1029 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1029 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Handle caching attributes in page tables (PAT)
 | 
						|
 *
 | 
						|
 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
 | 
						|
 *          Suresh B Siddha <suresh.b.siddha@intel.com>
 | 
						|
 *
 | 
						|
 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/seq_file.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/rbtree.h>
 | 
						|
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/processor.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <asm/fcntl.h>
 | 
						|
#include <asm/e820.h>
 | 
						|
#include <asm/mtrr.h>
 | 
						|
#include <asm/page.h>
 | 
						|
#include <asm/msr.h>
 | 
						|
#include <asm/pat.h>
 | 
						|
#include <asm/io.h>
 | 
						|
 | 
						|
#ifdef CONFIG_X86_PAT
 | 
						|
int __read_mostly pat_enabled = 1;
 | 
						|
 | 
						|
static inline void pat_disable(const char *reason)
 | 
						|
{
 | 
						|
	pat_enabled = 0;
 | 
						|
	printk(KERN_INFO "%s\n", reason);
 | 
						|
}
 | 
						|
 | 
						|
static int __init nopat(char *str)
 | 
						|
{
 | 
						|
	pat_disable("PAT support disabled.");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("nopat", nopat);
 | 
						|
#else
 | 
						|
static inline void pat_disable(const char *reason)
 | 
						|
{
 | 
						|
	(void)reason;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
static int debug_enable;
 | 
						|
 | 
						|
static int __init pat_debug_setup(char *str)
 | 
						|
{
 | 
						|
	debug_enable = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
__setup("debugpat", pat_debug_setup);
 | 
						|
 | 
						|
#define dprintk(fmt, arg...) \
 | 
						|
	do { if (debug_enable) printk(KERN_INFO fmt, ##arg); } while (0)
 | 
						|
 | 
						|
 | 
						|
static u64 __read_mostly boot_pat_state;
 | 
						|
 | 
						|
enum {
 | 
						|
	PAT_UC = 0,		/* uncached */
 | 
						|
	PAT_WC = 1,		/* Write combining */
 | 
						|
	PAT_WT = 4,		/* Write Through */
 | 
						|
	PAT_WP = 5,		/* Write Protected */
 | 
						|
	PAT_WB = 6,		/* Write Back (default) */
 | 
						|
	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
 | 
						|
};
 | 
						|
 | 
						|
#define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
 | 
						|
 | 
						|
void pat_init(void)
 | 
						|
{
 | 
						|
	u64 pat;
 | 
						|
	bool boot_cpu = !boot_pat_state;
 | 
						|
 | 
						|
	if (!pat_enabled)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!cpu_has_pat) {
 | 
						|
		if (!boot_pat_state) {
 | 
						|
			pat_disable("PAT not supported by CPU.");
 | 
						|
			return;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * If this happens we are on a secondary CPU, but
 | 
						|
			 * switched to PAT on the boot CPU. We have no way to
 | 
						|
			 * undo PAT.
 | 
						|
			 */
 | 
						|
			printk(KERN_ERR "PAT enabled, "
 | 
						|
			       "but not supported by secondary CPU\n");
 | 
						|
			BUG();
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set PWT to Write-Combining. All other bits stay the same */
 | 
						|
	/*
 | 
						|
	 * PTE encoding used in Linux:
 | 
						|
	 *      PAT
 | 
						|
	 *      |PCD
 | 
						|
	 *      ||PWT
 | 
						|
	 *      |||
 | 
						|
	 *      000 WB		_PAGE_CACHE_WB
 | 
						|
	 *      001 WC		_PAGE_CACHE_WC
 | 
						|
	 *      010 UC-		_PAGE_CACHE_UC_MINUS
 | 
						|
	 *      011 UC		_PAGE_CACHE_UC
 | 
						|
	 * PAT bit unused
 | 
						|
	 */
 | 
						|
	pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 | 
						|
	      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 | 
						|
 | 
						|
	/* Boot CPU check */
 | 
						|
	if (!boot_pat_state)
 | 
						|
		rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
 | 
						|
 | 
						|
	wrmsrl(MSR_IA32_CR_PAT, pat);
 | 
						|
 | 
						|
	if (boot_cpu)
 | 
						|
		printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
 | 
						|
		       smp_processor_id(), boot_pat_state, pat);
 | 
						|
}
 | 
						|
 | 
						|
#undef PAT
 | 
						|
 | 
						|
static char *cattr_name(unsigned long flags)
 | 
						|
{
 | 
						|
	switch (flags & _PAGE_CACHE_MASK) {
 | 
						|
	case _PAGE_CACHE_UC:		return "uncached";
 | 
						|
	case _PAGE_CACHE_UC_MINUS:	return "uncached-minus";
 | 
						|
	case _PAGE_CACHE_WB:		return "write-back";
 | 
						|
	case _PAGE_CACHE_WC:		return "write-combining";
 | 
						|
	default:			return "broken";
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The global memtype list keeps track of memory type for specific
 | 
						|
 * physical memory areas. Conflicting memory types in different
 | 
						|
 * mappings can cause CPU cache corruption. To avoid this we keep track.
 | 
						|
 *
 | 
						|
 * The list is sorted based on starting address and can contain multiple
 | 
						|
 * entries for each address (this allows reference counting for overlapping
 | 
						|
 * areas). All the aliases have the same cache attributes of course.
 | 
						|
 * Zero attributes are represented as holes.
 | 
						|
 *
 | 
						|
 * The data structure is a list that is also organized as an rbtree
 | 
						|
 * sorted on the start address of memtype range.
 | 
						|
 *
 | 
						|
 * memtype_lock protects both the linear list and rbtree.
 | 
						|
 */
 | 
						|
 | 
						|
struct memtype {
 | 
						|
	u64			start;
 | 
						|
	u64			end;
 | 
						|
	unsigned long		type;
 | 
						|
	struct list_head	nd;
 | 
						|
	struct rb_node		rb;
 | 
						|
};
 | 
						|
 | 
						|
static struct rb_root memtype_rbroot = RB_ROOT;
 | 
						|
static LIST_HEAD(memtype_list);
 | 
						|
static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype list */
 | 
						|
 | 
						|
static struct memtype *memtype_rb_search(struct rb_root *root, u64 start)
 | 
						|
{
 | 
						|
	struct rb_node *node = root->rb_node;
 | 
						|
	struct memtype *last_lower = NULL;
 | 
						|
 | 
						|
	while (node) {
 | 
						|
		struct memtype *data = container_of(node, struct memtype, rb);
 | 
						|
 | 
						|
		if (data->start < start) {
 | 
						|
			last_lower = data;
 | 
						|
			node = node->rb_right;
 | 
						|
		} else if (data->start > start) {
 | 
						|
			node = node->rb_left;
 | 
						|
		} else
 | 
						|
			return data;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Will return NULL if there is no entry with its start <= start */
 | 
						|
	return last_lower;
 | 
						|
}
 | 
						|
 | 
						|
static void memtype_rb_insert(struct rb_root *root, struct memtype *data)
 | 
						|
{
 | 
						|
	struct rb_node **new = &(root->rb_node);
 | 
						|
	struct rb_node *parent = NULL;
 | 
						|
 | 
						|
	while (*new) {
 | 
						|
		struct memtype *this = container_of(*new, struct memtype, rb);
 | 
						|
 | 
						|
		parent = *new;
 | 
						|
		if (data->start <= this->start)
 | 
						|
			new = &((*new)->rb_left);
 | 
						|
		else if (data->start > this->start)
 | 
						|
			new = &((*new)->rb_right);
 | 
						|
	}
 | 
						|
 | 
						|
	rb_link_node(&data->rb, parent, new);
 | 
						|
	rb_insert_color(&data->rb, root);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Does intersection of PAT memory type and MTRR memory type and returns
 | 
						|
 * the resulting memory type as PAT understands it.
 | 
						|
 * (Type in pat and mtrr will not have same value)
 | 
						|
 * The intersection is based on "Effective Memory Type" tables in IA-32
 | 
						|
 * SDM vol 3a
 | 
						|
 */
 | 
						|
static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Look for MTRR hint to get the effective type in case where PAT
 | 
						|
	 * request is for WB.
 | 
						|
	 */
 | 
						|
	if (req_type == _PAGE_CACHE_WB) {
 | 
						|
		u8 mtrr_type;
 | 
						|
 | 
						|
		mtrr_type = mtrr_type_lookup(start, end);
 | 
						|
		if (mtrr_type != MTRR_TYPE_WRBACK)
 | 
						|
			return _PAGE_CACHE_UC_MINUS;
 | 
						|
 | 
						|
		return _PAGE_CACHE_WB;
 | 
						|
	}
 | 
						|
 | 
						|
	return req_type;
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
chk_conflict(struct memtype *new, struct memtype *entry, unsigned long *type)
 | 
						|
{
 | 
						|
	if (new->type != entry->type) {
 | 
						|
		if (type) {
 | 
						|
			new->type = entry->type;
 | 
						|
			*type = entry->type;
 | 
						|
		} else
 | 
						|
			goto conflict;
 | 
						|
	}
 | 
						|
 | 
						|
	 /* check overlaps with more than one entry in the list */
 | 
						|
	list_for_each_entry_continue(entry, &memtype_list, nd) {
 | 
						|
		if (new->end <= entry->start)
 | 
						|
			break;
 | 
						|
		else if (new->type != entry->type)
 | 
						|
			goto conflict;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
 | 
						|
 conflict:
 | 
						|
	printk(KERN_INFO "%s:%d conflicting memory types "
 | 
						|
	       "%Lx-%Lx %s<->%s\n", current->comm, current->pid, new->start,
 | 
						|
	       new->end, cattr_name(new->type), cattr_name(entry->type));
 | 
						|
	return -EBUSY;
 | 
						|
}
 | 
						|
 | 
						|
static int pat_pagerange_is_ram(unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	int ram_page = 0, not_rampage = 0;
 | 
						|
	unsigned long page_nr;
 | 
						|
 | 
						|
	for (page_nr = (start >> PAGE_SHIFT); page_nr < (end >> PAGE_SHIFT);
 | 
						|
	     ++page_nr) {
 | 
						|
		/*
 | 
						|
		 * For legacy reasons, physical address range in the legacy ISA
 | 
						|
		 * region is tracked as non-RAM. This will allow users of
 | 
						|
		 * /dev/mem to map portions of legacy ISA region, even when
 | 
						|
		 * some of those portions are listed(or not even listed) with
 | 
						|
		 * different e820 types(RAM/reserved/..)
 | 
						|
		 */
 | 
						|
		if (page_nr >= (ISA_END_ADDRESS >> PAGE_SHIFT) &&
 | 
						|
		    page_is_ram(page_nr))
 | 
						|
			ram_page = 1;
 | 
						|
		else
 | 
						|
			not_rampage = 1;
 | 
						|
 | 
						|
		if (ram_page == not_rampage)
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	return ram_page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For RAM pages, we use page flags to mark the pages with appropriate type.
 | 
						|
 * Here we do two pass:
 | 
						|
 * - Find the memtype of all the pages in the range, look for any conflicts
 | 
						|
 * - In case of no conflicts, set the new memtype for pages in the range
 | 
						|
 *
 | 
						|
 * Caller must hold memtype_lock for atomicity.
 | 
						|
 */
 | 
						|
static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
 | 
						|
				  unsigned long *new_type)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	u64 pfn;
 | 
						|
 | 
						|
	if (req_type == _PAGE_CACHE_UC) {
 | 
						|
		/* We do not support strong UC */
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		req_type = _PAGE_CACHE_UC_MINUS;
 | 
						|
	}
 | 
						|
 | 
						|
	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 | 
						|
		unsigned long type;
 | 
						|
 | 
						|
		page = pfn_to_page(pfn);
 | 
						|
		type = get_page_memtype(page);
 | 
						|
		if (type != -1) {
 | 
						|
			printk(KERN_INFO "reserve_ram_pages_type failed "
 | 
						|
				"0x%Lx-0x%Lx, track 0x%lx, req 0x%lx\n",
 | 
						|
				start, end, type, req_type);
 | 
						|
			if (new_type)
 | 
						|
				*new_type = type;
 | 
						|
 | 
						|
			return -EBUSY;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (new_type)
 | 
						|
		*new_type = req_type;
 | 
						|
 | 
						|
	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 | 
						|
		page = pfn_to_page(pfn);
 | 
						|
		set_page_memtype(page, req_type);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int free_ram_pages_type(u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	u64 pfn;
 | 
						|
 | 
						|
	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 | 
						|
		page = pfn_to_page(pfn);
 | 
						|
		set_page_memtype(page, -1);
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * req_type typically has one of the:
 | 
						|
 * - _PAGE_CACHE_WB
 | 
						|
 * - _PAGE_CACHE_WC
 | 
						|
 * - _PAGE_CACHE_UC_MINUS
 | 
						|
 * - _PAGE_CACHE_UC
 | 
						|
 *
 | 
						|
 * req_type will have a special case value '-1', when requester want to inherit
 | 
						|
 * the memory type from mtrr (if WB), existing PAT, defaulting to UC_MINUS.
 | 
						|
 *
 | 
						|
 * If new_type is NULL, function will return an error if it cannot reserve the
 | 
						|
 * region with req_type. If new_type is non-NULL, function will return
 | 
						|
 * available type in new_type in case of no error. In case of any error
 | 
						|
 * it will return a negative return value.
 | 
						|
 */
 | 
						|
int reserve_memtype(u64 start, u64 end, unsigned long req_type,
 | 
						|
		    unsigned long *new_type)
 | 
						|
{
 | 
						|
	struct memtype *new, *entry;
 | 
						|
	unsigned long actual_type;
 | 
						|
	struct list_head *where;
 | 
						|
	int is_range_ram;
 | 
						|
	int err = 0;
 | 
						|
 | 
						|
	BUG_ON(start >= end); /* end is exclusive */
 | 
						|
 | 
						|
	if (!pat_enabled) {
 | 
						|
		/* This is identical to page table setting without PAT */
 | 
						|
		if (new_type) {
 | 
						|
			if (req_type == -1)
 | 
						|
				*new_type = _PAGE_CACHE_WB;
 | 
						|
			else if (req_type == _PAGE_CACHE_WC)
 | 
						|
				*new_type = _PAGE_CACHE_UC_MINUS;
 | 
						|
			else
 | 
						|
				*new_type = req_type & _PAGE_CACHE_MASK;
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Low ISA region is always mapped WB in page table. No need to track */
 | 
						|
	if (is_ISA_range(start, end - 1)) {
 | 
						|
		if (new_type)
 | 
						|
			*new_type = _PAGE_CACHE_WB;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Call mtrr_lookup to get the type hint. This is an
 | 
						|
	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
 | 
						|
	 * tools and ACPI tools). Use WB request for WB memory and use
 | 
						|
	 * UC_MINUS otherwise.
 | 
						|
	 */
 | 
						|
	actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
 | 
						|
 | 
						|
	if (new_type)
 | 
						|
		*new_type = actual_type;
 | 
						|
 | 
						|
	is_range_ram = pat_pagerange_is_ram(start, end);
 | 
						|
	if (is_range_ram == 1) {
 | 
						|
 | 
						|
		spin_lock(&memtype_lock);
 | 
						|
		err = reserve_ram_pages_type(start, end, req_type, new_type);
 | 
						|
		spin_unlock(&memtype_lock);
 | 
						|
 | 
						|
		return err;
 | 
						|
	} else if (is_range_ram < 0) {
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	new  = kmalloc(sizeof(struct memtype), GFP_KERNEL);
 | 
						|
	if (!new)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	new->start	= start;
 | 
						|
	new->end	= end;
 | 
						|
	new->type	= actual_type;
 | 
						|
 | 
						|
	spin_lock(&memtype_lock);
 | 
						|
 | 
						|
	/* Search for existing mapping that overlaps the current range */
 | 
						|
	where = NULL;
 | 
						|
	list_for_each_entry(entry, &memtype_list, nd) {
 | 
						|
		if (end <= entry->start) {
 | 
						|
			where = entry->nd.prev;
 | 
						|
			break;
 | 
						|
		} else if (start <= entry->start) { /* end > entry->start */
 | 
						|
			err = chk_conflict(new, entry, new_type);
 | 
						|
			if (!err) {
 | 
						|
				dprintk("Overlap at 0x%Lx-0x%Lx\n",
 | 
						|
					entry->start, entry->end);
 | 
						|
				where = entry->nd.prev;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		} else if (start < entry->end) { /* start > entry->start */
 | 
						|
			err = chk_conflict(new, entry, new_type);
 | 
						|
			if (!err) {
 | 
						|
				dprintk("Overlap at 0x%Lx-0x%Lx\n",
 | 
						|
					entry->start, entry->end);
 | 
						|
 | 
						|
				/*
 | 
						|
				 * Move to right position in the linked
 | 
						|
				 * list to add this new entry
 | 
						|
				 */
 | 
						|
				list_for_each_entry_continue(entry,
 | 
						|
							&memtype_list, nd) {
 | 
						|
					if (start <= entry->start) {
 | 
						|
						where = entry->nd.prev;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_INFO "reserve_memtype failed 0x%Lx-0x%Lx, "
 | 
						|
		       "track %s, req %s\n",
 | 
						|
		       start, end, cattr_name(new->type), cattr_name(req_type));
 | 
						|
		kfree(new);
 | 
						|
		spin_unlock(&memtype_lock);
 | 
						|
 | 
						|
		return err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (where)
 | 
						|
		list_add(&new->nd, where);
 | 
						|
	else
 | 
						|
		list_add_tail(&new->nd, &memtype_list);
 | 
						|
 | 
						|
	memtype_rb_insert(&memtype_rbroot, new);
 | 
						|
 | 
						|
	spin_unlock(&memtype_lock);
 | 
						|
 | 
						|
	dprintk("reserve_memtype added 0x%Lx-0x%Lx, track %s, req %s, ret %s\n",
 | 
						|
		start, end, cattr_name(new->type), cattr_name(req_type),
 | 
						|
		new_type ? cattr_name(*new_type) : "-");
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
int free_memtype(u64 start, u64 end)
 | 
						|
{
 | 
						|
	struct memtype *entry, *saved_entry;
 | 
						|
	int err = -EINVAL;
 | 
						|
	int is_range_ram;
 | 
						|
 | 
						|
	if (!pat_enabled)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Low ISA region is always mapped WB. No need to track */
 | 
						|
	if (is_ISA_range(start, end - 1))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	is_range_ram = pat_pagerange_is_ram(start, end);
 | 
						|
	if (is_range_ram == 1) {
 | 
						|
 | 
						|
		spin_lock(&memtype_lock);
 | 
						|
		err = free_ram_pages_type(start, end);
 | 
						|
		spin_unlock(&memtype_lock);
 | 
						|
 | 
						|
		return err;
 | 
						|
	} else if (is_range_ram < 0) {
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&memtype_lock);
 | 
						|
 | 
						|
	entry = memtype_rb_search(&memtype_rbroot, start);
 | 
						|
	if (unlikely(entry == NULL))
 | 
						|
		goto unlock_ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Saved entry points to an entry with start same or less than what
 | 
						|
	 * we searched for. Now go through the list in both directions to look
 | 
						|
	 * for the entry that matches with both start and end, with list stored
 | 
						|
	 * in sorted start address
 | 
						|
	 */
 | 
						|
	saved_entry = entry;
 | 
						|
	list_for_each_entry_from(entry, &memtype_list, nd) {
 | 
						|
		if (entry->start == start && entry->end == end) {
 | 
						|
			rb_erase(&entry->rb, &memtype_rbroot);
 | 
						|
			list_del(&entry->nd);
 | 
						|
			kfree(entry);
 | 
						|
			err = 0;
 | 
						|
			break;
 | 
						|
		} else if (entry->start > start) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (!err)
 | 
						|
		goto unlock_ret;
 | 
						|
 | 
						|
	entry = saved_entry;
 | 
						|
	list_for_each_entry_reverse(entry, &memtype_list, nd) {
 | 
						|
		if (entry->start == start && entry->end == end) {
 | 
						|
			rb_erase(&entry->rb, &memtype_rbroot);
 | 
						|
			list_del(&entry->nd);
 | 
						|
			kfree(entry);
 | 
						|
			err = 0;
 | 
						|
			break;
 | 
						|
		} else if (entry->start < start) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
unlock_ret:
 | 
						|
	spin_unlock(&memtype_lock);
 | 
						|
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_INFO "%s:%d freeing invalid memtype %Lx-%Lx\n",
 | 
						|
			current->comm, current->pid, start, end);
 | 
						|
	}
 | 
						|
 | 
						|
	dprintk("free_memtype request 0x%Lx-0x%Lx\n", start, end);
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * lookup_memtype - Looksup the memory type for a physical address
 | 
						|
 * @paddr: physical address of which memory type needs to be looked up
 | 
						|
 *
 | 
						|
 * Only to be called when PAT is enabled
 | 
						|
 *
 | 
						|
 * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
 | 
						|
 * _PAGE_CACHE_UC
 | 
						|
 */
 | 
						|
static unsigned long lookup_memtype(u64 paddr)
 | 
						|
{
 | 
						|
	int rettype = _PAGE_CACHE_WB;
 | 
						|
	struct memtype *entry;
 | 
						|
 | 
						|
	if (is_ISA_range(paddr, paddr + PAGE_SIZE - 1))
 | 
						|
		return rettype;
 | 
						|
 | 
						|
	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 | 
						|
		struct page *page;
 | 
						|
		spin_lock(&memtype_lock);
 | 
						|
		page = pfn_to_page(paddr >> PAGE_SHIFT);
 | 
						|
		rettype = get_page_memtype(page);
 | 
						|
		spin_unlock(&memtype_lock);
 | 
						|
		/*
 | 
						|
		 * -1 from get_page_memtype() implies RAM page is in its
 | 
						|
		 * default state and not reserved, and hence of type WB
 | 
						|
		 */
 | 
						|
		if (rettype == -1)
 | 
						|
			rettype = _PAGE_CACHE_WB;
 | 
						|
 | 
						|
		return rettype;
 | 
						|
	}
 | 
						|
 | 
						|
	spin_lock(&memtype_lock);
 | 
						|
 | 
						|
	entry = memtype_rb_search(&memtype_rbroot, paddr);
 | 
						|
	if (entry != NULL)
 | 
						|
		rettype = entry->type;
 | 
						|
	else
 | 
						|
		rettype = _PAGE_CACHE_UC_MINUS;
 | 
						|
 | 
						|
	spin_unlock(&memtype_lock);
 | 
						|
	return rettype;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * io_reserve_memtype - Request a memory type mapping for a region of memory
 | 
						|
 * @start: start (physical address) of the region
 | 
						|
 * @end: end (physical address) of the region
 | 
						|
 * @type: A pointer to memtype, with requested type. On success, requested
 | 
						|
 * or any other compatible type that was available for the region is returned
 | 
						|
 *
 | 
						|
 * On success, returns 0
 | 
						|
 * On failure, returns non-zero
 | 
						|
 */
 | 
						|
int io_reserve_memtype(resource_size_t start, resource_size_t end,
 | 
						|
			unsigned long *type)
 | 
						|
{
 | 
						|
	resource_size_t size = end - start;
 | 
						|
	unsigned long req_type = *type;
 | 
						|
	unsigned long new_type;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 | 
						|
 | 
						|
	ret = reserve_memtype(start, end, req_type, &new_type);
 | 
						|
	if (ret)
 | 
						|
		goto out_err;
 | 
						|
 | 
						|
	if (!is_new_memtype_allowed(start, size, req_type, new_type))
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	if (kernel_map_sync_memtype(start, size, new_type) < 0)
 | 
						|
		goto out_free;
 | 
						|
 | 
						|
	*type = new_type;
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_free:
 | 
						|
	free_memtype(start, end);
 | 
						|
	ret = -EBUSY;
 | 
						|
out_err:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * io_free_memtype - Release a memory type mapping for a region of memory
 | 
						|
 * @start: start (physical address) of the region
 | 
						|
 * @end: end (physical address) of the region
 | 
						|
 */
 | 
						|
void io_free_memtype(resource_size_t start, resource_size_t end)
 | 
						|
{
 | 
						|
	free_memtype(start, end);
 | 
						|
}
 | 
						|
 | 
						|
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 | 
						|
				unsigned long size, pgprot_t vma_prot)
 | 
						|
{
 | 
						|
	return vma_prot;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_STRICT_DEVMEM
 | 
						|
/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
 | 
						|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#else
 | 
						|
/* This check is needed to avoid cache aliasing when PAT is enabled */
 | 
						|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 | 
						|
{
 | 
						|
	u64 from = ((u64)pfn) << PAGE_SHIFT;
 | 
						|
	u64 to = from + size;
 | 
						|
	u64 cursor = from;
 | 
						|
 | 
						|
	if (!pat_enabled)
 | 
						|
		return 1;
 | 
						|
 | 
						|
	while (cursor < to) {
 | 
						|
		if (!devmem_is_allowed(pfn)) {
 | 
						|
			printk(KERN_INFO
 | 
						|
		"Program %s tried to access /dev/mem between %Lx->%Lx.\n",
 | 
						|
				current->comm, from, to);
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
		cursor += PAGE_SIZE;
 | 
						|
		pfn++;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
#endif /* CONFIG_STRICT_DEVMEM */
 | 
						|
 | 
						|
int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 | 
						|
				unsigned long size, pgprot_t *vma_prot)
 | 
						|
{
 | 
						|
	unsigned long flags = _PAGE_CACHE_WB;
 | 
						|
 | 
						|
	if (!range_is_allowed(pfn, size))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (file->f_flags & O_SYNC) {
 | 
						|
		flags = _PAGE_CACHE_UC_MINUS;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	/*
 | 
						|
	 * On the PPro and successors, the MTRRs are used to set
 | 
						|
	 * memory types for physical addresses outside main memory,
 | 
						|
	 * so blindly setting UC or PWT on those pages is wrong.
 | 
						|
	 * For Pentiums and earlier, the surround logic should disable
 | 
						|
	 * caching for the high addresses through the KEN pin, but
 | 
						|
	 * we maintain the tradition of paranoia in this code.
 | 
						|
	 */
 | 
						|
	if (!pat_enabled &&
 | 
						|
	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
 | 
						|
	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
 | 
						|
	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
 | 
						|
	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
 | 
						|
	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
 | 
						|
		flags = _PAGE_CACHE_UC;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 | 
						|
			     flags);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Change the memory type for the physial address range in kernel identity
 | 
						|
 * mapping space if that range is a part of identity map.
 | 
						|
 */
 | 
						|
int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
 | 
						|
{
 | 
						|
	unsigned long id_sz;
 | 
						|
 | 
						|
	if (base >= __pa(high_memory))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	id_sz = (__pa(high_memory) < base + size) ?
 | 
						|
				__pa(high_memory) - base :
 | 
						|
				size;
 | 
						|
 | 
						|
	if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
 | 
						|
		printk(KERN_INFO
 | 
						|
			"%s:%d ioremap_change_attr failed %s "
 | 
						|
			"for %Lx-%Lx\n",
 | 
						|
			current->comm, current->pid,
 | 
						|
			cattr_name(flags),
 | 
						|
			base, (unsigned long long)(base + size));
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Internal interface to reserve a range of physical memory with prot.
 | 
						|
 * Reserved non RAM regions only and after successful reserve_memtype,
 | 
						|
 * this func also keeps identity mapping (if any) in sync with this new prot.
 | 
						|
 */
 | 
						|
static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 | 
						|
				int strict_prot)
 | 
						|
{
 | 
						|
	int is_ram = 0;
 | 
						|
	int ret;
 | 
						|
	unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
 | 
						|
	unsigned long flags = want_flags;
 | 
						|
 | 
						|
	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
 | 
						|
	 * track of number of mappings of RAM pages. We can assert that
 | 
						|
	 * the type requested matches the type of first page in the range.
 | 
						|
	 */
 | 
						|
	if (is_ram) {
 | 
						|
		if (!pat_enabled)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		flags = lookup_memtype(paddr);
 | 
						|
		if (want_flags != flags) {
 | 
						|
			printk(KERN_WARNING
 | 
						|
			"%s:%d map pfn RAM range req %s for %Lx-%Lx, got %s\n",
 | 
						|
				current->comm, current->pid,
 | 
						|
				cattr_name(want_flags),
 | 
						|
				(unsigned long long)paddr,
 | 
						|
				(unsigned long long)(paddr + size),
 | 
						|
				cattr_name(flags));
 | 
						|
			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 | 
						|
					      (~_PAGE_CACHE_MASK)) |
 | 
						|
					     flags);
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (flags != want_flags) {
 | 
						|
		if (strict_prot ||
 | 
						|
		    !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
 | 
						|
			free_memtype(paddr, paddr + size);
 | 
						|
			printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
 | 
						|
				" for %Lx-%Lx, got %s\n",
 | 
						|
				current->comm, current->pid,
 | 
						|
				cattr_name(want_flags),
 | 
						|
				(unsigned long long)paddr,
 | 
						|
				(unsigned long long)(paddr + size),
 | 
						|
				cattr_name(flags));
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * We allow returning different type than the one requested in
 | 
						|
		 * non strict case.
 | 
						|
		 */
 | 
						|
		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 | 
						|
				      (~_PAGE_CACHE_MASK)) |
 | 
						|
				     flags);
 | 
						|
	}
 | 
						|
 | 
						|
	if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
 | 
						|
		free_memtype(paddr, paddr + size);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Internal interface to free a range of physical memory.
 | 
						|
 * Frees non RAM regions only.
 | 
						|
 */
 | 
						|
static void free_pfn_range(u64 paddr, unsigned long size)
 | 
						|
{
 | 
						|
	int is_ram;
 | 
						|
 | 
						|
	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 | 
						|
	if (is_ram == 0)
 | 
						|
		free_memtype(paddr, paddr + size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
 | 
						|
 * copied through copy_page_range().
 | 
						|
 *
 | 
						|
 * If the vma has a linear pfn mapping for the entire range, we get the prot
 | 
						|
 * from pte and reserve the entire vma range with single reserve_pfn_range call.
 | 
						|
 */
 | 
						|
int track_pfn_vma_copy(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	resource_size_t paddr;
 | 
						|
	unsigned long prot;
 | 
						|
	unsigned long vma_size = vma->vm_end - vma->vm_start;
 | 
						|
	pgprot_t pgprot;
 | 
						|
 | 
						|
	if (is_linear_pfn_mapping(vma)) {
 | 
						|
		/*
 | 
						|
		 * reserve the whole chunk covered by vma. We need the
 | 
						|
		 * starting address and protection from pte.
 | 
						|
		 */
 | 
						|
		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 | 
						|
			WARN_ON_ONCE(1);
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
		pgprot = __pgprot(prot);
 | 
						|
		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
 | 
						|
 * for physical range indicated by pfn and size.
 | 
						|
 *
 | 
						|
 * prot is passed in as a parameter for the new mapping. If the vma has a
 | 
						|
 * linear pfn mapping for the entire range reserve the entire vma range with
 | 
						|
 * single reserve_pfn_range call.
 | 
						|
 */
 | 
						|
int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
 | 
						|
			unsigned long pfn, unsigned long size)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	resource_size_t paddr;
 | 
						|
	unsigned long vma_size = vma->vm_end - vma->vm_start;
 | 
						|
 | 
						|
	if (is_linear_pfn_mapping(vma)) {
 | 
						|
		/* reserve the whole chunk starting from vm_pgoff */
 | 
						|
		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
 | 
						|
		return reserve_pfn_range(paddr, vma_size, prot, 0);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pat_enabled)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* for vm_insert_pfn and friends, we set prot based on lookup */
 | 
						|
	flags = lookup_memtype(pfn << PAGE_SHIFT);
 | 
						|
	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
 | 
						|
			 flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
 | 
						|
 * untrack can be called for a specific region indicated by pfn and size or
 | 
						|
 * can be for the entire vma (in which case size can be zero).
 | 
						|
 */
 | 
						|
void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
 | 
						|
			unsigned long size)
 | 
						|
{
 | 
						|
	resource_size_t paddr;
 | 
						|
	unsigned long vma_size = vma->vm_end - vma->vm_start;
 | 
						|
 | 
						|
	if (is_linear_pfn_mapping(vma)) {
 | 
						|
		/* free the whole chunk starting from vm_pgoff */
 | 
						|
		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
 | 
						|
		free_pfn_range(paddr, vma_size);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
pgprot_t pgprot_writecombine(pgprot_t prot)
 | 
						|
{
 | 
						|
	if (pat_enabled)
 | 
						|
		return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
 | 
						|
	else
 | 
						|
		return pgprot_noncached(prot);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pgprot_writecombine);
 | 
						|
 | 
						|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
 | 
						|
 | 
						|
/* get Nth element of the linked list */
 | 
						|
static struct memtype *memtype_get_idx(loff_t pos)
 | 
						|
{
 | 
						|
	struct memtype *list_node, *print_entry;
 | 
						|
	int i = 1;
 | 
						|
 | 
						|
	print_entry  = kmalloc(sizeof(struct memtype), GFP_KERNEL);
 | 
						|
	if (!print_entry)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	spin_lock(&memtype_lock);
 | 
						|
	list_for_each_entry(list_node, &memtype_list, nd) {
 | 
						|
		if (pos == i) {
 | 
						|
			*print_entry = *list_node;
 | 
						|
			spin_unlock(&memtype_lock);
 | 
						|
			return print_entry;
 | 
						|
		}
 | 
						|
		++i;
 | 
						|
	}
 | 
						|
	spin_unlock(&memtype_lock);
 | 
						|
	kfree(print_entry);
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
 | 
						|
{
 | 
						|
	if (*pos == 0) {
 | 
						|
		++*pos;
 | 
						|
		seq_printf(seq, "PAT memtype list:\n");
 | 
						|
	}
 | 
						|
 | 
						|
	return memtype_get_idx(*pos);
 | 
						|
}
 | 
						|
 | 
						|
static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
 | 
						|
{
 | 
						|
	++*pos;
 | 
						|
	return memtype_get_idx(*pos);
 | 
						|
}
 | 
						|
 | 
						|
static void memtype_seq_stop(struct seq_file *seq, void *v)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static int memtype_seq_show(struct seq_file *seq, void *v)
 | 
						|
{
 | 
						|
	struct memtype *print_entry = (struct memtype *)v;
 | 
						|
 | 
						|
	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
 | 
						|
			print_entry->start, print_entry->end);
 | 
						|
	kfree(print_entry);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct seq_operations memtype_seq_ops = {
 | 
						|
	.start = memtype_seq_start,
 | 
						|
	.next  = memtype_seq_next,
 | 
						|
	.stop  = memtype_seq_stop,
 | 
						|
	.show  = memtype_seq_show,
 | 
						|
};
 | 
						|
 | 
						|
static int memtype_seq_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	return seq_open(file, &memtype_seq_ops);
 | 
						|
}
 | 
						|
 | 
						|
static const struct file_operations memtype_fops = {
 | 
						|
	.open    = memtype_seq_open,
 | 
						|
	.read    = seq_read,
 | 
						|
	.llseek  = seq_lseek,
 | 
						|
	.release = seq_release,
 | 
						|
};
 | 
						|
 | 
						|
static int __init pat_memtype_list_init(void)
 | 
						|
{
 | 
						|
	debugfs_create_file("pat_memtype_list", S_IRUSR, arch_debugfs_dir,
 | 
						|
				NULL, &memtype_fops);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
late_initcall(pat_memtype_list_init);
 | 
						|
 | 
						|
#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
 |