1795 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1795 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *	This program is free software; you can redistribute it and/or
 | |
|  *	modify it under the terms of the GNU General Public License
 | |
|  *	as published by the Free Software Foundation; either version
 | |
|  *	2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
 | |
|  *	(c) Copyright 2000, 2001 Red Hat Inc
 | |
|  *
 | |
|  *	Development of this driver was funded by Equiinet Ltd
 | |
|  *			http://www.equiinet.com
 | |
|  *
 | |
|  *	ChangeLog:
 | |
|  *
 | |
|  *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
 | |
|  *	unification of all the Z85x30 asynchronous drivers for real.
 | |
|  *
 | |
|  *	DMA now uses get_free_page as kmalloc buffers may span a 64K 
 | |
|  *	boundary.
 | |
|  *
 | |
|  *	Modified for SMP safety and SMP locking by Alan Cox
 | |
|  *					<alan@lxorguk.ukuu.org.uk>
 | |
|  *
 | |
|  *	Performance
 | |
|  *
 | |
|  *	Z85230:
 | |
|  *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
 | |
|  *	X.25 is not unrealistic on all machines. DMA mode can in theory
 | |
|  *	handle T1/E1 quite nicely. In practice the limit seems to be about
 | |
|  *	512Kbit->1Mbit depending on motherboard.
 | |
|  *
 | |
|  *	Z85C30:
 | |
|  *	64K will take DMA, 9600 baud X.25 should be ok.
 | |
|  *
 | |
|  *	Z8530:
 | |
|  *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/net.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/if_arp.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/hdlc.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/init.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/io.h>
 | |
| #define RT_LOCK
 | |
| #define RT_UNLOCK
 | |
| #include <linux/spinlock.h>
 | |
| 
 | |
| #include "z85230.h"
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	z8530_read_port - Architecture specific interface function
 | |
|  *	@p: port to read
 | |
|  *
 | |
|  *	Provided port access methods. The Comtrol SV11 requires no delays
 | |
|  *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
 | |
|  *	
 | |
|  *	In the longer term this should become an architecture specific
 | |
|  *	section so that this can become a generic driver interface for all
 | |
|  *	platforms. For now we only handle PC I/O ports with or without the
 | |
|  *	dread 5uS sanity delay.
 | |
|  *
 | |
|  *	The caller must hold sufficient locks to avoid violating the horrible
 | |
|  *	5uS delay rule.
 | |
|  */
 | |
| 
 | |
| static inline int z8530_read_port(unsigned long p)
 | |
| {
 | |
| 	u8 r=inb(Z8530_PORT_OF(p));
 | |
| 	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
 | |
| 		udelay(5);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_write_port - Architecture specific interface function
 | |
|  *	@p: port to write
 | |
|  *	@d: value to write
 | |
|  *
 | |
|  *	Write a value to a port with delays if need be. Note that the
 | |
|  *	caller must hold locks to avoid read/writes from other contexts
 | |
|  *	violating the 5uS rule
 | |
|  *
 | |
|  *	In the longer term this should become an architecture specific
 | |
|  *	section so that this can become a generic driver interface for all
 | |
|  *	platforms. For now we only handle PC I/O ports with or without the
 | |
|  *	dread 5uS sanity delay.
 | |
|  */
 | |
| 
 | |
| 
 | |
| static inline void z8530_write_port(unsigned long p, u8 d)
 | |
| {
 | |
| 	outb(d,Z8530_PORT_OF(p));
 | |
| 	if(p&Z8530_PORT_SLEEP)
 | |
| 		udelay(5);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| static void z8530_rx_done(struct z8530_channel *c);
 | |
| static void z8530_tx_done(struct z8530_channel *c);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	read_zsreg - Read a register from a Z85230 
 | |
|  *	@c: Z8530 channel to read from (2 per chip)
 | |
|  *	@reg: Register to read
 | |
|  *	FIXME: Use a spinlock.
 | |
|  *	
 | |
|  *	Most of the Z8530 registers are indexed off the control registers.
 | |
|  *	A read is done by writing to the control register and reading the
 | |
|  *	register back.  The caller must hold the lock
 | |
|  */
 | |
|  
 | |
| static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 | |
| {
 | |
| 	if(reg)
 | |
| 		z8530_write_port(c->ctrlio, reg);
 | |
| 	return z8530_read_port(c->ctrlio);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	read_zsdata - Read the data port of a Z8530 channel
 | |
|  *	@c: The Z8530 channel to read the data port from
 | |
|  *
 | |
|  *	The data port provides fast access to some things. We still
 | |
|  *	have all the 5uS delays to worry about.
 | |
|  */
 | |
| 
 | |
| static inline u8 read_zsdata(struct z8530_channel *c)
 | |
| {
 | |
| 	u8 r;
 | |
| 	r=z8530_read_port(c->dataio);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	write_zsreg - Write to a Z8530 channel register
 | |
|  *	@c: The Z8530 channel
 | |
|  *	@reg: Register number
 | |
|  *	@val: Value to write
 | |
|  *
 | |
|  *	Write a value to an indexed register. The caller must hold the lock
 | |
|  *	to honour the irritating delay rules. We know about register 0
 | |
|  *	being fast to access.
 | |
|  *
 | |
|  *      Assumes c->lock is held.
 | |
|  */
 | |
| static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 | |
| {
 | |
| 	if(reg)
 | |
| 		z8530_write_port(c->ctrlio, reg);
 | |
| 	z8530_write_port(c->ctrlio, val);
 | |
| 
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	write_zsctrl - Write to a Z8530 control register
 | |
|  *	@c: The Z8530 channel
 | |
|  *	@val: Value to write
 | |
|  *
 | |
|  *	Write directly to the control register on the Z8530
 | |
|  */
 | |
| 
 | |
| static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 | |
| {
 | |
| 	z8530_write_port(c->ctrlio, val);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	write_zsdata - Write to a Z8530 control register
 | |
|  *	@c: The Z8530 channel
 | |
|  *	@val: Value to write
 | |
|  *
 | |
|  *	Write directly to the data register on the Z8530
 | |
|  */
 | |
| 
 | |
| 
 | |
| static inline void write_zsdata(struct z8530_channel *c, u8 val)
 | |
| {
 | |
| 	z8530_write_port(c->dataio, val);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Register loading parameters for a dead port
 | |
|  */
 | |
|  
 | |
| u8 z8530_dead_port[]=
 | |
| {
 | |
| 	255
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_dead_port);
 | |
| 
 | |
| /*
 | |
|  *	Register loading parameters for currently supported circuit types
 | |
|  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Data clocked by telco end. This is the correct data for the UK
 | |
|  *	"kilostream" service, and most other similar services.
 | |
|  */
 | |
|  
 | |
| u8 z8530_hdlc_kilostream[]=
 | |
| {
 | |
| 	4,	SYNC_ENAB|SDLC|X1CLK,
 | |
| 	2,	0,	/* No vector */
 | |
| 	1,	0,
 | |
| 	3,	ENT_HM|RxCRC_ENAB|Rx8,
 | |
| 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 | |
| 	9,	0,		/* Disable interrupts */
 | |
| 	6,	0xFF,
 | |
| 	7,	FLAG,
 | |
| 	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 | |
| 	11,	TCTRxCP,
 | |
| 	14,	DISDPLL,
 | |
| 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 | |
| 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 | |
| 	9,	NV|MIE|NORESET,
 | |
| 	255
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_hdlc_kilostream);
 | |
| 
 | |
| /*
 | |
|  *	As above but for enhanced chips.
 | |
|  */
 | |
|  
 | |
| u8 z8530_hdlc_kilostream_85230[]=
 | |
| {
 | |
| 	4,	SYNC_ENAB|SDLC|X1CLK,
 | |
| 	2,	0,	/* No vector */
 | |
| 	1,	0,
 | |
| 	3,	ENT_HM|RxCRC_ENAB|Rx8,
 | |
| 	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 | |
| 	9,	0,		/* Disable interrupts */
 | |
| 	6,	0xFF,
 | |
| 	7,	FLAG,
 | |
| 	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
 | |
| 	11,	TCTRxCP,
 | |
| 	14,	DISDPLL,
 | |
| 	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 | |
| 	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 | |
| 	9,	NV|MIE|NORESET,
 | |
| 	23,	3,		/* Extended mode AUTO TX and EOM*/
 | |
| 	
 | |
| 	255
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 | |
| 
 | |
| /**
 | |
|  *	z8530_flush_fifo - Flush on chip RX FIFO
 | |
|  *	@c: Channel to flush
 | |
|  *
 | |
|  *	Flush the receive FIFO. There is no specific option for this, we 
 | |
|  *	blindly read bytes and discard them. Reading when there is no data
 | |
|  *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 | |
|  *	
 | |
|  *	All locking is handled for the caller. On return data may still be
 | |
|  *	present if it arrived during the flush.
 | |
|  */
 | |
|  
 | |
| static void z8530_flush_fifo(struct z8530_channel *c)
 | |
| {
 | |
| 	read_zsreg(c, R1);
 | |
| 	read_zsreg(c, R1);
 | |
| 	read_zsreg(c, R1);
 | |
| 	read_zsreg(c, R1);
 | |
| 	if(c->dev->type==Z85230)
 | |
| 	{
 | |
| 		read_zsreg(c, R1);
 | |
| 		read_zsreg(c, R1);
 | |
| 		read_zsreg(c, R1);
 | |
| 		read_zsreg(c, R1);
 | |
| 	}
 | |
| }	
 | |
| 
 | |
| /**
 | |
|  *	z8530_rtsdtr - Control the outgoing DTS/RTS line
 | |
|  *	@c: The Z8530 channel to control;
 | |
|  *	@set: 1 to set, 0 to clear
 | |
|  *
 | |
|  *	Sets or clears DTR/RTS on the requested line. All locking is handled
 | |
|  *	by the caller. For now we assume all boards use the actual RTS/DTR
 | |
|  *	on the chip. Apparently one or two don't. We'll scream about them
 | |
|  *	later.
 | |
|  */
 | |
| 
 | |
| static void z8530_rtsdtr(struct z8530_channel *c, int set)
 | |
| {
 | |
| 	if (set)
 | |
| 		c->regs[5] |= (RTS | DTR);
 | |
| 	else
 | |
| 		c->regs[5] &= ~(RTS | DTR);
 | |
| 	write_zsreg(c, R5, c->regs[5]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_rx - Handle a PIO receive event
 | |
|  *	@c: Z8530 channel to process
 | |
|  *
 | |
|  *	Receive handler for receiving in PIO mode. This is much like the 
 | |
|  *	async one but not quite the same or as complex
 | |
|  *
 | |
|  *	Note: Its intended that this handler can easily be separated from
 | |
|  *	the main code to run realtime. That'll be needed for some machines
 | |
|  *	(eg to ever clock 64kbits on a sparc ;)).
 | |
|  *
 | |
|  *	The RT_LOCK macros don't do anything now. Keep the code covered
 | |
|  *	by them as short as possible in all circumstances - clocks cost
 | |
|  *	baud. The interrupt handler is assumed to be atomic w.r.t. to
 | |
|  *	other code - this is true in the RT case too.
 | |
|  *
 | |
|  *	We only cover the sync cases for this. If you want 2Mbit async
 | |
|  *	do it yourself but consider medical assistance first. This non DMA 
 | |
|  *	synchronous mode is portable code. The DMA mode assumes PCI like 
 | |
|  *	ISA DMA
 | |
|  *
 | |
|  *	Called with the device lock held
 | |
|  */
 | |
|  
 | |
| static void z8530_rx(struct z8530_channel *c)
 | |
| {
 | |
| 	u8 ch,stat;
 | |
| 
 | |
| 	while(1)
 | |
| 	{
 | |
| 		/* FIFO empty ? */
 | |
| 		if(!(read_zsreg(c, R0)&1))
 | |
| 			break;
 | |
| 		ch=read_zsdata(c);
 | |
| 		stat=read_zsreg(c, R1);
 | |
| 	
 | |
| 		/*
 | |
| 		 *	Overrun ?
 | |
| 		 */
 | |
| 		if(c->count < c->max)
 | |
| 		{
 | |
| 			*c->dptr++=ch;
 | |
| 			c->count++;
 | |
| 		}
 | |
| 
 | |
| 		if(stat&END_FR)
 | |
| 		{
 | |
| 		
 | |
| 			/*
 | |
| 			 *	Error ?
 | |
| 			 */
 | |
| 			if(stat&(Rx_OVR|CRC_ERR))
 | |
| 			{
 | |
| 				/* Rewind the buffer and return */
 | |
| 				if(c->skb)
 | |
| 					c->dptr=c->skb->data;
 | |
| 				c->count=0;
 | |
| 				if(stat&Rx_OVR)
 | |
| 				{
 | |
| 					printk(KERN_WARNING "%s: overrun\n", c->dev->name);
 | |
| 					c->rx_overrun++;
 | |
| 				}
 | |
| 				if(stat&CRC_ERR)
 | |
| 				{
 | |
| 					c->rx_crc_err++;
 | |
| 					/* printk("crc error\n"); */
 | |
| 				}
 | |
| 				/* Shove the frame upstream */
 | |
| 			}
 | |
| 			else
 | |
| 			{
 | |
| 				/*
 | |
| 				 *	Drop the lock for RX processing, or
 | |
| 		 		 *	there are deadlocks
 | |
| 		 		 */
 | |
| 				z8530_rx_done(c);
 | |
| 				write_zsctrl(c, RES_Rx_CRC);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 *	Clear irq
 | |
| 	 */
 | |
| 	write_zsctrl(c, ERR_RES);
 | |
| 	write_zsctrl(c, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	z8530_tx - Handle a PIO transmit event
 | |
|  *	@c: Z8530 channel to process
 | |
|  *
 | |
|  *	Z8530 transmit interrupt handler for the PIO mode. The basic
 | |
|  *	idea is to attempt to keep the FIFO fed. We fill as many bytes
 | |
|  *	in as possible, its quite possible that we won't keep up with the
 | |
|  *	data rate otherwise.
 | |
|  */
 | |
|  
 | |
| static void z8530_tx(struct z8530_channel *c)
 | |
| {
 | |
| 	while(c->txcount) {
 | |
| 		/* FIFO full ? */
 | |
| 		if(!(read_zsreg(c, R0)&4))
 | |
| 			return;
 | |
| 		c->txcount--;
 | |
| 		/*
 | |
| 		 *	Shovel out the byte
 | |
| 		 */
 | |
| 		write_zsreg(c, R8, *c->tx_ptr++);
 | |
| 		write_zsctrl(c, RES_H_IUS);
 | |
| 		/* We are about to underflow */
 | |
| 		if(c->txcount==0)
 | |
| 		{
 | |
| 			write_zsctrl(c, RES_EOM_L);
 | |
| 			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	/*
 | |
| 	 *	End of frame TX - fire another one
 | |
| 	 */
 | |
| 	 
 | |
| 	write_zsctrl(c, RES_Tx_P);
 | |
| 
 | |
| 	z8530_tx_done(c);	 
 | |
| 	write_zsctrl(c, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_status - Handle a PIO status exception
 | |
|  *	@chan: Z8530 channel to process
 | |
|  *
 | |
|  *	A status event occurred in PIO synchronous mode. There are several
 | |
|  *	reasons the chip will bother us here. A transmit underrun means we
 | |
|  *	failed to feed the chip fast enough and just broke a packet. A DCD
 | |
|  *	change is a line up or down.
 | |
|  */
 | |
| 
 | |
| static void z8530_status(struct z8530_channel *chan)
 | |
| {
 | |
| 	u8 status, altered;
 | |
| 
 | |
| 	status = read_zsreg(chan, R0);
 | |
| 	altered = chan->status ^ status;
 | |
| 
 | |
| 	chan->status = status;
 | |
| 
 | |
| 	if (status & TxEOM) {
 | |
| /*		printk("%s: Tx underrun.\n", chan->dev->name); */
 | |
| 		chan->netdevice->stats.tx_fifo_errors++;
 | |
| 		write_zsctrl(chan, ERR_RES);
 | |
| 		z8530_tx_done(chan);
 | |
| 	}
 | |
| 
 | |
| 	if (altered & chan->dcdcheck)
 | |
| 	{
 | |
| 		if (status & chan->dcdcheck) {
 | |
| 			printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
 | |
| 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 | |
| 			if (chan->netdevice)
 | |
| 				netif_carrier_on(chan->netdevice);
 | |
| 		} else {
 | |
| 			printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
 | |
| 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 | |
| 			z8530_flush_fifo(chan);
 | |
| 			if (chan->netdevice)
 | |
| 				netif_carrier_off(chan->netdevice);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	write_zsctrl(chan, RES_EXT_INT);
 | |
| 	write_zsctrl(chan, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| struct z8530_irqhandler z8530_sync =
 | |
| {
 | |
| 	z8530_rx,
 | |
| 	z8530_tx,
 | |
| 	z8530_status
 | |
| };
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync);
 | |
| 
 | |
| /**
 | |
|  *	z8530_dma_rx - Handle a DMA RX event
 | |
|  *	@chan: Channel to handle
 | |
|  *
 | |
|  *	Non bus mastering DMA interfaces for the Z8x30 devices. This
 | |
|  *	is really pretty PC specific. The DMA mode means that most receive
 | |
|  *	events are handled by the DMA hardware. We get a kick here only if
 | |
|  *	a frame ended.
 | |
|  */
 | |
|  
 | |
| static void z8530_dma_rx(struct z8530_channel *chan)
 | |
| {
 | |
| 	if(chan->rxdma_on)
 | |
| 	{
 | |
| 		/* Special condition check only */
 | |
| 		u8 status;
 | |
| 	
 | |
| 		read_zsreg(chan, R7);
 | |
| 		read_zsreg(chan, R6);
 | |
| 		
 | |
| 		status=read_zsreg(chan, R1);
 | |
| 	
 | |
| 		if(status&END_FR)
 | |
| 		{
 | |
| 			z8530_rx_done(chan);	/* Fire up the next one */
 | |
| 		}		
 | |
| 		write_zsctrl(chan, ERR_RES);
 | |
| 		write_zsctrl(chan, RES_H_IUS);
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		/* DMA is off right now, drain the slow way */
 | |
| 		z8530_rx(chan);
 | |
| 	}	
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_dma_tx - Handle a DMA TX event
 | |
|  *	@chan:	The Z8530 channel to handle
 | |
|  *
 | |
|  *	We have received an interrupt while doing DMA transmissions. It
 | |
|  *	shouldn't happen. Scream loudly if it does.
 | |
|  */
 | |
|  
 | |
| static void z8530_dma_tx(struct z8530_channel *chan)
 | |
| {
 | |
| 	if(!chan->dma_tx)
 | |
| 	{
 | |
| 		printk(KERN_WARNING "Hey who turned the DMA off?\n");
 | |
| 		z8530_tx(chan);
 | |
| 		return;
 | |
| 	}
 | |
| 	/* This shouldnt occur in DMA mode */
 | |
| 	printk(KERN_ERR "DMA tx - bogus event!\n");
 | |
| 	z8530_tx(chan);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_dma_status - Handle a DMA status exception
 | |
|  *	@chan: Z8530 channel to process
 | |
|  *	
 | |
|  *	A status event occurred on the Z8530. We receive these for two reasons
 | |
|  *	when in DMA mode. Firstly if we finished a packet transfer we get one
 | |
|  *	and kick the next packet out. Secondly we may see a DCD change.
 | |
|  *
 | |
|  */
 | |
|  
 | |
| static void z8530_dma_status(struct z8530_channel *chan)
 | |
| {
 | |
| 	u8 status, altered;
 | |
| 
 | |
| 	status=read_zsreg(chan, R0);
 | |
| 	altered=chan->status^status;
 | |
| 	
 | |
| 	chan->status=status;
 | |
| 
 | |
| 
 | |
| 	if(chan->dma_tx)
 | |
| 	{
 | |
| 		if(status&TxEOM)
 | |
| 		{
 | |
| 			unsigned long flags;
 | |
| 	
 | |
| 			flags=claim_dma_lock();
 | |
| 			disable_dma(chan->txdma);
 | |
| 			clear_dma_ff(chan->txdma);	
 | |
| 			chan->txdma_on=0;
 | |
| 			release_dma_lock(flags);
 | |
| 			z8530_tx_done(chan);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (altered & chan->dcdcheck)
 | |
| 	{
 | |
| 		if (status & chan->dcdcheck) {
 | |
| 			printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
 | |
| 			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 | |
| 			if (chan->netdevice)
 | |
| 				netif_carrier_on(chan->netdevice);
 | |
| 		} else {
 | |
| 			printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
 | |
| 			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 | |
| 			z8530_flush_fifo(chan);
 | |
| 			if (chan->netdevice)
 | |
| 				netif_carrier_off(chan->netdevice);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	write_zsctrl(chan, RES_EXT_INT);
 | |
| 	write_zsctrl(chan, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| static struct z8530_irqhandler z8530_dma_sync = {
 | |
| 	z8530_dma_rx,
 | |
| 	z8530_dma_tx,
 | |
| 	z8530_dma_status
 | |
| };
 | |
| 
 | |
| static struct z8530_irqhandler z8530_txdma_sync = {
 | |
| 	z8530_rx,
 | |
| 	z8530_dma_tx,
 | |
| 	z8530_dma_status
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	z8530_rx_clear - Handle RX events from a stopped chip
 | |
|  *	@c: Z8530 channel to shut up
 | |
|  *
 | |
|  *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 | |
|  *	For machines with PCI Z85x30 cards, or level triggered interrupts
 | |
|  *	(eg the MacII) we must clear the interrupt cause or die.
 | |
|  */
 | |
| 
 | |
| 
 | |
| static void z8530_rx_clear(struct z8530_channel *c)
 | |
| {
 | |
| 	/*
 | |
| 	 *	Data and status bytes
 | |
| 	 */
 | |
| 	u8 stat;
 | |
| 
 | |
| 	read_zsdata(c);
 | |
| 	stat=read_zsreg(c, R1);
 | |
| 	
 | |
| 	if(stat&END_FR)
 | |
| 		write_zsctrl(c, RES_Rx_CRC);
 | |
| 	/*
 | |
| 	 *	Clear irq
 | |
| 	 */
 | |
| 	write_zsctrl(c, ERR_RES);
 | |
| 	write_zsctrl(c, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_tx_clear - Handle TX events from a stopped chip
 | |
|  *	@c: Z8530 channel to shut up
 | |
|  *
 | |
|  *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 | |
|  *	For machines with PCI Z85x30 cards, or level triggered interrupts
 | |
|  *	(eg the MacII) we must clear the interrupt cause or die.
 | |
|  */
 | |
| 
 | |
| static void z8530_tx_clear(struct z8530_channel *c)
 | |
| {
 | |
| 	write_zsctrl(c, RES_Tx_P);
 | |
| 	write_zsctrl(c, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_status_clear - Handle status events from a stopped chip
 | |
|  *	@chan: Z8530 channel to shut up
 | |
|  *
 | |
|  *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
 | |
|  *	For machines with PCI Z85x30 cards, or level triggered interrupts
 | |
|  *	(eg the MacII) we must clear the interrupt cause or die.
 | |
|  */
 | |
| 
 | |
| static void z8530_status_clear(struct z8530_channel *chan)
 | |
| {
 | |
| 	u8 status=read_zsreg(chan, R0);
 | |
| 	if(status&TxEOM)
 | |
| 		write_zsctrl(chan, ERR_RES);
 | |
| 	write_zsctrl(chan, RES_EXT_INT);
 | |
| 	write_zsctrl(chan, RES_H_IUS);
 | |
| }
 | |
| 
 | |
| struct z8530_irqhandler z8530_nop=
 | |
| {
 | |
| 	z8530_rx_clear,
 | |
| 	z8530_tx_clear,
 | |
| 	z8530_status_clear
 | |
| };
 | |
| 
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_nop);
 | |
| 
 | |
| /**
 | |
|  *	z8530_interrupt - Handle an interrupt from a Z8530
 | |
|  *	@irq: 	Interrupt number
 | |
|  *	@dev_id: The Z8530 device that is interrupting.
 | |
|  *
 | |
|  *	A Z85[2]30 device has stuck its hand in the air for attention.
 | |
|  *	We scan both the channels on the chip for events and then call
 | |
|  *	the channel specific call backs for each channel that has events.
 | |
|  *	We have to use callback functions because the two channels can be
 | |
|  *	in different modes.
 | |
|  *
 | |
|  *	Locking is done for the handlers. Note that locking is done
 | |
|  *	at the chip level (the 5uS delay issue is per chip not per
 | |
|  *	channel). c->lock for both channels points to dev->lock
 | |
|  */
 | |
| 
 | |
| irqreturn_t z8530_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct z8530_dev *dev=dev_id;
 | |
| 	u8 uninitialized_var(intr);
 | |
| 	static volatile int locker=0;
 | |
| 	int work=0;
 | |
| 	struct z8530_irqhandler *irqs;
 | |
| 	
 | |
| 	if(locker)
 | |
| 	{
 | |
| 		printk(KERN_ERR "IRQ re-enter\n");
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 	locker=1;
 | |
| 
 | |
| 	spin_lock(&dev->lock);
 | |
| 
 | |
| 	while(++work<5000)
 | |
| 	{
 | |
| 
 | |
| 		intr = read_zsreg(&dev->chanA, R3);
 | |
| 		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 | |
| 			break;
 | |
| 	
 | |
| 		/* This holds the IRQ status. On the 8530 you must read it from chan 
 | |
| 		   A even though it applies to the whole chip */
 | |
| 		
 | |
| 		/* Now walk the chip and see what it is wanting - it may be
 | |
| 		   an IRQ for someone else remember */
 | |
| 		   
 | |
| 		irqs=dev->chanA.irqs;
 | |
| 
 | |
| 		if(intr & (CHARxIP|CHATxIP|CHAEXT))
 | |
| 		{
 | |
| 			if(intr&CHARxIP)
 | |
| 				irqs->rx(&dev->chanA);
 | |
| 			if(intr&CHATxIP)
 | |
| 				irqs->tx(&dev->chanA);
 | |
| 			if(intr&CHAEXT)
 | |
| 				irqs->status(&dev->chanA);
 | |
| 		}
 | |
| 
 | |
| 		irqs=dev->chanB.irqs;
 | |
| 
 | |
| 		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 | |
| 		{
 | |
| 			if(intr&CHBRxIP)
 | |
| 				irqs->rx(&dev->chanB);
 | |
| 			if(intr&CHBTxIP)
 | |
| 				irqs->tx(&dev->chanB);
 | |
| 			if(intr&CHBEXT)
 | |
| 				irqs->status(&dev->chanB);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&dev->lock);
 | |
| 	if(work==5000)
 | |
| 		printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
 | |
| 	/* Ok all done */
 | |
| 	locker=0;
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_interrupt);
 | |
| 
 | |
| static char reg_init[16]=
 | |
| {
 | |
| 	0,0,0,0,
 | |
| 	0,0,0,0,
 | |
| 	0,0,0,0,
 | |
| 	0x55,0,0,0
 | |
| };
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	z8530_sync_open - Open a Z8530 channel for PIO
 | |
|  *	@dev:	The network interface we are using
 | |
|  *	@c:	The Z8530 channel to open in synchronous PIO mode
 | |
|  *
 | |
|  *	Switch a Z8530 into synchronous mode without DMA assist. We
 | |
|  *	raise the RTS/DTR and commence network operation.
 | |
|  */
 | |
|  
 | |
| int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(c->lock, flags);
 | |
| 
 | |
| 	c->sync = 1;
 | |
| 	c->mtu = dev->mtu+64;
 | |
| 	c->count = 0;
 | |
| 	c->skb = NULL;
 | |
| 	c->skb2 = NULL;
 | |
| 	c->irqs = &z8530_sync;
 | |
| 
 | |
| 	/* This loads the double buffer up */
 | |
| 	z8530_rx_done(c);	/* Load the frame ring */
 | |
| 	z8530_rx_done(c);	/* Load the backup frame */
 | |
| 	z8530_rtsdtr(c,1);
 | |
| 	c->dma_tx = 0;
 | |
| 	c->regs[R1]|=TxINT_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);
 | |
| 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 | |
| 
 | |
| 	spin_unlock_irqrestore(c->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync_open);
 | |
| 
 | |
| /**
 | |
|  *	z8530_sync_close - Close a PIO Z8530 channel
 | |
|  *	@dev: Network device to close
 | |
|  *	@c: Z8530 channel to disassociate and move to idle
 | |
|  *
 | |
|  *	Close down a Z8530 interface and switch its interrupt handlers
 | |
|  *	to discard future events.
 | |
|  */
 | |
|  
 | |
| int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 | |
| {
 | |
| 	u8 chk;
 | |
| 	unsigned long flags;
 | |
| 	
 | |
| 	spin_lock_irqsave(c->lock, flags);
 | |
| 	c->irqs = &z8530_nop;
 | |
| 	c->max = 0;
 | |
| 	c->sync = 0;
 | |
| 	
 | |
| 	chk=read_zsreg(c,R0);
 | |
| 	write_zsreg(c, R3, c->regs[R3]);
 | |
| 	z8530_rtsdtr(c,0);
 | |
| 
 | |
| 	spin_unlock_irqrestore(c->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync_close);
 | |
| 
 | |
| /**
 | |
|  *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
 | |
|  *	@dev: The network device to attach
 | |
|  *	@c: The Z8530 channel to configure in sync DMA mode.
 | |
|  *
 | |
|  *	Set up a Z85x30 device for synchronous DMA in both directions. Two
 | |
|  *	ISA DMA channels must be available for this to work. We assume ISA
 | |
|  *	DMA driven I/O and PC limits on access.
 | |
|  */
 | |
|  
 | |
| int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 | |
| {
 | |
| 	unsigned long cflags, dflags;
 | |
| 	
 | |
| 	c->sync = 1;
 | |
| 	c->mtu = dev->mtu+64;
 | |
| 	c->count = 0;
 | |
| 	c->skb = NULL;
 | |
| 	c->skb2 = NULL;
 | |
| 	/*
 | |
| 	 *	Load the DMA interfaces up
 | |
| 	 */
 | |
| 	c->rxdma_on = 0;
 | |
| 	c->txdma_on = 0;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Allocate the DMA flip buffers. Limit by page size.
 | |
| 	 *	Everyone runs 1500 mtu or less on wan links so this
 | |
| 	 *	should be fine.
 | |
| 	 */
 | |
| 	 
 | |
| 	if(c->mtu  > PAGE_SIZE/2)
 | |
| 		return -EMSGSIZE;
 | |
| 	 
 | |
| 	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 | |
| 	if(c->rx_buf[0]==NULL)
 | |
| 		return -ENOBUFS;
 | |
| 	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 | |
| 	
 | |
| 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 | |
| 	if(c->tx_dma_buf[0]==NULL)
 | |
| 	{
 | |
| 		free_page((unsigned long)c->rx_buf[0]);
 | |
| 		c->rx_buf[0]=NULL;
 | |
| 		return -ENOBUFS;
 | |
| 	}
 | |
| 	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 | |
| 
 | |
| 	c->tx_dma_used=0;
 | |
| 	c->dma_tx = 1;
 | |
| 	c->dma_num=0;
 | |
| 	c->dma_ready=1;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Enable DMA control mode
 | |
| 	 */
 | |
| 
 | |
| 	spin_lock_irqsave(c->lock, cflags);
 | |
| 	 
 | |
| 	/*
 | |
| 	 *	TX DMA via DIR/REQ
 | |
| 	 */
 | |
| 	 
 | |
| 	c->regs[R14]|= DTRREQ;
 | |
| 	write_zsreg(c, R14, c->regs[R14]);     
 | |
| 
 | |
| 	c->regs[R1]&= ~TxINT_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);
 | |
| 	
 | |
| 	/*
 | |
| 	 *	RX DMA via W/Req
 | |
| 	 */	 
 | |
| 
 | |
| 	c->regs[R1]|= WT_FN_RDYFN;
 | |
| 	c->regs[R1]|= WT_RDY_RT;
 | |
| 	c->regs[R1]|= INT_ERR_Rx;
 | |
| 	c->regs[R1]&= ~TxINT_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);
 | |
| 	c->regs[R1]|= WT_RDY_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);            
 | |
| 	
 | |
| 	/*
 | |
| 	 *	DMA interrupts
 | |
| 	 */
 | |
| 	 
 | |
| 	/*
 | |
| 	 *	Set up the DMA configuration
 | |
| 	 */	
 | |
| 	 
 | |
| 	dflags=claim_dma_lock();
 | |
| 	 
 | |
| 	disable_dma(c->rxdma);
 | |
| 	clear_dma_ff(c->rxdma);
 | |
| 	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 | |
| 	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 | |
| 	set_dma_count(c->rxdma, c->mtu);
 | |
| 	enable_dma(c->rxdma);
 | |
| 
 | |
| 	disable_dma(c->txdma);
 | |
| 	clear_dma_ff(c->txdma);
 | |
| 	set_dma_mode(c->txdma, DMA_MODE_WRITE);
 | |
| 	disable_dma(c->txdma);
 | |
| 	
 | |
| 	release_dma_lock(dflags);
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Select the DMA interrupt handlers
 | |
| 	 */
 | |
| 
 | |
| 	c->rxdma_on = 1;
 | |
| 	c->txdma_on = 1;
 | |
| 	c->tx_dma_used = 1;
 | |
| 	 
 | |
| 	c->irqs = &z8530_dma_sync;
 | |
| 	z8530_rtsdtr(c,1);
 | |
| 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 | |
| 
 | |
| 	spin_unlock_irqrestore(c->lock, cflags);
 | |
| 	
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync_dma_open);
 | |
| 
 | |
| /**
 | |
|  *	z8530_sync_dma_close - Close down DMA I/O
 | |
|  *	@dev: Network device to detach
 | |
|  *	@c: Z8530 channel to move into discard mode
 | |
|  *
 | |
|  *	Shut down a DMA mode synchronous interface. Halt the DMA, and
 | |
|  *	free the buffers.
 | |
|  */
 | |
|  
 | |
| int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 | |
| {
 | |
| 	u8 chk;
 | |
| 	unsigned long flags;
 | |
| 	
 | |
| 	c->irqs = &z8530_nop;
 | |
| 	c->max = 0;
 | |
| 	c->sync = 0;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Disable the PC DMA channels
 | |
| 	 */
 | |
| 	
 | |
| 	flags=claim_dma_lock(); 
 | |
| 	disable_dma(c->rxdma);
 | |
| 	clear_dma_ff(c->rxdma);
 | |
| 	
 | |
| 	c->rxdma_on = 0;
 | |
| 	
 | |
| 	disable_dma(c->txdma);
 | |
| 	clear_dma_ff(c->txdma);
 | |
| 	release_dma_lock(flags);
 | |
| 	
 | |
| 	c->txdma_on = 0;
 | |
| 	c->tx_dma_used = 0;
 | |
| 
 | |
| 	spin_lock_irqsave(c->lock, flags);
 | |
| 
 | |
| 	/*
 | |
| 	 *	Disable DMA control mode
 | |
| 	 */
 | |
| 	 
 | |
| 	c->regs[R1]&= ~WT_RDY_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);            
 | |
| 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
 | |
| 	c->regs[R1]|= INT_ALL_Rx;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);
 | |
| 	c->regs[R14]&= ~DTRREQ;
 | |
| 	write_zsreg(c, R14, c->regs[R14]);   
 | |
| 	
 | |
| 	if(c->rx_buf[0])
 | |
| 	{
 | |
| 		free_page((unsigned long)c->rx_buf[0]);
 | |
| 		c->rx_buf[0]=NULL;
 | |
| 	}
 | |
| 	if(c->tx_dma_buf[0])
 | |
| 	{
 | |
| 		free_page((unsigned  long)c->tx_dma_buf[0]);
 | |
| 		c->tx_dma_buf[0]=NULL;
 | |
| 	}
 | |
| 	chk=read_zsreg(c,R0);
 | |
| 	write_zsreg(c, R3, c->regs[R3]);
 | |
| 	z8530_rtsdtr(c,0);
 | |
| 
 | |
| 	spin_unlock_irqrestore(c->lock, flags);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync_dma_close);
 | |
| 
 | |
| /**
 | |
|  *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
 | |
|  *	@dev: The network device to attach
 | |
|  *	@c: The Z8530 channel to configure in sync DMA mode.
 | |
|  *
 | |
|  *	Set up a Z85x30 device for synchronous DMA tranmission. One
 | |
|  *	ISA DMA channel must be available for this to work. The receive
 | |
|  *	side is run in PIO mode, but then it has the bigger FIFO.
 | |
|  */
 | |
| 
 | |
| int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
 | |
| {
 | |
| 	unsigned long cflags, dflags;
 | |
| 
 | |
| 	printk("Opening sync interface for TX-DMA\n");
 | |
| 	c->sync = 1;
 | |
| 	c->mtu = dev->mtu+64;
 | |
| 	c->count = 0;
 | |
| 	c->skb = NULL;
 | |
| 	c->skb2 = NULL;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Allocate the DMA flip buffers. Limit by page size.
 | |
| 	 *	Everyone runs 1500 mtu or less on wan links so this
 | |
| 	 *	should be fine.
 | |
| 	 */
 | |
| 	 
 | |
| 	if(c->mtu  > PAGE_SIZE/2)
 | |
| 		return -EMSGSIZE;
 | |
| 	 
 | |
| 	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 | |
| 	if(c->tx_dma_buf[0]==NULL)
 | |
| 		return -ENOBUFS;
 | |
| 
 | |
| 	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
 | |
| 
 | |
| 
 | |
| 	spin_lock_irqsave(c->lock, cflags);
 | |
| 
 | |
| 	/*
 | |
| 	 *	Load the PIO receive ring
 | |
| 	 */
 | |
| 
 | |
| 	z8530_rx_done(c);
 | |
| 	z8530_rx_done(c);
 | |
| 
 | |
|  	/*
 | |
| 	 *	Load the DMA interfaces up
 | |
| 	 */
 | |
| 
 | |
| 	c->rxdma_on = 0;
 | |
| 	c->txdma_on = 0;
 | |
| 	
 | |
| 	c->tx_dma_used=0;
 | |
| 	c->dma_num=0;
 | |
| 	c->dma_ready=1;
 | |
| 	c->dma_tx = 1;
 | |
| 
 | |
|  	/*
 | |
| 	 *	Enable DMA control mode
 | |
| 	 */
 | |
| 
 | |
|  	/*
 | |
| 	 *	TX DMA via DIR/REQ
 | |
|  	 */
 | |
| 	c->regs[R14]|= DTRREQ;
 | |
| 	write_zsreg(c, R14, c->regs[R14]);     
 | |
| 	
 | |
| 	c->regs[R1]&= ~TxINT_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Set up the DMA configuration
 | |
| 	 */	
 | |
| 	 
 | |
| 	dflags = claim_dma_lock();
 | |
| 
 | |
| 	disable_dma(c->txdma);
 | |
| 	clear_dma_ff(c->txdma);
 | |
| 	set_dma_mode(c->txdma, DMA_MODE_WRITE);
 | |
| 	disable_dma(c->txdma);
 | |
| 
 | |
| 	release_dma_lock(dflags);
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Select the DMA interrupt handlers
 | |
| 	 */
 | |
| 
 | |
| 	c->rxdma_on = 0;
 | |
| 	c->txdma_on = 1;
 | |
| 	c->tx_dma_used = 1;
 | |
| 	 
 | |
| 	c->irqs = &z8530_txdma_sync;
 | |
| 	z8530_rtsdtr(c,1);
 | |
| 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 | |
| 	spin_unlock_irqrestore(c->lock, cflags);
 | |
| 	
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync_txdma_open);
 | |
| 
 | |
| /**
 | |
|  *	z8530_sync_txdma_close - Close down a TX driven DMA channel
 | |
|  *	@dev: Network device to detach
 | |
|  *	@c: Z8530 channel to move into discard mode
 | |
|  *
 | |
|  *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
 | |
|  *	and  free the buffers.
 | |
|  */
 | |
| 
 | |
| int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
 | |
| {
 | |
| 	unsigned long dflags, cflags;
 | |
| 	u8 chk;
 | |
| 
 | |
| 	
 | |
| 	spin_lock_irqsave(c->lock, cflags);
 | |
| 	
 | |
| 	c->irqs = &z8530_nop;
 | |
| 	c->max = 0;
 | |
| 	c->sync = 0;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Disable the PC DMA channels
 | |
| 	 */
 | |
| 	 
 | |
| 	dflags = claim_dma_lock();
 | |
| 
 | |
| 	disable_dma(c->txdma);
 | |
| 	clear_dma_ff(c->txdma);
 | |
| 	c->txdma_on = 0;
 | |
| 	c->tx_dma_used = 0;
 | |
| 
 | |
| 	release_dma_lock(dflags);
 | |
| 
 | |
| 	/*
 | |
| 	 *	Disable DMA control mode
 | |
| 	 */
 | |
| 	 
 | |
| 	c->regs[R1]&= ~WT_RDY_ENAB;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);            
 | |
| 	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
 | |
| 	c->regs[R1]|= INT_ALL_Rx;
 | |
| 	write_zsreg(c, R1, c->regs[R1]);
 | |
| 	c->regs[R14]&= ~DTRREQ;
 | |
| 	write_zsreg(c, R14, c->regs[R14]);   
 | |
| 	
 | |
| 	if(c->tx_dma_buf[0])
 | |
| 	{
 | |
| 		free_page((unsigned long)c->tx_dma_buf[0]);
 | |
| 		c->tx_dma_buf[0]=NULL;
 | |
| 	}
 | |
| 	chk=read_zsreg(c,R0);
 | |
| 	write_zsreg(c, R3, c->regs[R3]);
 | |
| 	z8530_rtsdtr(c,0);
 | |
| 
 | |
| 	spin_unlock_irqrestore(c->lock, cflags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_sync_txdma_close);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
 | |
|  *	it exists...
 | |
|  */
 | |
|  
 | |
| static char *z8530_type_name[]={
 | |
| 	"Z8530",
 | |
| 	"Z85C30",
 | |
| 	"Z85230"
 | |
| };
 | |
| 
 | |
| /**
 | |
|  *	z8530_describe - Uniformly describe a Z8530 port
 | |
|  *	@dev: Z8530 device to describe
 | |
|  *	@mapping: string holding mapping type (eg "I/O" or "Mem")
 | |
|  *	@io: the port value in question
 | |
|  *
 | |
|  *	Describe a Z8530 in a standard format. We must pass the I/O as
 | |
|  *	the port offset isnt predictable. The main reason for this function
 | |
|  *	is to try and get a common format of report.
 | |
|  */
 | |
| 
 | |
| void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
 | |
| {
 | |
| 	printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
 | |
| 		dev->name, 
 | |
| 		z8530_type_name[dev->type],
 | |
| 		mapping,
 | |
| 		Z8530_PORT_OF(io),
 | |
| 		dev->irq);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_describe);
 | |
| 
 | |
| /*
 | |
|  *	Locked operation part of the z8530 init code
 | |
|  */
 | |
|  
 | |
| static inline int do_z8530_init(struct z8530_dev *dev)
 | |
| {
 | |
| 	/* NOP the interrupt handlers first - we might get a
 | |
| 	   floating IRQ transition when we reset the chip */
 | |
| 	dev->chanA.irqs=&z8530_nop;
 | |
| 	dev->chanB.irqs=&z8530_nop;
 | |
| 	dev->chanA.dcdcheck=DCD;
 | |
| 	dev->chanB.dcdcheck=DCD;
 | |
| 
 | |
| 	/* Reset the chip */
 | |
| 	write_zsreg(&dev->chanA, R9, 0xC0);
 | |
| 	udelay(200);
 | |
| 	/* Now check its valid */
 | |
| 	write_zsreg(&dev->chanA, R12, 0xAA);
 | |
| 	if(read_zsreg(&dev->chanA, R12)!=0xAA)
 | |
| 		return -ENODEV;
 | |
| 	write_zsreg(&dev->chanA, R12, 0x55);
 | |
| 	if(read_zsreg(&dev->chanA, R12)!=0x55)
 | |
| 		return -ENODEV;
 | |
| 		
 | |
| 	dev->type=Z8530;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	See the application note.
 | |
| 	 */
 | |
| 	 
 | |
| 	write_zsreg(&dev->chanA, R15, 0x01);
 | |
| 	
 | |
| 	/*
 | |
| 	 *	If we can set the low bit of R15 then
 | |
| 	 *	the chip is enhanced.
 | |
| 	 */
 | |
| 	 
 | |
| 	if(read_zsreg(&dev->chanA, R15)==0x01)
 | |
| 	{
 | |
| 		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
 | |
| 		/* Put a char in the fifo */
 | |
| 		write_zsreg(&dev->chanA, R8, 0);
 | |
| 		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
 | |
| 			dev->type = Z85230;	/* Has a FIFO */
 | |
| 		else
 | |
| 			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
 | |
| 	}
 | |
| 		
 | |
| 	/*
 | |
| 	 *	The code assumes R7' and friends are
 | |
| 	 *	off. Use write_zsext() for these and keep
 | |
| 	 *	this bit clear.
 | |
| 	 */
 | |
| 	 
 | |
| 	write_zsreg(&dev->chanA, R15, 0);
 | |
| 		
 | |
| 	/*
 | |
| 	 *	At this point it looks like the chip is behaving
 | |
| 	 */
 | |
| 	 
 | |
| 	memcpy(dev->chanA.regs, reg_init, 16);
 | |
| 	memcpy(dev->chanB.regs, reg_init ,16);
 | |
| 	
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_init - Initialise a Z8530 device
 | |
|  *	@dev: Z8530 device to initialise.
 | |
|  *
 | |
|  *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
 | |
|  *	is present, identify the type and then program it to hopefully
 | |
|  *	keep quite and behave. This matters a lot, a Z8530 in the wrong
 | |
|  *	state will sometimes get into stupid modes generating 10Khz
 | |
|  *	interrupt streams and the like.
 | |
|  *
 | |
|  *	We set the interrupt handler up to discard any events, in case
 | |
|  *	we get them during reset or setp.
 | |
|  *
 | |
|  *	Return 0 for success, or a negative value indicating the problem
 | |
|  *	in errno form.
 | |
|  */
 | |
| 
 | |
| int z8530_init(struct z8530_dev *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Set up the chip level lock */
 | |
| 	spin_lock_init(&dev->lock);
 | |
| 	dev->chanA.lock = &dev->lock;
 | |
| 	dev->chanB.lock = &dev->lock;
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->lock, flags);
 | |
| 	ret = do_z8530_init(dev);
 | |
| 	spin_unlock_irqrestore(&dev->lock, flags);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_init);
 | |
| 
 | |
| /**
 | |
|  *	z8530_shutdown - Shutdown a Z8530 device
 | |
|  *	@dev: The Z8530 chip to shutdown
 | |
|  *
 | |
|  *	We set the interrupt handlers to silence any interrupts. We then 
 | |
|  *	reset the chip and wait 100uS to be sure the reset completed. Just
 | |
|  *	in case the caller then tries to do stuff.
 | |
|  *
 | |
|  *	This is called without the lock held
 | |
|  */
 | |
|  
 | |
| int z8530_shutdown(struct z8530_dev *dev)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	/* Reset the chip */
 | |
| 
 | |
| 	spin_lock_irqsave(&dev->lock, flags);
 | |
| 	dev->chanA.irqs=&z8530_nop;
 | |
| 	dev->chanB.irqs=&z8530_nop;
 | |
| 	write_zsreg(&dev->chanA, R9, 0xC0);
 | |
| 	/* We must lock the udelay, the chip is offlimits here */
 | |
| 	udelay(100);
 | |
| 	spin_unlock_irqrestore(&dev->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_shutdown);
 | |
| 
 | |
| /**
 | |
|  *	z8530_channel_load - Load channel data
 | |
|  *	@c: Z8530 channel to configure
 | |
|  *	@rtable: table of register, value pairs
 | |
|  *	FIXME: ioctl to allow user uploaded tables
 | |
|  *
 | |
|  *	Load a Z8530 channel up from the system data. We use +16 to 
 | |
|  *	indicate the "prime" registers. The value 255 terminates the
 | |
|  *	table.
 | |
|  */
 | |
| 
 | |
| int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(c->lock, flags);
 | |
| 
 | |
| 	while(*rtable!=255)
 | |
| 	{
 | |
| 		int reg=*rtable++;
 | |
| 		if(reg>0x0F)
 | |
| 			write_zsreg(c, R15, c->regs[15]|1);
 | |
| 		write_zsreg(c, reg&0x0F, *rtable);
 | |
| 		if(reg>0x0F)
 | |
| 			write_zsreg(c, R15, c->regs[15]&~1);
 | |
| 		c->regs[reg]=*rtable++;
 | |
| 	}
 | |
| 	c->rx_function=z8530_null_rx;
 | |
| 	c->skb=NULL;
 | |
| 	c->tx_skb=NULL;
 | |
| 	c->tx_next_skb=NULL;
 | |
| 	c->mtu=1500;
 | |
| 	c->max=0;
 | |
| 	c->count=0;
 | |
| 	c->status=read_zsreg(c, R0);
 | |
| 	c->sync=1;
 | |
| 	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 | |
| 
 | |
| 	spin_unlock_irqrestore(c->lock, flags);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_channel_load);
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *	z8530_tx_begin - Begin packet transmission
 | |
|  *	@c: The Z8530 channel to kick
 | |
|  *
 | |
|  *	This is the speed sensitive side of transmission. If we are called
 | |
|  *	and no buffer is being transmitted we commence the next buffer. If
 | |
|  *	nothing is queued we idle the sync. 
 | |
|  *
 | |
|  *	Note: We are handling this code path in the interrupt path, keep it
 | |
|  *	fast or bad things will happen.
 | |
|  *
 | |
|  *	Called with the lock held.
 | |
|  */
 | |
| 
 | |
| static void z8530_tx_begin(struct z8530_channel *c)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	if(c->tx_skb)
 | |
| 		return;
 | |
| 		
 | |
| 	c->tx_skb=c->tx_next_skb;
 | |
| 	c->tx_next_skb=NULL;
 | |
| 	c->tx_ptr=c->tx_next_ptr;
 | |
| 	
 | |
| 	if(c->tx_skb==NULL)
 | |
| 	{
 | |
| 		/* Idle on */
 | |
| 		if(c->dma_tx)
 | |
| 		{
 | |
| 			flags=claim_dma_lock();
 | |
| 			disable_dma(c->txdma);
 | |
| 			/*
 | |
| 			 *	Check if we crapped out.
 | |
| 			 */
 | |
| 			if (get_dma_residue(c->txdma))
 | |
| 			{
 | |
| 				c->netdevice->stats.tx_dropped++;
 | |
| 				c->netdevice->stats.tx_fifo_errors++;
 | |
| 			}
 | |
| 			release_dma_lock(flags);
 | |
| 		}
 | |
| 		c->txcount=0;
 | |
| 	}
 | |
| 	else
 | |
| 	{
 | |
| 		c->txcount=c->tx_skb->len;
 | |
| 		
 | |
| 		
 | |
| 		if(c->dma_tx)
 | |
| 		{
 | |
| 			/*
 | |
| 			 *	FIXME. DMA is broken for the original 8530,
 | |
| 			 *	on the older parts we need to set a flag and
 | |
| 			 *	wait for a further TX interrupt to fire this
 | |
| 			 *	stage off	
 | |
| 			 */
 | |
| 			 
 | |
| 			flags=claim_dma_lock();
 | |
| 			disable_dma(c->txdma);
 | |
| 
 | |
| 			/*
 | |
| 			 *	These two are needed by the 8530/85C30
 | |
| 			 *	and must be issued when idling.
 | |
| 			 */
 | |
| 			 
 | |
| 			if(c->dev->type!=Z85230)
 | |
| 			{
 | |
| 				write_zsctrl(c, RES_Tx_CRC);
 | |
| 				write_zsctrl(c, RES_EOM_L);
 | |
| 			}	
 | |
| 			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 | |
| 			clear_dma_ff(c->txdma);
 | |
| 			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
 | |
| 			set_dma_count(c->txdma, c->txcount);
 | |
| 			enable_dma(c->txdma);
 | |
| 			release_dma_lock(flags);
 | |
| 			write_zsctrl(c, RES_EOM_L);
 | |
| 			write_zsreg(c, R5, c->regs[R5]|TxENAB);
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 
 | |
| 			/* ABUNDER off */
 | |
| 			write_zsreg(c, R10, c->regs[10]);
 | |
| 			write_zsctrl(c, RES_Tx_CRC);
 | |
| 	
 | |
| 			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
 | |
| 			{		
 | |
| 				write_zsreg(c, R8, *c->tx_ptr++);
 | |
| 				c->txcount--;
 | |
| 			}
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 *	Since we emptied tx_skb we can ask for more
 | |
| 	 */
 | |
| 	netif_wake_queue(c->netdevice);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_tx_done - TX complete callback
 | |
|  *	@c: The channel that completed a transmit.
 | |
|  *
 | |
|  *	This is called when we complete a packet send. We wake the queue,
 | |
|  *	start the next packet going and then free the buffer of the existing
 | |
|  *	packet. This code is fairly timing sensitive.
 | |
|  *
 | |
|  *	Called with the register lock held.
 | |
|  */
 | |
| 
 | |
| static void z8530_tx_done(struct z8530_channel *c)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 
 | |
| 	/* Actually this can happen.*/
 | |
| 	if (c->tx_skb == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	skb = c->tx_skb;
 | |
| 	c->tx_skb = NULL;
 | |
| 	z8530_tx_begin(c);
 | |
| 	c->netdevice->stats.tx_packets++;
 | |
| 	c->netdevice->stats.tx_bytes += skb->len;
 | |
| 	dev_kfree_skb_irq(skb);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_null_rx - Discard a packet
 | |
|  *	@c: The channel the packet arrived on
 | |
|  *	@skb: The buffer
 | |
|  *
 | |
|  *	We point the receive handler at this function when idle. Instead
 | |
|  *	of processing the frames we get to throw them away.
 | |
|  */
 | |
|  
 | |
| void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
 | |
| {
 | |
| 	dev_kfree_skb_any(skb);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_null_rx);
 | |
| 
 | |
| /**
 | |
|  *	z8530_rx_done - Receive completion callback
 | |
|  *	@c: The channel that completed a receive
 | |
|  *
 | |
|  *	A new packet is complete. Our goal here is to get back into receive
 | |
|  *	mode as fast as possible. On the Z85230 we could change to using
 | |
|  *	ESCC mode, but on the older chips we have no choice. We flip to the
 | |
|  *	new buffer immediately in DMA mode so that the DMA of the next
 | |
|  *	frame can occur while we are copying the previous buffer to an sk_buff
 | |
|  *
 | |
|  *	Called with the lock held
 | |
|  */
 | |
|  
 | |
| static void z8530_rx_done(struct z8530_channel *c)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	int ct;
 | |
| 	
 | |
| 	/*
 | |
| 	 *	Is our receive engine in DMA mode
 | |
| 	 */
 | |
| 	 
 | |
| 	if(c->rxdma_on)
 | |
| 	{
 | |
| 		/*
 | |
| 		 *	Save the ready state and the buffer currently
 | |
| 		 *	being used as the DMA target
 | |
| 		 */
 | |
| 		 
 | |
| 		int ready=c->dma_ready;
 | |
| 		unsigned char *rxb=c->rx_buf[c->dma_num];
 | |
| 		unsigned long flags;
 | |
| 		
 | |
| 		/*
 | |
| 		 *	Complete this DMA. Neccessary to find the length
 | |
| 		 */		
 | |
| 		 
 | |
| 		flags=claim_dma_lock();
 | |
| 		
 | |
| 		disable_dma(c->rxdma);
 | |
| 		clear_dma_ff(c->rxdma);
 | |
| 		c->rxdma_on=0;
 | |
| 		ct=c->mtu-get_dma_residue(c->rxdma);
 | |
| 		if(ct<0)
 | |
| 			ct=2;	/* Shit happens.. */
 | |
| 		c->dma_ready=0;
 | |
| 		
 | |
| 		/*
 | |
| 		 *	Normal case: the other slot is free, start the next DMA
 | |
| 		 *	into it immediately.
 | |
| 		 */
 | |
| 		 
 | |
| 		if(ready)
 | |
| 		{
 | |
| 			c->dma_num^=1;
 | |
| 			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 | |
| 			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
 | |
| 			set_dma_count(c->rxdma, c->mtu);
 | |
| 			c->rxdma_on = 1;
 | |
| 			enable_dma(c->rxdma);
 | |
| 			/* Stop any frames that we missed the head of 
 | |
| 			   from passing */
 | |
| 			write_zsreg(c, R0, RES_Rx_CRC);
 | |
| 		}
 | |
| 		else
 | |
| 			/* Can't occur as we dont reenable the DMA irq until
 | |
| 			   after the flip is done */
 | |
| 			printk(KERN_WARNING "%s: DMA flip overrun!\n",
 | |
| 			       c->netdevice->name);
 | |
| 
 | |
| 		release_dma_lock(flags);
 | |
| 
 | |
| 		/*
 | |
| 		 *	Shove the old buffer into an sk_buff. We can't DMA
 | |
| 		 *	directly into one on a PC - it might be above the 16Mb
 | |
| 		 *	boundary. Optimisation - we could check to see if we
 | |
| 		 *	can avoid the copy. Optimisation 2 - make the memcpy
 | |
| 		 *	a copychecksum.
 | |
| 		 */
 | |
| 
 | |
| 		skb = dev_alloc_skb(ct);
 | |
| 		if (skb == NULL) {
 | |
| 			c->netdevice->stats.rx_dropped++;
 | |
| 			printk(KERN_WARNING "%s: Memory squeeze.\n",
 | |
| 			       c->netdevice->name);
 | |
| 		} else {
 | |
| 			skb_put(skb, ct);
 | |
| 			skb_copy_to_linear_data(skb, rxb, ct);
 | |
| 			c->netdevice->stats.rx_packets++;
 | |
| 			c->netdevice->stats.rx_bytes += ct;
 | |
| 		}
 | |
| 		c->dma_ready = 1;
 | |
| 	} else {
 | |
| 		RT_LOCK;
 | |
| 		skb = c->skb;
 | |
| 
 | |
| 		/*
 | |
| 		 *	The game we play for non DMA is similar. We want to
 | |
| 		 *	get the controller set up for the next packet as fast
 | |
| 		 *	as possible. We potentially only have one byte + the
 | |
| 		 *	fifo length for this. Thus we want to flip to the new
 | |
| 		 *	buffer and then mess around copying and allocating
 | |
| 		 *	things. For the current case it doesn't matter but
 | |
| 		 *	if you build a system where the sync irq isnt blocked
 | |
| 		 *	by the kernel IRQ disable then you need only block the
 | |
| 		 *	sync IRQ for the RT_LOCK area.
 | |
| 		 *
 | |
| 		 */
 | |
| 		ct=c->count;
 | |
| 
 | |
| 		c->skb = c->skb2;
 | |
| 		c->count = 0;
 | |
| 		c->max = c->mtu;
 | |
| 		if (c->skb) {
 | |
| 			c->dptr = c->skb->data;
 | |
| 			c->max = c->mtu;
 | |
| 		} else {
 | |
| 			c->count = 0;
 | |
| 			c->max = 0;
 | |
| 		}
 | |
| 		RT_UNLOCK;
 | |
| 
 | |
| 		c->skb2 = dev_alloc_skb(c->mtu);
 | |
| 		if (c->skb2 == NULL)
 | |
| 			printk(KERN_WARNING "%s: memory squeeze.\n",
 | |
| 			       c->netdevice->name);
 | |
| 		else
 | |
| 			skb_put(c->skb2, c->mtu);
 | |
| 		c->netdevice->stats.rx_packets++;
 | |
| 		c->netdevice->stats.rx_bytes += ct;
 | |
| 	}
 | |
| 	/*
 | |
| 	 *	If we received a frame we must now process it.
 | |
| 	 */
 | |
| 	if (skb) {
 | |
| 		skb_trim(skb, ct);
 | |
| 		c->rx_function(c, skb);
 | |
| 	} else {
 | |
| 		c->netdevice->stats.rx_dropped++;
 | |
| 		printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	spans_boundary - Check a packet can be ISA DMA'd
 | |
|  *	@skb: The buffer to check
 | |
|  *
 | |
|  *	Returns true if the buffer cross a DMA boundary on a PC. The poor
 | |
|  *	thing can only DMA within a 64K block not across the edges of it.
 | |
|  */
 | |
| 
 | |
| static inline int spans_boundary(struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned long a=(unsigned long)skb->data;
 | |
| 	a^=(a+skb->len);
 | |
| 	if(a&0x00010000)	/* If the 64K bit is different.. */
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	z8530_queue_xmit - Queue a packet
 | |
|  *	@c: The channel to use
 | |
|  *	@skb: The packet to kick down the channel
 | |
|  *
 | |
|  *	Queue a packet for transmission. Because we have rather
 | |
|  *	hard to hit interrupt latencies for the Z85230 per packet 
 | |
|  *	even in DMA mode we do the flip to DMA buffer if needed here
 | |
|  *	not in the IRQ.
 | |
|  *
 | |
|  *	Called from the network code. The lock is not held at this 
 | |
|  *	point.
 | |
|  */
 | |
| 
 | |
| netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	
 | |
| 	netif_stop_queue(c->netdevice);
 | |
| 	if(c->tx_next_skb)
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 
 | |
| 	
 | |
| 	/* PC SPECIFIC - DMA limits */
 | |
| 	
 | |
| 	/*
 | |
| 	 *	If we will DMA the transmit and its gone over the ISA bus
 | |
| 	 *	limit, then copy to the flip buffer
 | |
| 	 */
 | |
| 	 
 | |
| 	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
 | |
| 	{
 | |
| 		/* 
 | |
| 		 *	Send the flip buffer, and flip the flippy bit.
 | |
| 		 *	We don't care which is used when just so long as
 | |
| 		 *	we never use the same buffer twice in a row. Since
 | |
| 		 *	only one buffer can be going out at a time the other
 | |
| 		 *	has to be safe.
 | |
| 		 */
 | |
| 		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
 | |
| 		c->tx_dma_used^=1;	/* Flip temp buffer */
 | |
| 		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
 | |
| 	}
 | |
| 	else
 | |
| 		c->tx_next_ptr=skb->data;	
 | |
| 	RT_LOCK;
 | |
| 	c->tx_next_skb=skb;
 | |
| 	RT_UNLOCK;
 | |
| 	
 | |
| 	spin_lock_irqsave(c->lock, flags);
 | |
| 	z8530_tx_begin(c);
 | |
| 	spin_unlock_irqrestore(c->lock, flags);
 | |
| 	
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(z8530_queue_xmit);
 | |
| 
 | |
| /*
 | |
|  *	Module support
 | |
|  */
 | |
| static const char banner[] __initdata =
 | |
| 	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
 | |
| 
 | |
| static int __init z85230_init_driver(void)
 | |
| {
 | |
| 	printk(banner);
 | |
| 	return 0;
 | |
| }
 | |
| module_init(z85230_init_driver);
 | |
| 
 | |
| static void __exit z85230_cleanup_driver(void)
 | |
| {
 | |
| }
 | |
| module_exit(z85230_cleanup_driver);
 | |
| 
 | |
| MODULE_AUTHOR("Red Hat Inc.");
 | |
| MODULE_DESCRIPTION("Z85x30 synchronous driver core");
 | |
| MODULE_LICENSE("GPL");
 |