, unsigned long *data, int write_access)
 | |
| {
 | |
| 	struct pt_regs *pt;
 | |
| 	unsigned long *ptr = NULL;
 | |
| 
 | |
| 	pt = task_pt_regs(target);
 | |
| 	switch (addr) {
 | |
| 	case ELF_BR_OFFSET(0):
 | |
| 		ptr = &pt->b0;
 | |
| 		break;
 | |
| 	case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
 | |
| 		return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
 | |
| 				     data, write_access);
 | |
| 	case ELF_BR_OFFSET(6):
 | |
| 		ptr = &pt->b6;
 | |
| 		break;
 | |
| 	case ELF_BR_OFFSET(7):
 | |
| 		ptr = &pt->b7;
 | |
| 	}
 | |
| 	if (write_access)
 | |
| 		*ptr = *data;
 | |
| 	else
 | |
| 		*data = *ptr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
 | |
| 		unsigned long addr, unsigned long *data, int write_access)
 | |
| {
 | |
| 	struct pt_regs *pt;
 | |
| 	unsigned long cfm, urbs_end;
 | |
| 	unsigned long *ptr = NULL;
 | |
| 
 | |
| 	pt = task_pt_regs(target);
 | |
| 	if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
 | |
| 		switch (addr) {
 | |
| 		case ELF_AR_RSC_OFFSET:
 | |
| 			/* force PL3 */
 | |
| 			if (write_access)
 | |
| 				pt->ar_rsc = *data | (3 << 2);
 | |
| 			else
 | |
| 				*data = pt->ar_rsc;
 | |
| 			return 0;
 | |
| 		case ELF_AR_BSP_OFFSET:
 | |
| 			/*
 | |
| 			 * By convention, we use PT_AR_BSP to refer to
 | |
| 			 * the end of the user-level backing store.
 | |
| 			 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
 | |
| 			 * to get the real value of ar.bsp at the time
 | |
| 			 * the kernel was entered.
 | |
| 			 *
 | |
| 			 * Furthermore, when changing the contents of
 | |
| 			 * PT_AR_BSP (or PT_CFM) while the task is
 | |
| 			 * blocked in a system call, convert the state
 | |
| 			 * so that the non-system-call exit
 | |
| 			 * path is used.  This ensures that the proper
 | |
| 			 * state will be picked up when resuming
 | |
| 			 * execution.  However, it *also* means that
 | |
| 			 * once we write PT_AR_BSP/PT_CFM, it won't be
 | |
| 			 * possible to modify the syscall arguments of
 | |
| 			 * the pending system call any longer.  This
 | |
| 			 * shouldn't be an issue because modifying
 | |
| 			 * PT_AR_BSP/PT_CFM generally implies that
 | |
| 			 * we're either abandoning the pending system
 | |
| 			 * call or that we defer it's re-execution
 | |
| 			 * (e.g., due to GDB doing an inferior
 | |
| 			 * function call).
 | |
| 			 */
 | |
| 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
 | |
| 			if (write_access) {
 | |
| 				if (*data != urbs_end) {
 | |
| 					if (in_syscall(pt))
 | |
| 						convert_to_non_syscall(target,
 | |
| 								       pt,
 | |
| 								       cfm);
 | |
| 					/*
 | |
| 					 * Simulate user-level write
 | |
| 					 * of ar.bsp:
 | |
| 					 */
 | |
| 					pt->loadrs = 0;
 | |
| 					pt->ar_bspstore = *data;
 | |
| 				}
 | |
| 			} else
 | |
| 				*data = urbs_end;
 | |
| 			return 0;
 | |
| 		case ELF_AR_BSPSTORE_OFFSET:
 | |
| 			ptr = &pt->ar_bspstore;
 | |
| 			break;
 | |
| 		case ELF_AR_RNAT_OFFSET:
 | |
| 			ptr = &pt->ar_rnat;
 | |
| 			break;
 | |
| 		case ELF_AR_CCV_OFFSET:
 | |
| 			ptr = &pt->ar_ccv;
 | |
| 			break;
 | |
| 		case ELF_AR_UNAT_OFFSET:
 | |
| 			ptr = &pt->ar_unat;
 | |
| 			break;
 | |
| 		case ELF_AR_FPSR_OFFSET:
 | |
| 			ptr = &pt->ar_fpsr;
 | |
| 			break;
 | |
| 		case ELF_AR_PFS_OFFSET:
 | |
| 			ptr = &pt->ar_pfs;
 | |
| 			break;
 | |
| 		case ELF_AR_LC_OFFSET:
 | |
| 			return unw_access_ar(info, UNW_AR_LC, data,
 | |
| 					     write_access);
 | |
| 		case ELF_AR_EC_OFFSET:
 | |
| 			return unw_access_ar(info, UNW_AR_EC, data,
 | |
| 					     write_access);
 | |
| 		case ELF_AR_CSD_OFFSET:
 | |
| 			ptr = &pt->ar_csd;
 | |
| 			break;
 | |
| 		case ELF_AR_SSD_OFFSET:
 | |
| 			ptr = &pt->ar_ssd;
 | |
| 		}
 | |
| 	} else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
 | |
| 		switch (addr) {
 | |
| 		case ELF_CR_IIP_OFFSET:
 | |
| 			ptr = &pt->cr_iip;
 | |
| 			break;
 | |
| 		case ELF_CFM_OFFSET:
 | |
| 			urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
 | |
| 			if (write_access) {
 | |
| 				if (((cfm ^ *data) & PFM_MASK) != 0) {
 | |
| 					if (in_syscall(pt))
 | |
| 						convert_to_non_syscall(target,
 | |
| 								       pt,
 | |
| 								       cfm);
 | |
| 					pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
 | |
| 						      | (*data & PFM_MASK));
 | |
| 				}
 | |
| 			} else
 | |
| 				*data = cfm;
 | |
| 			return 0;
 | |
| 		case ELF_CR_IPSR_OFFSET:
 | |
| 			if (write_access) {
 | |
| 				unsigned long tmp = *data;
 | |
| 				/* psr.ri==3 is a reserved value: SDM 2:25 */
 | |
| 				if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
 | |
| 					tmp &= ~IA64_PSR_RI;
 | |
| 				pt->cr_ipsr = ((tmp & IPSR_MASK)
 | |
| 					       | (pt->cr_ipsr & ~IPSR_MASK));
 | |
| 			} else
 | |
| 				*data = (pt->cr_ipsr & IPSR_MASK);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	} else if (addr == ELF_NAT_OFFSET)
 | |
| 		return access_nat_bits(target, pt, info,
 | |
| 				       data, write_access);
 | |
| 	else if (addr == ELF_PR_OFFSET)
 | |
| 		ptr = &pt->pr;
 | |
| 	else
 | |
| 		return -1;
 | |
| 
 | |
| 	if (write_access)
 | |
| 		*ptr = *data;
 | |
| 	else
 | |
| 		*data = *ptr;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
 | |
| 		unsigned long addr, unsigned long *data, int write_access)
 | |
| {
 | |
| 	if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
 | |
| 		return access_elf_gpreg(target, info, addr, data, write_access);
 | |
| 	else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
 | |
| 		return access_elf_breg(target, info, addr, data, write_access);
 | |
| 	else
 | |
| 		return access_elf_areg(target, info, addr, data, write_access);
 | |
| }
 | |
| 
 | |
| void do_gpregs_get(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	struct pt_regs *pt;
 | |
| 	struct regset_getset *dst = arg;
 | |
| 	elf_greg_t tmp[16];
 | |
| 	unsigned int i, index, min_copy;
 | |
| 
 | |
| 	if (unw_unwind_to_user(info) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * coredump format:
 | |
| 	 *      r0-r31
 | |
| 	 *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
 | |
| 	 *      predicate registers (p0-p63)
 | |
| 	 *      b0-b7
 | |
| 	 *      ip cfm user-mask
 | |
| 	 *      ar.rsc ar.bsp ar.bspstore ar.rnat
 | |
| 	 *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
 | |
| 	 */
 | |
| 
 | |
| 
 | |
| 	/* Skip r0 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
 | |
| 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
 | |
| 						      &dst->u.get.kbuf,
 | |
| 						      &dst->u.get.ubuf,
 | |
| 						      0, ELF_GR_OFFSET(1));
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* gr1 - gr15 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
 | |
| 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
 | |
| 		min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
 | |
| 			 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
 | |
| 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
 | |
| 				index++)
 | |
| 			if (access_elf_reg(dst->target, info, i,
 | |
| 						&tmp[index], 0) < 0) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
 | |
| 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* r16-r31 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
 | |
| 		pt = task_pt_regs(dst->target);
 | |
| 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
 | |
| 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* nat, pr, b0 - b7 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
 | |
| 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
 | |
| 		min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
 | |
| 			 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
 | |
| 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
 | |
| 				index++)
 | |
| 			if (access_elf_reg(dst->target, info, i,
 | |
| 						&tmp[index], 0) < 0) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
 | |
| 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
 | |
| 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
 | |
| 	 */
 | |
| 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
 | |
| 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
 | |
| 		min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
 | |
| 			 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
 | |
| 		for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
 | |
| 				index++)
 | |
| 			if (access_elf_reg(dst->target, info, i,
 | |
| 						&tmp[index], 0) < 0) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
 | |
| 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void do_gpregs_set(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	struct pt_regs *pt;
 | |
| 	struct regset_getset *dst = arg;
 | |
| 	elf_greg_t tmp[16];
 | |
| 	unsigned int i, index;
 | |
| 
 | |
| 	if (unw_unwind_to_user(info) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Skip r0 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
 | |
| 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
 | |
| 						       &dst->u.set.kbuf,
 | |
| 						       &dst->u.set.ubuf,
 | |
| 						       0, ELF_GR_OFFSET(1));
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* gr1-gr15 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
 | |
| 		i = dst->pos;
 | |
| 		index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
 | |
| 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
 | |
| 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
 | |
| 				ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
 | |
| 		if (dst->ret)
 | |
| 			return;
 | |
| 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
 | |
| 			if (access_elf_reg(dst->target, info, i,
 | |
| 						&tmp[index], 1) < 0) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		if (dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* gr16-gr31 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
 | |
| 		pt = task_pt_regs(dst->target);
 | |
| 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
 | |
| 				&dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
 | |
| 				ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* nat, pr, b0 - b7 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
 | |
| 		i = dst->pos;
 | |
| 		index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
 | |
| 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
 | |
| 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
 | |
| 				ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
 | |
| 		if (dst->ret)
 | |
| 			return;
 | |
| 		for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
 | |
| 			if (access_elf_reg(dst->target, info, i,
 | |
| 						&tmp[index], 1) < 0) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		if (dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
 | |
| 	 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
 | |
| 	 */
 | |
| 	if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
 | |
| 		i = dst->pos;
 | |
| 		index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
 | |
| 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
 | |
| 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
 | |
| 				ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
 | |
| 		if (dst->ret)
 | |
| 			return;
 | |
| 		for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
 | |
| 			if (access_elf_reg(dst->target, info, i,
 | |
| 						&tmp[index], 1) < 0) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #define ELF_FP_OFFSET(i)	(i * sizeof(elf_fpreg_t))
 | |
| 
 | |
| void do_fpregs_get(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	struct regset_getset *dst = arg;
 | |
| 	struct task_struct *task = dst->target;
 | |
| 	elf_fpreg_t tmp[30];
 | |
| 	int index, min_copy, i;
 | |
| 
 | |
| 	if (unw_unwind_to_user(info) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Skip pos 0 and 1 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
 | |
| 		dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
 | |
| 						      &dst->u.get.kbuf,
 | |
| 						      &dst->u.get.ubuf,
 | |
| 						      0, ELF_FP_OFFSET(2));
 | |
| 		if (dst->count == 0 || dst->ret)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* fr2-fr31 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
 | |
| 		index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
 | |
| 
 | |
| 		min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
 | |
| 				dst->pos + dst->count);
 | |
| 		for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
 | |
| 				index++)
 | |
| 			if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
 | |
| 					 &tmp[index])) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		dst->ret = user_regset_copyout(&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
 | |
| 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
 | |
| 		if (dst->count == 0 || dst->ret)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* fph */
 | |
| 	if (dst->count > 0) {
 | |
| 		ia64_flush_fph(dst->target);
 | |
| 		if (task->thread.flags & IA64_THREAD_FPH_VALID)
 | |
| 			dst->ret = user_regset_copyout(
 | |
| 				&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf,
 | |
| 				&dst->target->thread.fph,
 | |
| 				ELF_FP_OFFSET(32), -1);
 | |
| 		else
 | |
| 			/* Zero fill instead.  */
 | |
| 			dst->ret = user_regset_copyout_zero(
 | |
| 				&dst->pos, &dst->count,
 | |
| 				&dst->u.get.kbuf, &dst->u.get.ubuf,
 | |
| 				ELF_FP_OFFSET(32), -1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void do_fpregs_set(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	struct regset_getset *dst = arg;
 | |
| 	elf_fpreg_t fpreg, tmp[30];
 | |
| 	int index, start, end;
 | |
| 
 | |
| 	if (unw_unwind_to_user(info) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	/* Skip pos 0 and 1 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
 | |
| 		dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
 | |
| 						       &dst->u.set.kbuf,
 | |
| 						       &dst->u.set.ubuf,
 | |
| 						       0, ELF_FP_OFFSET(2));
 | |
| 		if (dst->count == 0 || dst->ret)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* fr2-fr31 */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
 | |
| 		start = dst->pos;
 | |
| 		end = min(((unsigned int)ELF_FP_OFFSET(32)),
 | |
| 			 dst->pos + dst->count);
 | |
| 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
 | |
| 				&dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
 | |
| 				ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
 | |
| 		if (dst->ret)
 | |
| 			return;
 | |
| 
 | |
| 		if (start & 0xF) { /* only write high part */
 | |
| 			if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
 | |
| 					 &fpreg)) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 			tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
 | |
| 				= fpreg.u.bits[0];
 | |
| 			start &= ~0xFUL;
 | |
| 		}
 | |
| 		if (end & 0xF) { /* only write low part */
 | |
| 			if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
 | |
| 					&fpreg)) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 			tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
 | |
| 				= fpreg.u.bits[1];
 | |
| 			end = (end + 0xF) & ~0xFUL;
 | |
| 		}
 | |
| 
 | |
| 		for ( ;	start < end ; start += sizeof(elf_fpreg_t)) {
 | |
| 			index = start / sizeof(elf_fpreg_t);
 | |
| 			if (unw_set_fr(info, index, tmp[index - 2])) {
 | |
| 				dst->ret = -EIO;
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		if (dst->ret || dst->count == 0)
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* fph */
 | |
| 	if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
 | |
| 		ia64_sync_fph(dst->target);
 | |
| 		dst->ret = user_regset_copyin(&dst->pos, &dst->count,
 | |
| 						&dst->u.set.kbuf,
 | |
| 						&dst->u.set.ubuf,
 | |
| 						&dst->target->thread.fph,
 | |
| 						ELF_FP_OFFSET(32), -1);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int
 | |
| do_regset_call(void (*call)(struct unw_frame_info *, void *),
 | |
| 	       struct task_struct *target,
 | |
| 	       const struct user_regset *regset,
 | |
| 	       unsigned int pos, unsigned int count,
 | |
| 	       const void *kbuf, const void __user *ubuf)
 | |
| {
 | |
| 	struct regset_getset info = { .target = target, .regset = regset,
 | |
| 				 .pos = pos, .count = count,
 | |
| 				 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
 | |
| 				 .ret = 0 };
 | |
| 
 | |
| 	if (target == current)
 | |
| 		unw_init_running(call, &info);
 | |
| 	else {
 | |
| 		struct unw_frame_info ufi;
 | |
| 		memset(&ufi, 0, sizeof(ufi));
 | |
| 		unw_init_from_blocked_task(&ufi, target);
 | |
| 		(*call)(&ufi, &info);
 | |
| 	}
 | |
| 
 | |
| 	return info.ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| gpregs_get(struct task_struct *target,
 | |
| 	   const struct user_regset *regset,
 | |
| 	   unsigned int pos, unsigned int count,
 | |
| 	   void *kbuf, void __user *ubuf)
 | |
| {
 | |
| 	return do_regset_call(do_gpregs_get, target, regset, pos, count,
 | |
| 		kbuf, ubuf);
 | |
| }
 | |
| 
 | |
| static int gpregs_set(struct task_struct *target,
 | |
| 		const struct user_regset *regset,
 | |
| 		unsigned int pos, unsigned int count,
 | |
| 		const void *kbuf, const void __user *ubuf)
 | |
| {
 | |
| 	return do_regset_call(do_gpregs_set, target, regset, pos, count,
 | |
| 		kbuf, ubuf);
 | |
| }
 | |
| 
 | |
| static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	do_sync_rbs(info, ia64_sync_user_rbs);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is called to write back the register backing store.
 | |
|  * ptrace does this before it stops, so that a tracer reading the user
 | |
|  * memory after the thread stops will get the current register data.
 | |
|  */
 | |
| static int
 | |
| gpregs_writeback(struct task_struct *target,
 | |
| 		 const struct user_regset *regset,
 | |
| 		 int now)
 | |
| {
 | |
| 	if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
 | |
| 		return 0;
 | |
| 	set_notify_resume(target);
 | |
| 	return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
 | |
| 		NULL, NULL);
 | |
| }
 | |
| 
 | |
| static int
 | |
| fpregs_active(struct task_struct *target, const struct user_regset *regset)
 | |
| {
 | |
| 	return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
 | |
| }
 | |
| 
 | |
| static int fpregs_get(struct task_struct *target,
 | |
| 		const struct user_regset *regset,
 | |
| 		unsigned int pos, unsigned int count,
 | |
| 		void *kbuf, void __user *ubuf)
 | |
| {
 | |
| 	return do_regset_call(do_fpregs_get, target, regset, pos, count,
 | |
| 		kbuf, ubuf);
 | |
| }
 | |
| 
 | |
| static int fpregs_set(struct task_struct *target,
 | |
| 		const struct user_regset *regset,
 | |
| 		unsigned int pos, unsigned int count,
 | |
| 		const void *kbuf, const void __user *ubuf)
 | |
| {
 | |
| 	return do_regset_call(do_fpregs_set, target, regset, pos, count,
 | |
| 		kbuf, ubuf);
 | |
| }
 | |
| 
 | |
| static int
 | |
| access_uarea(struct task_struct *child, unsigned long addr,
 | |
| 	      unsigned long *data, int write_access)
 | |
| {
 | |
| 	unsigned int pos = -1; /* an invalid value */
 | |
| 	int ret;
 | |
| 	unsigned long *ptr, regnum;
 | |
| 
 | |
| 	if ((addr & 0x7) != 0) {
 | |
| 		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
 | |
| 		(addr >= PT_R7 + 8 && addr < PT_B1) ||
 | |
| 		(addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
 | |
| 		(addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
 | |
| 		dprintk("ptrace: rejecting access to register "
 | |
| 					"address 0x%lx\n", addr);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	switch (addr) {
 | |
| 	case PT_F32 ... (PT_F127 + 15):
 | |
| 		pos = addr - PT_F32 + ELF_FP_OFFSET(32);
 | |
| 		break;
 | |
| 	case PT_F2 ... (PT_F5 + 15):
 | |
| 		pos = addr - PT_F2 + ELF_FP_OFFSET(2);
 | |
| 		break;
 | |
| 	case PT_F10 ... (PT_F31 + 15):
 | |
| 		pos = addr - PT_F10 + ELF_FP_OFFSET(10);
 | |
| 		break;
 | |
| 	case PT_F6 ... (PT_F9 + 15):
 | |
| 		pos = addr - PT_F6 + ELF_FP_OFFSET(6);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (pos != -1) {
 | |
| 		if (write_access)
 | |
| 			ret = fpregs_set(child, NULL, pos,
 | |
| 				sizeof(unsigned long), data, NULL);
 | |
| 		else
 | |
| 			ret = fpregs_get(child, NULL, pos,
 | |
| 				sizeof(unsigned long), data, NULL);
 | |
| 		if (ret != 0)
 | |
| 			return -1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	switch (addr) {
 | |
| 	case PT_NAT_BITS:
 | |
| 		pos = ELF_NAT_OFFSET;
 | |
| 		break;
 | |
| 	case PT_R4 ... PT_R7:
 | |
| 		pos = addr - PT_R4 + ELF_GR_OFFSET(4);
 | |
| 		break;
 | |
| 	case PT_B1 ... PT_B5:
 | |
| 		pos = addr - PT_B1 + ELF_BR_OFFSET(1);
 | |
| 		break;
 | |
| 	case PT_AR_EC:
 | |
| 		pos = ELF_AR_EC_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_LC:
 | |
| 		pos = ELF_AR_LC_OFFSET;
 | |
| 		break;
 | |
| 	case PT_CR_IPSR:
 | |
| 		pos = ELF_CR_IPSR_OFFSET;
 | |
| 		break;
 | |
| 	case PT_CR_IIP:
 | |
| 		pos = ELF_CR_IIP_OFFSET;
 | |
| 		break;
 | |
| 	case PT_CFM:
 | |
| 		pos = ELF_CFM_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_UNAT:
 | |
| 		pos = ELF_AR_UNAT_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_PFS:
 | |
| 		pos = ELF_AR_PFS_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_RSC:
 | |
| 		pos = ELF_AR_RSC_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_RNAT:
 | |
| 		pos = ELF_AR_RNAT_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_BSPSTORE:
 | |
| 		pos = ELF_AR_BSPSTORE_OFFSET;
 | |
| 		break;
 | |
| 	case PT_PR:
 | |
| 		pos = ELF_PR_OFFSET;
 | |
| 		break;
 | |
| 	case PT_B6:
 | |
| 		pos = ELF_BR_OFFSET(6);
 | |
| 		break;
 | |
| 	case PT_AR_BSP:
 | |
| 		pos = ELF_AR_BSP_OFFSET;
 | |
| 		break;
 | |
| 	case PT_R1 ... PT_R3:
 | |
| 		pos = addr - PT_R1 + ELF_GR_OFFSET(1);
 | |
| 		break;
 | |
| 	case PT_R12 ... PT_R15:
 | |
| 		pos = addr - PT_R12 + ELF_GR_OFFSET(12);
 | |
| 		break;
 | |
| 	case PT_R8 ... PT_R11:
 | |
| 		pos = addr - PT_R8 + ELF_GR_OFFSET(8);
 | |
| 		break;
 | |
| 	case PT_R16 ... PT_R31:
 | |
| 		pos = addr - PT_R16 + ELF_GR_OFFSET(16);
 | |
| 		break;
 | |
| 	case PT_AR_CCV:
 | |
| 		pos = ELF_AR_CCV_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_FPSR:
 | |
| 		pos = ELF_AR_FPSR_OFFSET;
 | |
| 		break;
 | |
| 	case PT_B0:
 | |
| 		pos = ELF_BR_OFFSET(0);
 | |
| 		break;
 | |
| 	case PT_B7:
 | |
| 		pos = ELF_BR_OFFSET(7);
 | |
| 		break;
 | |
| 	case PT_AR_CSD:
 | |
| 		pos = ELF_AR_CSD_OFFSET;
 | |
| 		break;
 | |
| 	case PT_AR_SSD:
 | |
| 		pos = ELF_AR_SSD_OFFSET;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (pos != -1) {
 | |
| 		if (write_access)
 | |
| 			ret = gpregs_set(child, NULL, pos,
 | |
| 				sizeof(unsigned long), data, NULL);
 | |
| 		else
 | |
| 			ret = gpregs_get(child, NULL, pos,
 | |
| 				sizeof(unsigned long), data, NULL);
 | |
| 		if (ret != 0)
 | |
| 			return -1;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* access debug registers */
 | |
| 	if (addr >= PT_IBR) {
 | |
| 		regnum = (addr - PT_IBR) >> 3;
 | |
| 		ptr = &child->thread.ibr[0];
 | |
| 	} else {
 | |
| 		regnum = (addr - PT_DBR) >> 3;
 | |
| 		ptr = &child->thread.dbr[0];
 | |
| 	}
 | |
| 
 | |
| 	if (regnum >= 8) {
 | |
| 		dprintk("ptrace: rejecting access to register "
 | |
| 				"address 0x%lx\n", addr);
 | |
| 		return -1;
 | |
| 	}
 | |
| #ifdef CONFIG_PERFMON
 | |
| 	/*
 | |
| 	 * Check if debug registers are used by perfmon. This
 | |
| 	 * test must be done once we know that we can do the
 | |
| 	 * operation, i.e. the arguments are all valid, but
 | |
| 	 * before we start modifying the state.
 | |
| 	 *
 | |
| 	 * Perfmon needs to keep a count of how many processes
 | |
| 	 * are trying to modify the debug registers for system
 | |
| 	 * wide monitoring sessions.
 | |
| 	 *
 | |
| 	 * We also include read access here, because they may
 | |
| 	 * cause the PMU-installed debug register state
 | |
| 	 * (dbr[], ibr[]) to be reset. The two arrays are also
 | |
| 	 * used by perfmon, but we do not use
 | |
| 	 * IA64_THREAD_DBG_VALID. The registers are restored
 | |
| 	 * by the PMU context switch code.
 | |
| 	 */
 | |
| 	if (pfm_use_debug_registers(child))
 | |
| 		return -1;
 | |
| #endif
 | |
| 
 | |
| 	if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
 | |
| 		child->thread.flags |= IA64_THREAD_DBG_VALID;
 | |
| 		memset(child->thread.dbr, 0,
 | |
| 				sizeof(child->thread.dbr));
 | |
| 		memset(child->thread.ibr, 0,
 | |
| 				sizeof(child->thread.ibr));
 | |
| 	}
 | |
| 
 | |
| 	ptr += regnum;
 | |
| 
 | |
| 	if ((regnum & 1) && write_access) {
 | |
| 		/* don't let the user set kernel-level breakpoints: */
 | |
| 		*ptr = *data & ~(7UL << 56);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	if (write_access)
 | |
| 		*ptr = *data;
 | |
| 	else
 | |
| 		*data = *ptr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static const struct user_regset native_regsets[] = {
 | |
| 	{
 | |
| 		.core_note_type = NT_PRSTATUS,
 | |
| 		.n = ELF_NGREG,
 | |
| 		.size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
 | |
| 		.get = gpregs_get, .set = gpregs_set,
 | |
| 		.writeback = gpregs_writeback
 | |
| 	},
 | |
| 	{
 | |
| 		.core_note_type = NT_PRFPREG,
 | |
| 		.n = ELF_NFPREG,
 | |
| 		.size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
 | |
| 		.get = fpregs_get, .set = fpregs_set, .active = fpregs_active
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static const struct user_regset_view user_ia64_view = {
 | |
| 	.name = "ia64",
 | |
| 	.e_machine = EM_IA_64,
 | |
| 	.regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
 | |
| };
 | |
| 
 | |
| const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_IA32_SUPPORT
 | |
| 	extern const struct user_regset_view user_ia32_view;
 | |
| 	if (IS_IA32_PROCESS(task_pt_regs(tsk)))
 | |
| 		return &user_ia32_view;
 | |
| #endif
 | |
| 	return &user_ia64_view;
 | |
| }
 | |
| 
 | |
| struct syscall_get_set_args {
 | |
| 	unsigned int i;
 | |
| 	unsigned int n;
 | |
| 	unsigned long *args;
 | |
| 	struct pt_regs *regs;
 | |
| 	int rw;
 | |
| };
 | |
| 
 | |
| static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
 | |
| {
 | |
| 	struct syscall_get_set_args *args = data;
 | |
| 	struct pt_regs *pt = args->regs;
 | |
| 	unsigned long *krbs, cfm, ndirty;
 | |
| 	int i, count;
 | |
| 
 | |
| 	if (unw_unwind_to_user(info) < 0)
 | |
| 		return;
 | |
| 
 | |
| 	cfm = pt->cr_ifs;
 | |
| 	krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
 | |
| 	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
 | |
| 
 | |
| 	count = 0;
 | |
| 	if (in_syscall(pt))
 | |
| 		count = min_t(int, args->n, cfm & 0x7f);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		if (args->rw)
 | |
| 			*ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
 | |
| 				args->args[i];
 | |
| 		else
 | |
| 			args->args[i] = *ia64_rse_skip_regs(krbs,
 | |
| 				ndirty + i + args->i);
 | |
| 	}
 | |
| 
 | |
| 	if (!args->rw) {
 | |
| 		while (i < args->n) {
 | |
| 			args->args[i] = 0;
 | |
| 			i++;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ia64_syscall_get_set_arguments(struct task_struct *task,
 | |
| 	struct pt_regs *regs, unsigned int i, unsigned int n,
 | |
| 	unsigned long *args, int rw)
 | |
| {
 | |
| 	struct syscall_get_set_args data = {
 | |
| 		.i = i,
 | |
| 		.n = n,
 | |
| 		.args = args,
 | |
| 		.regs = regs,
 | |
| 		.rw = rw,
 | |
| 	};
 | |
| 
 | |
| 	if (task == current)
 | |
| 		unw_init_running(syscall_get_set_args_cb, &data);
 | |
| 	else {
 | |
| 		struct unw_frame_info ufi;
 | |
| 		memset(&ufi, 0, sizeof(ufi));
 | |
| 		unw_init_from_blocked_task(&ufi, task);
 | |
| 		syscall_get_set_args_cb(&ufi, &data);
 | |
| 	}
 | |
| }
 |