1130 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1130 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Kernel Probes (KProbes)
 | |
|  *  arch/ia64/kernel/kprobes.c
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software
 | |
|  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | |
|  *
 | |
|  * Copyright (C) IBM Corporation, 2002, 2004
 | |
|  * Copyright (C) Intel Corporation, 2005
 | |
|  *
 | |
|  * 2005-Apr     Rusty Lynch <rusty.lynch@intel.com> and Anil S Keshavamurthy
 | |
|  *              <anil.s.keshavamurthy@intel.com> adapted from i386
 | |
|  */
 | |
| 
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/moduleloader.h>
 | |
| #include <linux/kdebug.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| extern void jprobe_inst_return(void);
 | |
| 
 | |
| DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | |
| DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
 | |
| 
 | |
| struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
 | |
| 
 | |
| enum instruction_type {A, I, M, F, B, L, X, u};
 | |
| static enum instruction_type bundle_encoding[32][3] = {
 | |
|   { M, I, I },				/* 00 */
 | |
|   { M, I, I },				/* 01 */
 | |
|   { M, I, I },				/* 02 */
 | |
|   { M, I, I },				/* 03 */
 | |
|   { M, L, X },				/* 04 */
 | |
|   { M, L, X },				/* 05 */
 | |
|   { u, u, u },  			/* 06 */
 | |
|   { u, u, u },  			/* 07 */
 | |
|   { M, M, I },				/* 08 */
 | |
|   { M, M, I },				/* 09 */
 | |
|   { M, M, I },				/* 0A */
 | |
|   { M, M, I },				/* 0B */
 | |
|   { M, F, I },				/* 0C */
 | |
|   { M, F, I },				/* 0D */
 | |
|   { M, M, F },				/* 0E */
 | |
|   { M, M, F },				/* 0F */
 | |
|   { M, I, B },				/* 10 */
 | |
|   { M, I, B },				/* 11 */
 | |
|   { M, B, B },				/* 12 */
 | |
|   { M, B, B },				/* 13 */
 | |
|   { u, u, u },  			/* 14 */
 | |
|   { u, u, u },  			/* 15 */
 | |
|   { B, B, B },				/* 16 */
 | |
|   { B, B, B },				/* 17 */
 | |
|   { M, M, B },				/* 18 */
 | |
|   { M, M, B },				/* 19 */
 | |
|   { u, u, u },  			/* 1A */
 | |
|   { u, u, u },  			/* 1B */
 | |
|   { M, F, B },				/* 1C */
 | |
|   { M, F, B },				/* 1D */
 | |
|   { u, u, u },  			/* 1E */
 | |
|   { u, u, u },  			/* 1F */
 | |
| };
 | |
| 
 | |
| /* Insert a long branch code */
 | |
| static void __kprobes set_brl_inst(void *from, void *to)
 | |
| {
 | |
| 	s64 rel = ((s64) to - (s64) from) >> 4;
 | |
| 	bundle_t *brl;
 | |
| 	brl = (bundle_t *) ((u64) from & ~0xf);
 | |
| 	brl->quad0.template = 0x05;	/* [MLX](stop) */
 | |
| 	brl->quad0.slot0 = NOP_M_INST;	/* nop.m 0x0 */
 | |
| 	brl->quad0.slot1_p0 = ((rel >> 20) & 0x7fffffffff) << 2;
 | |
| 	brl->quad1.slot1_p1 = (((rel >> 20) & 0x7fffffffff) << 2) >> (64 - 46);
 | |
| 	/* brl.cond.sptk.many.clr rel<<4 (qp=0) */
 | |
| 	brl->quad1.slot2 = BRL_INST(rel >> 59, rel & 0xfffff);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In this function we check to see if the instruction
 | |
|  * is IP relative instruction and update the kprobe
 | |
|  * inst flag accordingly
 | |
|  */
 | |
| static void __kprobes update_kprobe_inst_flag(uint template, uint  slot,
 | |
| 					      uint major_opcode,
 | |
| 					      unsigned long kprobe_inst,
 | |
| 					      struct kprobe *p)
 | |
| {
 | |
| 	p->ainsn.inst_flag = 0;
 | |
| 	p->ainsn.target_br_reg = 0;
 | |
| 	p->ainsn.slot = slot;
 | |
| 
 | |
| 	/* Check for Break instruction
 | |
| 	 * Bits 37:40 Major opcode to be zero
 | |
| 	 * Bits 27:32 X6 to be zero
 | |
| 	 * Bits 32:35 X3 to be zero
 | |
| 	 */
 | |
| 	if ((!major_opcode) && (!((kprobe_inst >> 27) & 0x1FF)) ) {
 | |
| 		/* is a break instruction */
 | |
| 	 	p->ainsn.inst_flag |= INST_FLAG_BREAK_INST;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (bundle_encoding[template][slot] == B) {
 | |
| 		switch (major_opcode) {
 | |
| 		  case INDIRECT_CALL_OPCODE:
 | |
| 	 		p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 | |
| 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 | |
| 			break;
 | |
| 		  case IP_RELATIVE_PREDICT_OPCODE:
 | |
| 		  case IP_RELATIVE_BRANCH_OPCODE:
 | |
| 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 | |
| 			break;
 | |
| 		  case IP_RELATIVE_CALL_OPCODE:
 | |
| 			p->ainsn.inst_flag |= INST_FLAG_FIX_RELATIVE_IP_ADDR;
 | |
| 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 | |
| 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 | |
| 			break;
 | |
| 		}
 | |
| 	} else if (bundle_encoding[template][slot] == X) {
 | |
| 		switch (major_opcode) {
 | |
| 		  case LONG_CALL_OPCODE:
 | |
| 			p->ainsn.inst_flag |= INST_FLAG_FIX_BRANCH_REG;
 | |
| 			p->ainsn.target_br_reg = ((kprobe_inst >> 6) & 0x7);
 | |
| 		  break;
 | |
| 		}
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In this function we check to see if the instruction
 | |
|  * (qp) cmpx.crel.ctype p1,p2=r2,r3
 | |
|  * on which we are inserting kprobe is cmp instruction
 | |
|  * with ctype as unc.
 | |
|  */
 | |
| static uint __kprobes is_cmp_ctype_unc_inst(uint template, uint slot,
 | |
| 					    uint major_opcode,
 | |
| 					    unsigned long kprobe_inst)
 | |
| {
 | |
| 	cmp_inst_t cmp_inst;
 | |
| 	uint ctype_unc = 0;
 | |
| 
 | |
| 	if (!((bundle_encoding[template][slot] == I) ||
 | |
| 		(bundle_encoding[template][slot] == M)))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!((major_opcode == 0xC) || (major_opcode == 0xD) ||
 | |
| 		(major_opcode == 0xE)))
 | |
| 		goto out;
 | |
| 
 | |
| 	cmp_inst.l = kprobe_inst;
 | |
| 	if ((cmp_inst.f.x2 == 0) || (cmp_inst.f.x2 == 1)) {
 | |
| 		/* Integer compare - Register Register (A6 type)*/
 | |
| 		if ((cmp_inst.f.tb == 0) && (cmp_inst.f.ta == 0)
 | |
| 				&&(cmp_inst.f.c == 1))
 | |
| 			ctype_unc = 1;
 | |
| 	} else if ((cmp_inst.f.x2 == 2)||(cmp_inst.f.x2 == 3)) {
 | |
| 		/* Integer compare - Immediate Register (A8 type)*/
 | |
| 		if ((cmp_inst.f.ta == 0) &&(cmp_inst.f.c == 1))
 | |
| 			ctype_unc = 1;
 | |
| 	}
 | |
| out:
 | |
| 	return ctype_unc;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In this function we check to see if the instruction
 | |
|  * on which we are inserting kprobe is supported.
 | |
|  * Returns qp value if supported
 | |
|  * Returns -EINVAL if unsupported
 | |
|  */
 | |
| static int __kprobes unsupported_inst(uint template, uint  slot,
 | |
| 				      uint major_opcode,
 | |
| 				      unsigned long kprobe_inst,
 | |
| 				      unsigned long addr)
 | |
| {
 | |
| 	int qp;
 | |
| 
 | |
| 	qp = kprobe_inst & 0x3f;
 | |
| 	if (is_cmp_ctype_unc_inst(template, slot, major_opcode, kprobe_inst)) {
 | |
| 		if (slot == 1 && qp)  {
 | |
| 			printk(KERN_WARNING "Kprobes on cmp unc "
 | |
| 					"instruction on slot 1 at <0x%lx> "
 | |
| 					"is not supported\n", addr);
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		}
 | |
| 		qp = 0;
 | |
| 	}
 | |
| 	else if (bundle_encoding[template][slot] == I) {
 | |
| 		if (major_opcode == 0) {
 | |
| 			/*
 | |
| 			 * Check for Integer speculation instruction
 | |
| 			 * - Bit 33-35 to be equal to 0x1
 | |
| 			 */
 | |
| 			if (((kprobe_inst >> 33) & 0x7) == 1) {
 | |
| 				printk(KERN_WARNING
 | |
| 					"Kprobes on speculation inst at <0x%lx> not supported\n",
 | |
| 						addr);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * IP relative mov instruction
 | |
| 			 *  - Bit 27-35 to be equal to 0x30
 | |
| 			 */
 | |
| 			if (((kprobe_inst >> 27) & 0x1FF) == 0x30) {
 | |
| 				printk(KERN_WARNING
 | |
| 					"Kprobes on \"mov r1=ip\" at <0x%lx> not supported\n",
 | |
| 						addr);
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			}
 | |
| 		}
 | |
| 		else if ((major_opcode == 5) &&	!(kprobe_inst & (0xFUl << 33)) &&
 | |
| 				(kprobe_inst & (0x1UL << 12))) {
 | |
| 			/* test bit instructions, tbit,tnat,tf
 | |
| 			 * bit 33-36 to be equal to 0
 | |
| 			 * bit 12 to be equal to 1
 | |
| 			 */
 | |
| 			if (slot == 1 && qp) {
 | |
| 				printk(KERN_WARNING "Kprobes on test bit "
 | |
| 						"instruction on slot at <0x%lx> "
 | |
| 						"is not supported\n", addr);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			qp = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	else if (bundle_encoding[template][slot] == B) {
 | |
| 		if (major_opcode == 7) {
 | |
| 			/* IP-Relative Predict major code is 7 */
 | |
| 			printk(KERN_WARNING "Kprobes on IP-Relative"
 | |
| 					"Predict is not supported\n");
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| 		else if (major_opcode == 2) {
 | |
| 			/* Indirect Predict, major code is 2
 | |
| 			 * bit 27-32 to be equal to 10 or 11
 | |
| 			 */
 | |
| 			int x6=(kprobe_inst >> 27) & 0x3F;
 | |
| 			if ((x6 == 0x10) || (x6 == 0x11)) {
 | |
| 				printk(KERN_WARNING "Kprobes on "
 | |
| 					"Indirect Predict is not supported\n");
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/* kernel does not use float instruction, here for safety kprobe
 | |
| 	 * will judge whether it is fcmp/flass/float approximation instruction
 | |
| 	 */
 | |
| 	else if (unlikely(bundle_encoding[template][slot] == F)) {
 | |
| 		if ((major_opcode == 4 || major_opcode == 5) &&
 | |
| 				(kprobe_inst  & (0x1 << 12))) {
 | |
| 			/* fcmp/fclass unc instruction */
 | |
| 			if (slot == 1 && qp) {
 | |
| 				printk(KERN_WARNING "Kprobes on fcmp/fclass "
 | |
| 					"instruction on slot at <0x%lx> "
 | |
| 					"is not supported\n", addr);
 | |
| 				return -EINVAL;
 | |
| 
 | |
| 			}
 | |
| 			qp = 0;
 | |
| 		}
 | |
| 		if ((major_opcode == 0 || major_opcode == 1) &&
 | |
| 			(kprobe_inst & (0x1UL << 33))) {
 | |
| 			/* float Approximation instruction */
 | |
| 			if (slot == 1 && qp) {
 | |
| 				printk(KERN_WARNING "Kprobes on float Approx "
 | |
| 					"instr at <0x%lx> is not supported\n",
 | |
| 						addr);
 | |
| 				return -EINVAL;
 | |
| 			}
 | |
| 			qp = 0;
 | |
| 		}
 | |
| 	}
 | |
| 	return qp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In this function we override the bundle with
 | |
|  * the break instruction at the given slot.
 | |
|  */
 | |
| static void __kprobes prepare_break_inst(uint template, uint  slot,
 | |
| 					 uint major_opcode,
 | |
| 					 unsigned long kprobe_inst,
 | |
| 					 struct kprobe *p,
 | |
| 					 int qp)
 | |
| {
 | |
| 	unsigned long break_inst = BREAK_INST;
 | |
| 	bundle_t *bundle = &p->opcode.bundle;
 | |
| 
 | |
| 	/*
 | |
| 	 * Copy the original kprobe_inst qualifying predicate(qp)
 | |
| 	 * to the break instruction
 | |
| 	 */
 | |
| 	break_inst |= qp;
 | |
| 
 | |
| 	switch (slot) {
 | |
| 	  case 0:
 | |
| 		bundle->quad0.slot0 = break_inst;
 | |
| 		break;
 | |
| 	  case 1:
 | |
| 		bundle->quad0.slot1_p0 = break_inst;
 | |
| 		bundle->quad1.slot1_p1 = break_inst >> (64-46);
 | |
| 		break;
 | |
| 	  case 2:
 | |
| 		bundle->quad1.slot2 = break_inst;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Update the instruction flag, so that we can
 | |
| 	 * emulate the instruction properly after we
 | |
| 	 * single step on original instruction
 | |
| 	 */
 | |
| 	update_kprobe_inst_flag(template, slot, major_opcode, kprobe_inst, p);
 | |
| }
 | |
| 
 | |
| static void __kprobes get_kprobe_inst(bundle_t *bundle, uint slot,
 | |
| 	       	unsigned long *kprobe_inst, uint *major_opcode)
 | |
| {
 | |
| 	unsigned long kprobe_inst_p0, kprobe_inst_p1;
 | |
| 	unsigned int template;
 | |
| 
 | |
| 	template = bundle->quad0.template;
 | |
| 
 | |
| 	switch (slot) {
 | |
| 	  case 0:
 | |
| 		*major_opcode = (bundle->quad0.slot0 >> SLOT0_OPCODE_SHIFT);
 | |
| 		*kprobe_inst = bundle->quad0.slot0;
 | |
| 		  break;
 | |
| 	  case 1:
 | |
| 		*major_opcode = (bundle->quad1.slot1_p1 >> SLOT1_p1_OPCODE_SHIFT);
 | |
| 		kprobe_inst_p0 = bundle->quad0.slot1_p0;
 | |
| 		kprobe_inst_p1 = bundle->quad1.slot1_p1;
 | |
| 		*kprobe_inst = kprobe_inst_p0 | (kprobe_inst_p1 << (64-46));
 | |
| 		break;
 | |
| 	  case 2:
 | |
| 		*major_opcode = (bundle->quad1.slot2 >> SLOT2_OPCODE_SHIFT);
 | |
| 		*kprobe_inst = bundle->quad1.slot2;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Returns non-zero if the addr is in the Interrupt Vector Table */
 | |
| static int __kprobes in_ivt_functions(unsigned long addr)
 | |
| {
 | |
| 	return (addr >= (unsigned long)__start_ivt_text
 | |
| 		&& addr < (unsigned long)__end_ivt_text);
 | |
| }
 | |
| 
 | |
| static int __kprobes valid_kprobe_addr(int template, int slot,
 | |
| 				       unsigned long addr)
 | |
| {
 | |
| 	if ((slot > 2) || ((bundle_encoding[template][1] == L) && slot > 1)) {
 | |
| 		printk(KERN_WARNING "Attempting to insert unaligned kprobe "
 | |
| 				"at 0x%lx\n", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (in_ivt_functions(addr)) {
 | |
| 		printk(KERN_WARNING "Kprobes can't be inserted inside "
 | |
| 				"IVT functions at 0x%lx\n", addr);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	i = atomic_add_return(1, &kcb->prev_kprobe_index);
 | |
| 	kcb->prev_kprobe[i-1].kp = kprobe_running();
 | |
| 	kcb->prev_kprobe[i-1].status = kcb->kprobe_status;
 | |
| }
 | |
| 
 | |
| static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	i = atomic_read(&kcb->prev_kprobe_index);
 | |
| 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe[i-1].kp;
 | |
| 	kcb->kprobe_status = kcb->prev_kprobe[i-1].status;
 | |
| 	atomic_sub(1, &kcb->prev_kprobe_index);
 | |
| }
 | |
| 
 | |
| static void __kprobes set_current_kprobe(struct kprobe *p,
 | |
| 			struct kprobe_ctlblk *kcb)
 | |
| {
 | |
| 	__get_cpu_var(current_kprobe) = p;
 | |
| }
 | |
| 
 | |
| static void kretprobe_trampoline(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * At this point the target function has been tricked into
 | |
|  * returning into our trampoline.  Lookup the associated instance
 | |
|  * and then:
 | |
|  *    - call the handler function
 | |
|  *    - cleanup by marking the instance as unused
 | |
|  *    - long jump back to the original return address
 | |
|  */
 | |
| int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kretprobe_instance *ri = NULL;
 | |
| 	struct hlist_head *head, empty_rp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 	unsigned long flags, orig_ret_address = 0;
 | |
| 	unsigned long trampoline_address =
 | |
| 		((struct fnptr *)kretprobe_trampoline)->ip;
 | |
| 
 | |
| 	INIT_HLIST_HEAD(&empty_rp);
 | |
| 	kretprobe_hash_lock(current, &head, &flags);
 | |
| 
 | |
| 	/*
 | |
| 	 * It is possible to have multiple instances associated with a given
 | |
| 	 * task either because an multiple functions in the call path
 | |
| 	 * have a return probe installed on them, and/or more than one return
 | |
| 	 * return probe was registered for a target function.
 | |
| 	 *
 | |
| 	 * We can handle this because:
 | |
| 	 *     - instances are always inserted at the head of the list
 | |
| 	 *     - when multiple return probes are registered for the same
 | |
| 	 *       function, the first instance's ret_addr will point to the
 | |
| 	 *       real return address, and all the rest will point to
 | |
| 	 *       kretprobe_trampoline
 | |
| 	 */
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	regs->cr_iip = orig_ret_address;
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 | |
| 		if (ri->task != current)
 | |
| 			/* another task is sharing our hash bucket */
 | |
| 			continue;
 | |
| 
 | |
| 		if (ri->rp && ri->rp->handler)
 | |
| 			ri->rp->handler(ri, regs);
 | |
| 
 | |
| 		orig_ret_address = (unsigned long)ri->ret_addr;
 | |
| 		recycle_rp_inst(ri, &empty_rp);
 | |
| 
 | |
| 		if (orig_ret_address != trampoline_address)
 | |
| 			/*
 | |
| 			 * This is the real return address. Any other
 | |
| 			 * instances associated with this task are for
 | |
| 			 * other calls deeper on the call stack
 | |
| 			 */
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 | |
| 
 | |
| 	reset_current_kprobe();
 | |
| 	kretprobe_hash_unlock(current, &flags);
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 | |
| 		hlist_del(&ri->hlist);
 | |
| 		kfree(ri);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * By returning a non-zero value, we are telling
 | |
| 	 * kprobe_handler() that we don't want the post_handler
 | |
| 	 * to run (and have re-enabled preemption)
 | |
| 	 */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 | |
| 				      struct pt_regs *regs)
 | |
| {
 | |
| 	ri->ret_addr = (kprobe_opcode_t *)regs->b0;
 | |
| 
 | |
| 	/* Replace the return addr with trampoline addr */
 | |
| 	regs->b0 = ((struct fnptr *)kretprobe_trampoline)->ip;
 | |
| }
 | |
| 
 | |
| /* Check the instruction in the slot is break */
 | |
| static int __kprobes __is_ia64_break_inst(bundle_t *bundle, uint slot)
 | |
| {
 | |
| 	unsigned int major_opcode;
 | |
| 	unsigned int template = bundle->quad0.template;
 | |
| 	unsigned long kprobe_inst;
 | |
| 
 | |
| 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 | |
| 	if (slot == 1 && bundle_encoding[template][1] == L)
 | |
| 		slot++;
 | |
| 
 | |
| 	/* Get Kprobe probe instruction at given slot*/
 | |
| 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 | |
| 
 | |
| 	/* For break instruction,
 | |
| 	 * Bits 37:40 Major opcode to be zero
 | |
| 	 * Bits 27:32 X6 to be zero
 | |
| 	 * Bits 32:35 X3 to be zero
 | |
| 	 */
 | |
| 	if (major_opcode || ((kprobe_inst >> 27) & 0x1FF)) {
 | |
| 		/* Not a break instruction */
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Is a break instruction */
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In this function, we check whether the target bundle modifies IP or
 | |
|  * it triggers an exception. If so, it cannot be boostable.
 | |
|  */
 | |
| static int __kprobes can_boost(bundle_t *bundle, uint slot,
 | |
| 			       unsigned long bundle_addr)
 | |
| {
 | |
| 	unsigned int template = bundle->quad0.template;
 | |
| 
 | |
| 	do {
 | |
| 		if (search_exception_tables(bundle_addr + slot) ||
 | |
| 		    __is_ia64_break_inst(bundle, slot))
 | |
| 			return 0;	/* exception may occur in this bundle*/
 | |
| 	} while ((++slot) < 3);
 | |
| 	template &= 0x1e;
 | |
| 	if (template >= 0x10 /* including B unit */ ||
 | |
| 	    template == 0x04 /* including X unit */ ||
 | |
| 	    template == 0x06) /* undefined */
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* Prepare long jump bundle and disables other boosters if need */
 | |
| static void __kprobes prepare_booster(struct kprobe *p)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)p->addr & ~0xFULL;
 | |
| 	unsigned int slot = (unsigned long)p->addr & 0xf;
 | |
| 	struct kprobe *other_kp;
 | |
| 
 | |
| 	if (can_boost(&p->ainsn.insn[0].bundle, slot, addr)) {
 | |
| 		set_brl_inst(&p->ainsn.insn[1].bundle, (bundle_t *)addr + 1);
 | |
| 		p->ainsn.inst_flag |= INST_FLAG_BOOSTABLE;
 | |
| 	}
 | |
| 
 | |
| 	/* disables boosters in previous slots */
 | |
| 	for (; addr < (unsigned long)p->addr; addr++) {
 | |
| 		other_kp = get_kprobe((void *)addr);
 | |
| 		if (other_kp)
 | |
| 			other_kp->ainsn.inst_flag &= ~INST_FLAG_BOOSTABLE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long) p->addr;
 | |
| 	unsigned long *kprobe_addr = (unsigned long *)(addr & ~0xFULL);
 | |
| 	unsigned long kprobe_inst=0;
 | |
| 	unsigned int slot = addr & 0xf, template, major_opcode = 0;
 | |
| 	bundle_t *bundle;
 | |
| 	int qp;
 | |
| 
 | |
| 	bundle = &((kprobe_opcode_t *)kprobe_addr)->bundle;
 | |
| 	template = bundle->quad0.template;
 | |
| 
 | |
| 	if(valid_kprobe_addr(template, slot, addr))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/* Move to slot 2, if bundle is MLX type and kprobe slot is 1 */
 | |
| 	if (slot == 1 && bundle_encoding[template][1] == L)
 | |
| 		slot++;
 | |
| 
 | |
| 	/* Get kprobe_inst and major_opcode from the bundle */
 | |
| 	get_kprobe_inst(bundle, slot, &kprobe_inst, &major_opcode);
 | |
| 
 | |
| 	qp = unsupported_inst(template, slot, major_opcode, kprobe_inst, addr);
 | |
| 	if (qp < 0)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	p->ainsn.insn = get_insn_slot();
 | |
| 	if (!p->ainsn.insn)
 | |
| 		return -ENOMEM;
 | |
| 	memcpy(&p->opcode, kprobe_addr, sizeof(kprobe_opcode_t));
 | |
| 	memcpy(p->ainsn.insn, kprobe_addr, sizeof(kprobe_opcode_t));
 | |
| 
 | |
| 	prepare_break_inst(template, slot, major_opcode, kprobe_inst, p, qp);
 | |
| 
 | |
| 	prepare_booster(p);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __kprobes arch_arm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	unsigned long arm_addr;
 | |
| 	bundle_t *src, *dest;
 | |
| 
 | |
| 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 | |
| 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 | |
| 	src = &p->opcode.bundle;
 | |
| 
 | |
| 	flush_icache_range((unsigned long)p->ainsn.insn,
 | |
| 			   (unsigned long)p->ainsn.insn +
 | |
| 			   sizeof(kprobe_opcode_t) * MAX_INSN_SIZE);
 | |
| 
 | |
| 	switch (p->ainsn.slot) {
 | |
| 		case 0:
 | |
| 			dest->quad0.slot0 = src->quad0.slot0;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			dest->quad1.slot2 = src->quad1.slot2;
 | |
| 			break;
 | |
| 	}
 | |
| 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	unsigned long arm_addr;
 | |
| 	bundle_t *src, *dest;
 | |
| 
 | |
| 	arm_addr = ((unsigned long)p->addr) & ~0xFUL;
 | |
| 	dest = &((kprobe_opcode_t *)arm_addr)->bundle;
 | |
| 	/* p->ainsn.insn contains the original unaltered kprobe_opcode_t */
 | |
| 	src = &p->ainsn.insn->bundle;
 | |
| 	switch (p->ainsn.slot) {
 | |
| 		case 0:
 | |
| 			dest->quad0.slot0 = src->quad0.slot0;
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			dest->quad1.slot1_p1 = src->quad1.slot1_p1;
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			dest->quad1.slot2 = src->quad1.slot2;
 | |
| 			break;
 | |
| 	}
 | |
| 	flush_icache_range(arm_addr, arm_addr + sizeof(kprobe_opcode_t));
 | |
| }
 | |
| 
 | |
| void __kprobes arch_remove_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->ainsn.insn) {
 | |
| 		free_insn_slot(p->ainsn.insn,
 | |
| 			       p->ainsn.inst_flag & INST_FLAG_BOOSTABLE);
 | |
| 		p->ainsn.insn = NULL;
 | |
| 	}
 | |
| }
 | |
| /*
 | |
|  * We are resuming execution after a single step fault, so the pt_regs
 | |
|  * structure reflects the register state after we executed the instruction
 | |
|  * located in the kprobe (p->ainsn.insn->bundle).  We still need to adjust
 | |
|  * the ip to point back to the original stack address. To set the IP address
 | |
|  * to original stack address, handle the case where we need to fixup the
 | |
|  * relative IP address and/or fixup branch register.
 | |
|  */
 | |
| static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long bundle_addr = (unsigned long) (&p->ainsn.insn->bundle);
 | |
| 	unsigned long resume_addr = (unsigned long)p->addr & ~0xFULL;
 | |
| 	unsigned long template;
 | |
| 	int slot = ((unsigned long)p->addr & 0xf);
 | |
| 
 | |
| 	template = p->ainsn.insn->bundle.quad0.template;
 | |
| 
 | |
| 	if (slot == 1 && bundle_encoding[template][1] == L)
 | |
| 		slot = 2;
 | |
| 
 | |
| 	if (p->ainsn.inst_flag & ~INST_FLAG_BOOSTABLE) {
 | |
| 
 | |
| 		if (p->ainsn.inst_flag & INST_FLAG_FIX_RELATIVE_IP_ADDR) {
 | |
| 			/* Fix relative IP address */
 | |
| 			regs->cr_iip = (regs->cr_iip - bundle_addr) +
 | |
| 					resume_addr;
 | |
| 		}
 | |
| 
 | |
| 		if (p->ainsn.inst_flag & INST_FLAG_FIX_BRANCH_REG) {
 | |
| 		/*
 | |
| 		 * Fix target branch register, software convention is
 | |
| 		 * to use either b0 or b6 or b7, so just checking
 | |
| 		 * only those registers
 | |
| 		 */
 | |
| 			switch (p->ainsn.target_br_reg) {
 | |
| 			case 0:
 | |
| 				if ((regs->b0 == bundle_addr) ||
 | |
| 					(regs->b0 == bundle_addr + 0x10)) {
 | |
| 					regs->b0 = (regs->b0 - bundle_addr) +
 | |
| 						resume_addr;
 | |
| 				}
 | |
| 				break;
 | |
| 			case 6:
 | |
| 				if ((regs->b6 == bundle_addr) ||
 | |
| 					(regs->b6 == bundle_addr + 0x10)) {
 | |
| 					regs->b6 = (regs->b6 - bundle_addr) +
 | |
| 						resume_addr;
 | |
| 				}
 | |
| 				break;
 | |
| 			case 7:
 | |
| 				if ((regs->b7 == bundle_addr) ||
 | |
| 					(regs->b7 == bundle_addr + 0x10)) {
 | |
| 					regs->b7 = (regs->b7 - bundle_addr) +
 | |
| 						resume_addr;
 | |
| 				}
 | |
| 				break;
 | |
| 			} /* end switch */
 | |
| 		}
 | |
| 		goto turn_ss_off;
 | |
| 	}
 | |
| 
 | |
| 	if (slot == 2) {
 | |
| 		if (regs->cr_iip == bundle_addr + 0x10) {
 | |
| 			regs->cr_iip = resume_addr + 0x10;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (regs->cr_iip == bundle_addr) {
 | |
| 			regs->cr_iip = resume_addr;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| turn_ss_off:
 | |
| 	/* Turn off Single Step bit */
 | |
| 	ia64_psr(regs)->ss = 0;
 | |
| }
 | |
| 
 | |
| static void __kprobes prepare_ss(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long bundle_addr = (unsigned long) &p->ainsn.insn->bundle;
 | |
| 	unsigned long slot = (unsigned long)p->addr & 0xf;
 | |
| 
 | |
| 	/* single step inline if break instruction */
 | |
| 	if (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)
 | |
| 		regs->cr_iip = (unsigned long)p->addr & ~0xFULL;
 | |
| 	else
 | |
| 		regs->cr_iip = bundle_addr & ~0xFULL;
 | |
| 
 | |
| 	if (slot > 2)
 | |
| 		slot = 0;
 | |
| 
 | |
| 	ia64_psr(regs)->ri = slot;
 | |
| 
 | |
| 	/* turn on single stepping */
 | |
| 	ia64_psr(regs)->ss = 1;
 | |
| }
 | |
| 
 | |
| static int __kprobes is_ia64_break_inst(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int slot = ia64_psr(regs)->ri;
 | |
| 	unsigned long *kprobe_addr = (unsigned long *)regs->cr_iip;
 | |
| 	bundle_t bundle;
 | |
| 
 | |
| 	memcpy(&bundle, kprobe_addr, sizeof(bundle_t));
 | |
| 
 | |
| 	return __is_ia64_break_inst(&bundle, slot);
 | |
| }
 | |
| 
 | |
| static int __kprobes pre_kprobes_handler(struct die_args *args)
 | |
| {
 | |
| 	struct kprobe *p;
 | |
| 	int ret = 0;
 | |
| 	struct pt_regs *regs = args->regs;
 | |
| 	kprobe_opcode_t *addr = (kprobe_opcode_t *)instruction_pointer(regs);
 | |
| 	struct kprobe_ctlblk *kcb;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't want to be preempted for the entire
 | |
| 	 * duration of kprobe processing
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	/* Handle recursion cases */
 | |
| 	if (kprobe_running()) {
 | |
| 		p = get_kprobe(addr);
 | |
| 		if (p) {
 | |
| 			if ((kcb->kprobe_status == KPROBE_HIT_SS) &&
 | |
| 	 		     (p->ainsn.inst_flag == INST_FLAG_BREAK_INST)) {
 | |
| 				ia64_psr(regs)->ss = 0;
 | |
| 				goto no_kprobe;
 | |
| 			}
 | |
| 			/* We have reentered the pre_kprobe_handler(), since
 | |
| 			 * another probe was hit while within the handler.
 | |
| 			 * We here save the original kprobes variables and
 | |
| 			 * just single step on the instruction of the new probe
 | |
| 			 * without calling any user handlers.
 | |
| 			 */
 | |
| 			save_previous_kprobe(kcb);
 | |
| 			set_current_kprobe(p, kcb);
 | |
| 			kprobes_inc_nmissed_count(p);
 | |
| 			prepare_ss(p, regs);
 | |
| 			kcb->kprobe_status = KPROBE_REENTER;
 | |
| 			return 1;
 | |
| 		} else if (args->err == __IA64_BREAK_JPROBE) {
 | |
| 			/*
 | |
| 			 * jprobe instrumented function just completed
 | |
| 			 */
 | |
| 			p = __get_cpu_var(current_kprobe);
 | |
| 			if (p->break_handler && p->break_handler(p, regs)) {
 | |
| 				goto ss_probe;
 | |
| 			}
 | |
| 		} else if (!is_ia64_break_inst(regs)) {
 | |
| 			/* The breakpoint instruction was removed by
 | |
| 			 * another cpu right after we hit, no further
 | |
| 			 * handling of this interrupt is appropriate
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 			goto no_kprobe;
 | |
| 		} else {
 | |
| 			/* Not our break */
 | |
| 			goto no_kprobe;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	p = get_kprobe(addr);
 | |
| 	if (!p) {
 | |
| 		if (!is_ia64_break_inst(regs)) {
 | |
| 			/*
 | |
| 			 * The breakpoint instruction was removed right
 | |
| 			 * after we hit it.  Another cpu has removed
 | |
| 			 * either a probepoint or a debugger breakpoint
 | |
| 			 * at this address.  In either case, no further
 | |
| 			 * handling of this interrupt is appropriate.
 | |
| 			 */
 | |
| 			ret = 1;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		/* Not one of our break, let kernel handle it */
 | |
| 		goto no_kprobe;
 | |
| 	}
 | |
| 
 | |
| 	set_current_kprobe(p, kcb);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 | |
| 
 | |
| 	if (p->pre_handler && p->pre_handler(p, regs))
 | |
| 		/*
 | |
| 		 * Our pre-handler is specifically requesting that we just
 | |
| 		 * do a return.  This is used for both the jprobe pre-handler
 | |
| 		 * and the kretprobe trampoline
 | |
| 		 */
 | |
| 		return 1;
 | |
| 
 | |
| ss_probe:
 | |
| #if !defined(CONFIG_PREEMPT) || defined(CONFIG_FREEZER)
 | |
| 	if (p->ainsn.inst_flag == INST_FLAG_BOOSTABLE && !p->post_handler) {
 | |
| 		/* Boost up -- we can execute copied instructions directly */
 | |
| 		ia64_psr(regs)->ri = p->ainsn.slot;
 | |
| 		regs->cr_iip = (unsigned long)&p->ainsn.insn->bundle & ~0xFULL;
 | |
| 		/* turn single stepping off */
 | |
| 		ia64_psr(regs)->ss = 0;
 | |
| 
 | |
| 		reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		return 1;
 | |
| 	}
 | |
| #endif
 | |
| 	prepare_ss(p, regs);
 | |
| 	kcb->kprobe_status = KPROBE_HIT_SS;
 | |
| 	return 1;
 | |
| 
 | |
| no_kprobe:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __kprobes post_kprobes_handler(struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 	if (!cur)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 | |
| 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 | |
| 		cur->post_handler(cur, regs, 0);
 | |
| 	}
 | |
| 
 | |
| 	resume_execution(cur, regs);
 | |
| 
 | |
| 	/*Restore back the original saved kprobes variables and continue. */
 | |
| 	if (kcb->kprobe_status == KPROBE_REENTER) {
 | |
| 		restore_previous_kprobe(kcb);
 | |
| 		goto out;
 | |
| 	}
 | |
| 	reset_current_kprobe();
 | |
| 
 | |
| out:
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | |
| {
 | |
| 	struct kprobe *cur = kprobe_running();
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 
 | |
| 
 | |
| 	switch(kcb->kprobe_status) {
 | |
| 	case KPROBE_HIT_SS:
 | |
| 	case KPROBE_REENTER:
 | |
| 		/*
 | |
| 		 * We are here because the instruction being single
 | |
| 		 * stepped caused a page fault. We reset the current
 | |
| 		 * kprobe and the instruction pointer points back to
 | |
| 		 * the probe address and allow the page fault handler
 | |
| 		 * to continue as a normal page fault.
 | |
| 		 */
 | |
| 		regs->cr_iip = ((unsigned long)cur->addr) & ~0xFULL;
 | |
| 		ia64_psr(regs)->ri = ((unsigned long)cur->addr) & 0xf;
 | |
| 		if (kcb->kprobe_status == KPROBE_REENTER)
 | |
| 			restore_previous_kprobe(kcb);
 | |
| 		else
 | |
| 			reset_current_kprobe();
 | |
| 		preempt_enable_no_resched();
 | |
| 		break;
 | |
| 	case KPROBE_HIT_ACTIVE:
 | |
| 	case KPROBE_HIT_SSDONE:
 | |
| 		/*
 | |
| 		 * We increment the nmissed count for accounting,
 | |
| 		 * we can also use npre/npostfault count for accouting
 | |
| 		 * these specific fault cases.
 | |
| 		 */
 | |
| 		kprobes_inc_nmissed_count(cur);
 | |
| 
 | |
| 		/*
 | |
| 		 * We come here because instructions in the pre/post
 | |
| 		 * handler caused the page_fault, this could happen
 | |
| 		 * if handler tries to access user space by
 | |
| 		 * copy_from_user(), get_user() etc. Let the
 | |
| 		 * user-specified handler try to fix it first.
 | |
| 		 */
 | |
| 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
 | |
| 			return 1;
 | |
| 		/*
 | |
| 		 * In case the user-specified fault handler returned
 | |
| 		 * zero, try to fix up.
 | |
| 		 */
 | |
| 		if (ia64_done_with_exception(regs))
 | |
| 			return 1;
 | |
| 
 | |
| 		/*
 | |
| 		 * Let ia64_do_page_fault() fix it.
 | |
| 		 */
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | |
| 				       unsigned long val, void *data)
 | |
| {
 | |
| 	struct die_args *args = (struct die_args *)data;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	if (args->regs && user_mode(args->regs))
 | |
| 		return ret;
 | |
| 
 | |
| 	switch(val) {
 | |
| 	case DIE_BREAK:
 | |
| 		/* err is break number from ia64_bad_break() */
 | |
| 		if ((args->err >> 12) == (__IA64_BREAK_KPROBE >> 12)
 | |
| 			|| args->err == __IA64_BREAK_JPROBE
 | |
| 			|| args->err == 0)
 | |
| 			if (pre_kprobes_handler(args))
 | |
| 				ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	case DIE_FAULT:
 | |
| 		/* err is vector number from ia64_fault() */
 | |
| 		if (args->err == 36)
 | |
| 			if (post_kprobes_handler(args->regs))
 | |
| 				ret = NOTIFY_STOP;
 | |
| 		break;
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| struct param_bsp_cfm {
 | |
| 	unsigned long ip;
 | |
| 	unsigned long *bsp;
 | |
| 	unsigned long cfm;
 | |
| };
 | |
| 
 | |
| static void ia64_get_bsp_cfm(struct unw_frame_info *info, void *arg)
 | |
| {
 | |
| 	unsigned long ip;
 | |
| 	struct param_bsp_cfm *lp = arg;
 | |
| 
 | |
| 	do {
 | |
| 		unw_get_ip(info, &ip);
 | |
| 		if (ip == 0)
 | |
| 			break;
 | |
| 		if (ip == lp->ip) {
 | |
| 			unw_get_bsp(info, (unsigned long*)&lp->bsp);
 | |
| 			unw_get_cfm(info, (unsigned long*)&lp->cfm);
 | |
| 			return;
 | |
| 		}
 | |
| 	} while (unw_unwind(info) >= 0);
 | |
| 	lp->bsp = NULL;
 | |
| 	lp->cfm = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| unsigned long arch_deref_entry_point(void *entry)
 | |
| {
 | |
| 	return ((struct fnptr *)entry)->ip;
 | |
| }
 | |
| 
 | |
| int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | |
| 	unsigned long addr = arch_deref_entry_point(jp->entry);
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	struct param_bsp_cfm pa;
 | |
| 	int bytes;
 | |
| 
 | |
| 	/*
 | |
| 	 * Callee owns the argument space and could overwrite it, eg
 | |
| 	 * tail call optimization. So to be absolutely safe
 | |
| 	 * we save the argument space before transferring the control
 | |
| 	 * to instrumented jprobe function which runs in
 | |
| 	 * the process context
 | |
| 	 */
 | |
| 	pa.ip = regs->cr_iip;
 | |
| 	unw_init_running(ia64_get_bsp_cfm, &pa);
 | |
| 	bytes = (char *)ia64_rse_skip_regs(pa.bsp, pa.cfm & 0x3f)
 | |
| 				- (char *)pa.bsp;
 | |
| 	memcpy( kcb->jprobes_saved_stacked_regs,
 | |
| 		pa.bsp,
 | |
| 		bytes );
 | |
| 	kcb->bsp = pa.bsp;
 | |
| 	kcb->cfm = pa.cfm;
 | |
| 
 | |
| 	/* save architectural state */
 | |
| 	kcb->jprobe_saved_regs = *regs;
 | |
| 
 | |
| 	/* after rfi, execute the jprobe instrumented function */
 | |
| 	regs->cr_iip = addr & ~0xFULL;
 | |
| 	ia64_psr(regs)->ri = addr & 0xf;
 | |
| 	regs->r1 = ((struct fnptr *)(jp->entry))->gp;
 | |
| 
 | |
| 	/*
 | |
| 	 * fix the return address to our jprobe_inst_return() function
 | |
| 	 * in the jprobes.S file
 | |
| 	 */
 | |
| 	regs->b0 = ((struct fnptr *)(jprobe_inst_return))->ip;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /* ia64 does not need this */
 | |
| void __kprobes jprobe_return(void)
 | |
| {
 | |
| }
 | |
| 
 | |
| int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | |
| {
 | |
| 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 | |
| 	int bytes;
 | |
| 
 | |
| 	/* restoring architectural state */
 | |
| 	*regs = kcb->jprobe_saved_regs;
 | |
| 
 | |
| 	/* restoring the original argument space */
 | |
| 	flush_register_stack();
 | |
| 	bytes = (char *)ia64_rse_skip_regs(kcb->bsp, kcb->cfm & 0x3f)
 | |
| 				- (char *)kcb->bsp;
 | |
| 	memcpy( kcb->bsp,
 | |
| 		kcb->jprobes_saved_stacked_regs,
 | |
| 		bytes );
 | |
| 	invalidate_stacked_regs();
 | |
| 
 | |
| 	preempt_enable_no_resched();
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static struct kprobe trampoline_p = {
 | |
| 	.pre_handler = trampoline_probe_handler
 | |
| };
 | |
| 
 | |
| int __init arch_init_kprobes(void)
 | |
| {
 | |
| 	trampoline_p.addr =
 | |
| 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip;
 | |
| 	return register_kprobe(&trampoline_p);
 | |
| }
 | |
| 
 | |
| int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 | |
| {
 | |
| 	if (p->addr ==
 | |
| 		(kprobe_opcode_t *)((struct fnptr *)kretprobe_trampoline)->ip)
 | |
| 		return 1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 |